This application is related to co-pending, commonly assigned U.S. patent application Ser. No. 11/606,460, filed Nov. 30, 2006, entitled “Particle Separation and Concentration System,” and commonly assigned, co-pending U.S. patent application Ser. No. 11/936,729, filed on Nov. 7, 2007, entitled “Fluidic Device and Method for Separation of Neutrally Buoyant Particles,” and naming Lean et al. as inventors.
Conventional municipal water treatment (MWT) includes multi-stage filtration and sequential process steps for coagulation, flocculation, and sedimentation. Typically, a minimum of two stages of filtration must include coarse 2-3 mm mesh filters at the inlet and 20-40 μm multi-media filters for finishing although many utilities have more intermediate filtration steps. The hydraulic retention time (fluid residence time) in the combined coagulation-flocculation-sedimentation process can be 5-10 hours long, depending on the quality of the source water.
With reference now to
As noted above, the water purification process described requires a substantial amount of time. With reference now to
Therefore, it would be desirable to have available an alternative water treatment system that can more efficiently and effectively purify water.
This application is related to co-pending, commonly assigned U.S. patent application Ser. No. 11/606,460, filed Nov. 30, 2006, entitled “Particle Separation and Concentration System” and commonly assigned, co-pending U.S. patent application Ser. No. 11/936,729, filed on Nov. 7, 2007, entitled “Fluidic Device and Method for Separation of Neutrally Buoyant Particles,” and naming Lean et al. as inventors which are both incorporated herein in their entirety by this reference.
In one aspect of the presently described embodiments, the system comprises an inlet to receive water from a source, a filter stage operative to filter first particles, a mixing stage operative to receive and coagulate the filtered water, a spiral stage operative to receive the coagulated water, treat with flocculant, and separate second particles from the water, a second filter stage operative to filter third particles from the water; and, an outlet.
In another aspect of the presently described embodiments, the first filter stage is a screen filter.
In another aspect of the presently described embodiments, the spiral stage is incorporated in a single spiral device.
In another aspect of the presently described embodiments, the mixing stage is incorporated in a single spiral device.
In another aspect of the presently described embodiments, the mixing stage is incorporated in a flash mixer.
In another aspect of the presently described embodiments, the spiral stage is incorporated in a first spiral device to receive the coagulated water and treat with flocculant and a second spiral device to separate second particles from the water.
In another aspect of the presently described embodiments, the second filter stage is a filter device.
In another aspect of the presently described embodiments, the system further comprises a feedback path to the source.
In another aspect of the presently described embodiments, the feedback path includes a spiral stage for dewatering.
In another aspect of the presently described embodiments, the first particles are approximately 1-3 mm in diameter.
In another aspect of the presently described embodiments, the second particles are approximately 5 μm or larger in diameter.
In another aspect of the presently described embodiments, the third particles are 0.5 μm or larger in diameter.
In another aspect of the presently described embodiments, the method comprises receiving water from a source, filtering the water to remove first particles, flash mixing the filtered water with chlorine and coagulant, slow mixing output of the first spiral stage with flocculant in a spiral stage, separating second particles in the spiral stage, and, filtering the output of the spiral stage to remove third particles.
In another aspect of the presently described embodiments, the filtering of the water to remove first particles comprises passing the water through a screen.
In another aspect of the presently described embodiments, the slow mixing and separating are accomplished in a single separation device.
In another aspect of the presently described embodiments, the filtering of the output of the spiral stage comprises passing the output through a filter having multiple media or membrane filters.
In another aspect of the presently described embodiments, the method further comprises dewatering in a feedback path.
In another aspect of the presently described embodiments, the first particles are approximately 1-3 mm in diameter.
In another aspect of the presently described embodiments, the second particles are approximately 5 μm or larger in diameter.
In another aspect of the presently described embodiments, the third particles are 0.5 μm or larger in diameter.
The presently described embodiments represent a transformational approach to water treatment that incorporates membrane-free filtration with dynamic processing of the fluid to significantly reduce treatment times, chemical cost, land use, and operational overhead. The approach provides hybrid capabilities of filtration together with chemical treatment as the water is transported through various spiral stages.
Features of the system include, but are not limited to, the following:
1) Use of a spiral particle extraction capability as a front-end to lighten the TSS (total suspended solids) loading on the system. The flash mixing at the front-end of the process also enhances chemical kinetics and results in a more complete reaction;
2) Use of a dynamic transport capability in narrow flow channels where the high rate of shear from rapid parabolic flow and coagulants results in seed particles of uniform size which are ideal for accelerated agglomeration kinetics;
3) Allowance for removal of pin floccs (particle size at transition point between the end of coagulation and start of flocculation) as small as 5 μm by the spiral device rather than rely on the conventional practice of allowing them to agglomerate to hundreds of microns in size before settling out in the sedimentation basin. This process also results in accelerated agglomeration;
4) Allow for the entire or near elimination of the flocculation and sedimentation steps together with all the attendant chemicals. This will also allow for reduced land use and maintenance labor; and,
5) Allow for gradual dosage of chemicals.
In this regard,
As shown in
The system 100 further includes a first stage 106, a second spiral stage 108 and a third spiral stage 110. It is to be appreciated that the spiral stages may be incorporated within a single spiral separator device. As an alternative, any one of the spiral stages may be implemented in its own unique spiral separator device. In any case, the first stage 106 is a flash mixing stage. It should be understood that this stage may take the form of a flash mixer, a turbulent mixer or another spiral mixing stage. If a spiral mixing stage is used here, a sufficient amount of turbulence is introduced into the spiral stage to achieve sufficient mixing. The second spiral stage 108 is a spiral slow mixing stage. And, the third spiral stage is a spiral separating stage. In the third stage, particles of 5 μm or larger are typically separated from the fluid.
A filter 112 is also provided to the system. The filter 112 may take a variety of forms. However, in one form, it comprises multiple filtering media or membrane filters to, for example, conform to EPA mandates for physical barriers. The particles that are filtered by the filter device 112 are typically in the 0.5 μm or larger range. Also shown in the system 100 is an optional spiral stage 114 that provides for dewatering. In this stage, the spiral dewatering device receives backwash fluid from the filter 112 and separates sludge from water which is provided back to the water source.
In operation, the system 100 receives water from the source 102 which may include ground, surface, brackish, sea or waste water. This water is filtered through the screen filter 104 to remove a first group of particles in the noted range. The water supply is then flash mixed in stage 106 along with the potassium permanganate, coagulant, and chlorine. Next, flocculant is slow mixed into the supply in spiral slow mixing stage 108. In the third spiral stage 110, another group of particles is separated out from the supply. As noted, these particles are typically in the 5 μm or larger range. Then, the filter 112 filters out a third group of particles that are generally smaller and are in the range of 0.5 μm or larger. The output is then transmitted on for any of a variety of uses.
It should also be understood that the filter 112 may be subjected to a backwashing process which will provide fluid to an optional spiral dewatering stage 114 to, again, separate sludge from water that is provided back to the water source.
With reference now to
The outlet 111 connects to a waste stream 115 which, as shown, includes particles greater than 1-5 micrometers in size. Also shown is an optional recirculation path 117 that may have disposed therein a reduced coagulation tank 119. The recirculation path connects with the inlet 107 of the device 109. The outlet 113 connects to a filter 112, which operates and is configured as described above in connection with
An example of spiral wound prototype of a spiral device is shown in
The spiral device 200 may be structured so that a single spiral stage, as noted above, or multiple contemplated spirals stages are incorporated therein. Of course, the objectives of flash mixing, slow mixing and separating are taken into account in the design of each of the stages. For example, the channel width and flow velocity of each of the stages is taken into consideration in the spiral device implementation. In this regard, it should also be understood that the spiral device shown is merely an example. Any similar spiral device may be implemented to achieve the objectives of the presently described embodiments. For example, spiral devices described in U.S. application Ser. No. 11/606,460, filed Nov. 30, 2006, entitled “Particle Separation and Concentration System,” or U.S. patent application Ser. No. 11/936,729, filed on Nov. 7, 2007, entitled “Fluidic Device and Method for Separation of Neutrally Buoyant Particles,” and naming Lean et al. as inventors which are incorporated in their entirety herein by this reference, may be used. It should be appreciated that any suitable material may be used to implement the spiral devices of the contemplated system.
Further, the dimensions of the spiral channel may vary depending on the implementation. In one form, however, the diameter of the spiral device is 12 inches and the height may vary from 1 inch to 16 inches. The dimensions may have an impact on pressure and output power of the system. Likewise, dimensions of the actual channels may impact pressure and power output. Generally, more pressure (which can be a result of a narrow channel) will result in more power.
Also, the device may be cascaded and/or placed in parallel to achieve greater control of the output and/or greater throughput through the system. As a mere simple example used for explanatory purposes, with reference now to
In operation, the system 500 with the cascaded spiral stages facilitates a first separation of particles between those of greater than 10 micrometers being output from the first spiral separator in a waste stream and particles less than 10 micrometers being input to the second spiral separator 520 for further processing. The second spiral separator then separates particles greater than 1 micrometer and outputs fluid within which those particles reside by way of outlet 524. The remaining fluid or effluent is output through outlet 526. In this manner, the system 500 is able to isolate particles between 1 and 10 micrometers for various sampling processing. This concept can be extended by continued cascading of spiral structures with smaller size cut-offs to achieve fractionation of particles with decreasing size ranges.
With reference to
This device 700 includes a spirally wound body 704 having inlet 706, a first outlet 708 and a second outlet 710. The device 700, as shown in
In
Dynamic processing of the water during transport through the various spiral stages refers to the use of coagulants and high shear rates to enhance agglomeration kinetics. Proof of concept is demonstrated in water treatment experiments using conventional jar tests with and without a spiral device. Jar tests are a standard lab-scale procedure for optimizing the aggregation/flocculation/sedimentation dosage and performance in the water treatment process. The type and amount of coagulant needed depends on the turbidity and native pH of the sample water. Our sample water had a turbidity level of between 25 to 30 NTU and a native pH value of about 9. The standard jar test is typically performed in three phases: In the first phase the liquid is stirred at a high rate (e.g. 275 to 280 rpm) during which the coagulant is added rapidly and the pH level of the sample is adjusted to a value of 9 using 1 N NaOH solution. In a second phase stirring is reduced to a moderate level (e.g. 25 to 30 rpm) that promotes some mixing, but allows the growth of larger floccs. In the third phase no external stirring takes place while the particles grow even larger and sediment out of solution.
In a first modification of the standard jar test (subsequently referred to as “step wise coagulant addition”) we added the coagulant gradually in small doses, and adjusted the pH level to a value of 9 after each of these additions.
In a second modification (subsequently referred to as “modified jar test”), we pumped the fluid at a fixed flow rate through a spiral channel device during phase 1, and optionally during phase 2. The average shear rate inside the channel is approximately 300/s, corresponding to a conventional square jar. In comparison, the average shear rates inside the cylindrical glass beaker are 100/s and 10/s for the rapid and slow mixing phases, respectively.
There are different modes of aggregation: For small particles and/or slow stirring diffusion driven aggregation dominates. For larger particles (approx 1 μm and above) and/or higher mixing rates aggregation is shear dominated. In this case the maximum particle size is limited, since the shear force on the particles will increase with the aggregate size and eventually exceed the binding force between the individual (primary) particles. Most of the particle aggregation and flocculation happens while the sample liquid is not agitated or only moderately stirred. In this case, diffusion driven aggregation is the dominant growth mode for particles below a few μm in size. The total particle number decreases over time as
where N0 is the particle concentration at the start of the experiment, t is time, and τ is the characteristic time scale of the process. For the diffusion driven (or perikinetic) aggregation τ depends on the fluid viscosity, temperature, the initial concentration of particles, and the type of aggregates that grow (loose and light vs. compact and dense).
Turbidity is a measure that includes both light absorption as well as light scattering off particles. Though it is not an exact measurement of the particle concentration or size distribution inside the sample liquid, we may still expect a similar time dependence of the NTU value, if particle scattering dominates the measured value. To compare measured turbidity vs. time curves with model predictions, we fit the experimental data to the function
which was derived from Eqn. (1) by adding a time offset and a constant background:
with
b0=τf(N0); b1=τ−t0; b2=NTUbase. (4)
Comparison of Standard Jar Test Vs. Step-Wise Coagulant Addition
To start the aggregation process coagulant is added and the pH is adjusted to an alkaline level of about 9. The rate and order of addition of these two substances to the sample liquid matter, as they define the ionic strength of the solution and the surface charge of the colloidal particles. Rapid mixing at this stage is essential, as the coagulant destabilizes the sample solution at the injection point and leads to the formation of very large, but loosely connected, floccs that increase the local viscosity substantially. Sufficient shear will break up this flocc network and promote good mixing of all the coagulant within the sample volume. In the standard jar test, all the coagulant is added first at a rapid rate, and then the pH is adjusted with 1 N NaOH solution. Here we compare this standard process with a step-wise procedure, where the coagulant is added in small amounts, followed by an immediate adjustment of the pH level with NaOH solution.
Comparison of Standard Jar Test Vs. Modified Jar Test
In summary, the aggregation dynamics depends crucially on the rate and mode of coagulant addition and pH adjustment. Initial inhomogeneities in the coagulant concentration appear to create large loose floccs that do not break up even under the applied stirring rate. These loose floccs have a low diffusion rate due to their large size which leads to a slower growth rate. Step-wise coagulant addition with immediate adjustment of the pH of the sample liquid prevents the uncontrolled growth of large, loose floccs and promotes the formation of more compact aggregates that grow faster due to their faster diffusion rates. Moving the sample fluid through a channel at sufficient flow rate (causing sufficiently large shear rate) will prevent aggregate growth and will lead to break-up of the loose floccs that form during coagulant addition. Once the sample liquid is no longer moving through the micro channel, aggregates grow rapidly, suggesting again the formation of compact particles.
The advantages of the presently described embodiments include:
1) Particulate extraction based on design cut-off down to 1 um
2) Dynamic processing—transport and enhancement of agglomeration kinetics
3) Replacement of intermediate filtration steps
4) Front-end to MWT to lighten the TSS loading
5) Cascaded operation
6) Parallelizable operation
7) Scalable, high-throughput, continuous flow
8) Shorter processing time, smaller footprint, reduce TCO (total cost of ownership)
9) Elimination of flocculation and sedimentation steps—savings on chemicals, land, and operating incidentals including labor, power, etc.
10) May be used for other applications in water including but not limited to IC fab reclaim, cooling tower water, MBR (membrane bio reactor), pre-treatment for RO (reverse osmosis), and waste water reclaim.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1133721 | Gregg | Mar 1915 | A |
1836758 | Knapp | Dec 1931 | A |
2426804 | Roy | Sep 1947 | A |
2584976 | Bailey, Jr. | Feb 1952 | A |
2615572 | Hodge | Oct 1952 | A |
3225523 | Wiebe | Dec 1965 | A |
3672503 | Mark | Jun 1972 | A |
3693791 | Beck | Sep 1972 | A |
3893921 | Walther et al. | Jul 1975 | A |
3933642 | Wilson | Jan 1976 | A |
3948771 | Bielefeldt | Apr 1976 | A |
4001121 | Bielefeldt | Jan 1977 | A |
4153541 | Rumpf et al. | May 1979 | A |
4159942 | Greer et al. | Jul 1979 | A |
4186474 | Hine | Feb 1980 | A |
4189378 | Wright et al. | Feb 1980 | A |
4292050 | Linhardt et al. | Sep 1981 | A |
4324334 | Wright et al. | Apr 1982 | A |
4343707 | Lucas | Aug 1982 | A |
4383917 | Wells | May 1983 | A |
4386519 | Sinkey | Jun 1983 | A |
4451367 | Ruggeri | May 1984 | A |
4460391 | Muller et al. | Jul 1984 | A |
4462907 | Waldecker | Jul 1984 | A |
4505811 | Griffiths et al. | Mar 1985 | A |
4542775 | Beck | Sep 1985 | A |
4795553 | Giffard | Jan 1989 | A |
4872972 | Wakabayashi et al. | Oct 1989 | A |
4927437 | Richerson | May 1990 | A |
5059226 | Schneider et al. | Oct 1991 | A |
5104520 | Maronde et al. | Apr 1992 | A |
5120436 | Reichner | Jun 1992 | A |
5193688 | Giddings | Mar 1993 | A |
5248421 | Robertson | Sep 1993 | A |
5314529 | Tilton et al. | May 1994 | A |
5535892 | Moorhead et al. | Jul 1996 | A |
5556537 | Saarenketo | Sep 1996 | A |
5587128 | Wilding et al. | Dec 1996 | A |
5632957 | Heller et al. | May 1997 | A |
5653859 | Parton et al. | Aug 1997 | A |
5690763 | Ashmead et al. | Nov 1997 | A |
5715946 | Reichenbach | Feb 1998 | A |
5728262 | Moss et al. | Mar 1998 | A |
5958240 | Hoel | Sep 1999 | A |
5971158 | Yager et al. | Oct 1999 | A |
5993668 | Duan | Nov 1999 | A |
6013165 | Wiktorowicz et al. | Jan 2000 | A |
6087608 | Schlichter et al. | Jul 2000 | A |
6100535 | Mathies et al. | Aug 2000 | A |
6272296 | Gartstein | Aug 2001 | B1 |
6355491 | Zhou et al. | Mar 2002 | B1 |
6422735 | Lang | Jul 2002 | B1 |
6454945 | Weigl et al. | Sep 2002 | B1 |
6527125 | Niitti | Mar 2003 | B2 |
6569323 | Pribytkov | May 2003 | B1 |
6620317 | Alviti | Sep 2003 | B2 |
6827911 | Gering | Dec 2004 | B1 |
6905029 | Flagan | Jun 2005 | B2 |
7104405 | Bohm et al. | Sep 2006 | B2 |
7156970 | Lean et al. | Jan 2007 | B2 |
7163611 | Volkel et al. | Jan 2007 | B2 |
7226542 | Zemel et al. | Jun 2007 | B2 |
7241423 | Golbig et al. | Jul 2007 | B2 |
7282129 | Lean et al. | Oct 2007 | B2 |
7431228 | Bohm et al. | Oct 2008 | B2 |
7473216 | Lolachi et al. | Jan 2009 | B2 |
7491307 | Hsieh et al. | Feb 2009 | B2 |
7497334 | Tyvoll et al. | Mar 2009 | B2 |
7534336 | Volkel et al. | May 2009 | B2 |
7584857 | Bohm et al. | Sep 2009 | B2 |
7770738 | Tabata et al. | Aug 2010 | B2 |
20020130068 | Fassbender et al. | Sep 2002 | A1 |
20040038249 | Darteil et al. | Feb 2004 | A1 |
20050183996 | Zemel et al. | Aug 2005 | A1 |
20050263448 | Heist et al. | Dec 2005 | A1 |
20060087918 | Ji et al. | Apr 2006 | A1 |
20060118479 | Shevkoplyas et al. | Jun 2006 | A1 |
20060158640 | Molter et al. | Jul 2006 | A1 |
20060240964 | Lolachi et al. | Oct 2006 | A1 |
20080128331 | Lean et al. | Jun 2008 | A1 |
20090014360 | Toner et al. | Jan 2009 | A1 |
20090050538 | Lean et al. | Feb 2009 | A1 |
20090114607 | Lean et al. | May 2009 | A1 |
20090283452 | Lean et al. | Nov 2009 | A1 |
20090283455 | Lean et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
1149556 | May 1997 | CN |
1149556 | May 1997 | CN |
2809630 | Sep 1978 | DE |
2829592 | Sep 1978 | DE |
2929139 | Jan 1981 | DE |
37 36 504 | Mar 1989 | DE |
42 00 802 | Jul 1993 | DE |
19855256 | Jun 2000 | DE |
100 01 737 | Oct 2001 | DE |
102004039182 | Feb 2006 | DE |
0448973 | Oct 1991 | EP |
1407807 | Apr 2004 | EP |
1681549 | Jul 2006 | EP |
1795894 | Jun 2007 | EP |
1942329 | Jul 2008 | EP |
2060312 | May 2009 | EP |
2571354 | Apr 1986 | FR |
2753392 | Mar 1998 | FR |
330163 | Jun 1930 | GB |
386080 | Jan 1933 | GB |
934423 | Aug 1963 | GB |
1039485 | Aug 1966 | GB |
2012193 | Jul 1979 | GB |
2024038 | Jan 1980 | GB |
2098091 | Nov 1982 | GB |
2209969 | Jun 1989 | GB |
50-125536 | Oct 1975 | JP |
58-119306 | Jul 1983 | JP |
60071083 | Apr 1985 | JP |
60-125288 | Jul 1985 | JP |
60-129186 | Jul 1985 | JP |
63319017 | Dec 1988 | JP |
5007795 | Jan 1993 | JP |
09-299712 | Nov 1997 | JP |
2001121039 | Aug 2001 | JP |
2001-286872 | Oct 2001 | JP |
2007-069179 | Mar 2007 | JP |
2007069179 | Mar 2007 | JP |
9299712 | Nov 2007 | JP |
04504975 | Jul 2010 | JP |
20030003206 | Jan 2003 | KR |
WO8603140 | Jun 1986 | WO |
WO 8810239 | Dec 1988 | WO |
WO 9838134 | Sep 1998 | WO |
WO2004113877 | Dec 2004 | WO |
WO2006056219 | Jun 2006 | WO |
Entry |
---|
Thiruvenkatachari et al., “Flocculation-cross-flow microfiltration hybrid system for natural organic matter (NOM) removal using hematite as a flocculent,” Desalination, Elsevier, Amsterdam, NL, vol. 147, No. 1-3, XP 004386413, pp. 83-88, Sep. 10, 2002. |
European Search Report, dated Mar. 10, 2009. |
Singapore Search Report, dated Apr. 1, 2009. |
Yang et al., “Particle Separation in Microfluidic Channels Using Flow Rate Control,” Proceedings of IMECE2004-60862, pp. 1-6, Anaheim, CA, Nov. 13-19, 2004. |
Takagi et al., “Continuous Particle Separation in a Microchannel having Asymmetrically Arranged Multiple Branches,”, Lab on a Chip 2005, Lab Chip, 2005, 5, pp. 778-784, May 19, 2005. |
Zhang et al., “Continuous Flow Separation of Particles Within an Asymmetric Microfluidic Device,” Lab on a Chip 2006, Lab Chip, 2006, 6, pp. 561-566, Mar. 13, 2006. |
Narayanan et al., “A Microfabricated Electrical SPLITT System,” Lab on a Chip 2006, Lab Chip, 2006, 6, pp. 105-114, Dec. 5, 2005. |
Kapishnikov et al., “Continuous Particle Size Separation and Size Sorting Using Ultrasound in a Microchannel,” Journal of Statistical Mechanics: Theory and Experiment, P01012, pp. 1-15, 2006. |
Brenner, “Polymer Fabrication and Microfluidic Unit Operations for Medical Diagnostics on a Rotating Disk,” Dissertation at Institute of Microsystems, University of Frieburg, Dec. 2005. |
Ookawara et al., “Feasibility Study on Concentration of Slurry and Classification of Contained Particles by Microchannel,” Chemical Engineering Journal, v. 101, pp. 171-178, 2004. |
Matthews et al., “Particle Flow Modelling on Spiral Concentrators: Benefits of Dense Media for Coal Processing?,” Second International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, pp. 211-216, Dec. 6-8, 1999. |
Shi et al., “Radial Capillary Array Electrophoresis Microplate and Scanner for High-Performance Nucleic Acid Analysis,” Analytical Chemistry, vol. 71, No. 23, pp. 5354-5361, Dec. 1, 1999. |
Tuval et al., “Neutrally Buoyant Particles and Bailout Embeddings in Three-Dimensional Flows,” 5th International Summer School/Conference Proceedings, Let's Face Chaos Through Nonlinear Dynamics (online), Jun. 30-Jul. 14, 2002 (retrieved on Jan. 21, 2009). Retrieved from the Internet: http://www.camtp.uni-mb.si/chaos/2002/reports/abstracts.shtml. |
Gascoyne et al., “Particle Separation by Dielectrophoresis,” Electrophoresis 2002, 23, pp. 1973-1983, Houston, Texas, 2002. |
Bennett et al., “Combined Field-Induces Dielectrophoresis and Phase Separation for Manipulating Particles in Microfluidics,” American Institute of Physics, vol. 82, No. 23, pp. 4866-4868, Dec. 8, 2003. |
Inglis et al., “Continuous Microfluidic Immunomagnetic Cell Separation,” American Institute of Physics, vol. 85, No. 21, pp. 5093-5095, Nov. 22, 2004. |
Giddings, “Field-Flow Fractionation: Analysis of Macromolecular, Colloidal, and Particulate Materials,” Science, vol. 260, pp. 1456-1465, Jun. 4, 1993. |
Reschiglian et al., “Field-Flow Fractionation and Biotechnology,” Trends in Biotechnology, vol. 23, No. 9, pp. 475-483, Sep. 9, 2005. |
Segré et al., “Radial Particle Displacements in Poiseuille Flow of Suspensions,” Nature Publishing Group, No. 4760, pp. 209-210, Jan. 21, 1961. |
Segré et al., “Behaviour of Macroscopic Rigid Spheres in Poiseuille. Flow Part 2. Experimental Results and Interpretation,” Weizmann Institute of Schence, Rehovoth, Israel, pp. 136-157, received Nov. 6, 1961 and in revised form Mar. 16, 1962. |
Leighton et al., “The Lift on a Small Sphere Touching a Plane in the Presence of a Simple Shear Flow,” Journal of Applied Mathematice and Physics (ZAMP), vol. 36, pp. 174-178, Jan. 1985. |
Cherukat et al., “The Inertial Lift on a Rigid Sphere in a Linear Shear Flow Field Near a Flat Wall,” J. Fluid Mech. 1994, vol. 263, pp. 1-18, Received Mar. 8, 1993 and in revised form Aug. 18, 1993. |
Saffman, “The Loft on a Small Sphere in a Slow Shear Flow,” J. Fluid Mech. 1965, vol. 22, Part 2, pp. 385-400, Received Oct. 29, 1964. |
Rubinow et al., “The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid,” Institute of Mathematical Sciences, New York University, New York, pp. 447-459, Mar. 13, 1961. |
Ho et al., “Inertial Migration of Rigid Spheres in two-Dimensional Unidirectional Flows,” J. Fluid Mech. 1974, vol. 65, Part 2, pp. 365-400, Received Sep. 4, 1973. |
Vasseur et al., “The Lateral Migration of a Spherical Particle in Two-Dimensional Shear Flows,” J. Fluid Mech. 1976, vol. 78, Part 2, pp. 385-413, Received Dec. 4, 1975. |
Feng et al., “Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid. Part 2., Couette and Poiseuille Flows,” J. Fluid Mech. 1994, vol. 277, pp. 271-301, Received Sep. 20, 1993 and in revised form May 11, 1994. |
Asmolov, “The Inertial Lift on a Spherical Particle in a Plane Poiseuille Flow at Large Channel Reynolds Number,” J. Fluid Mech. 1999, vol. 381, pp. 63-87, Received Feb. 28, 1997 and in revised form Sep. 10, 1998. |
Asmolov, “The Inertial Lift on a Small Particle in a Weak-Shear Parabolic Flow,” American Institute of Physics, vol. 14, No. 1, Jan. 2002. |
Matas et al., “Inertial Migration of Rigid Spherical Particles in Poiseuille Flow,” J. Fluid Mech. 2004, vol. 515, pp. 171-195, Received Apr. 17, 2003 and in revised form Apr. 19, 2004). |
Yang et al., “Migration of a Sphere in Tube Flow,” J. Fluid Mech. 2005, vol. 540, pp. 109-131, Received Mar. 30, 2004 and in revised form Apr. 13, 2005. |
Michaelides, Hydrodynamic Force and Heat/Mass Transfer From Particles, Bubbles, and Drops—The Freeman Scholar Lecture, Journal of Fluids Engineering, vol. 125, pp. 209-238, Mar. 2003. |
Cherukat et al., “Wall-Induced Lift on a Sphere,” Int. J. Multiphase Flow, vol. 16, No. 5, 1990, pp. 899-907, Received Nov. 6, 1989 and in revised form Apr. 1, 1990). |
Cherukat et al., “The Inertial Lift on a Rigid sphere Translating in a Linear Shear Flow Field,” Int. J. Multiphase Flow, vol. 20, No. 2, 1994, pp. 339-353, Received Feb. 20, 1993 and in revised form Oct. 10, 1993. |
Berger et al., “Flow in Curved Pipes,” Ann. Rev. Fluid Mech. 1983, vol. 15, pp. 461-512, 1983. |
Gupalo et al., “Velocity Field of a Liquid Stream in a Spiral Channel of Rectangular Cross Section,” pp. 109-112. Translated from lzvestiya Adademii Nauk SSSR, Mekhanika Zhidkosti I Gaza, No. 1, pp. 131-136, Jan.-Feb. 1977. Original article submitted Jan. 8, 1976. |
Dean, “Fluid Motion in a Curved Channel,” Imperial College of Science, pp. 402-420, Jul. 31, 1928. |
Sudarsan et al., “Multivortex Micromixing,” PNAS, vol. 103, No. 19, pp. 7228-7233, May 9, 2006. |
Xia et al., “Soft Lithography,” Annu. Rev. Mater. Sci. 1998, vol. 28, pp. 153-184, 1998. |
Sao et al., “Integrated Multiple Patch-Clamp Array Chip via Lateral Cell Trapping Junctions,” American Institute of Physics, vol. 84, No. 11, pp. 1973-1975, Mar. 15, 2004. |
Number | Date | Country | |
---|---|---|---|
20090114601 A1 | May 2009 | US |