Device and method for electrophoretic liquid development

Information

  • Patent Grant
  • 7463851
  • Patent Number
    7,463,851
  • Date Filed
    Thursday, July 29, 2004
    20 years ago
  • Date Issued
    Tuesday, December 9, 2008
    16 years ago
Abstract
In a method or device for transport of liquid developer to an image carrier element for electrophoretic digital printing, a developer unit is arranged adjacent to the image carrier element, the developer unit directing a liquid developer having toner particles to the image carrier element, the toner particles crossing over to the image carrier element corresponding to previously-generated potential images. A raster unit is arranged adjacent to the developer unit. The raster unit transports the liquid developer to the developer unit by use of a raster. An electrical voltage is applied between the raster unit and the developer unit in order to exert a targeted field effect on the toner particles in a direction towards the developer unit. A chamber scraper having a dosing scraper is arranged adjacent to the raster unit and having liquid developer having the toner particles which are already charged. From the chamber scraper the raster unit accepts the liquid developer via the dosing scraper. The chamber scraper is arranged and operable such that the dosing scraper is washed over by the liquid developer.
Description
BACKGROUND

For single- or multi-colored printing of a recording medium (for example a single sheet or a belt-shaped recording medium made from the most varied materials, for example paper or thin plastic or metal films), it is known to generate image-dependent potential images (charge images) on a potential image medium, for example a photoconductor, which image-dependent potential images correspond to the images to be printed that are comprised of regions to be inked and regions that are not to be inked. The regions to be inked (called image positions in the following) of the potential images are made visible with a developer station (inking station) via toner. The toner image is subsequently transfer-printed onto the recording medium (also called printing substrate or final image medium).


Either dry toner or liquid developer containing toner can thereby be used to ink the image positions.


A method for electrophoretic liquid development (electrographic development) in digital printing systems is, for example, known from EP 0 756 213 B1 or EP 0 727 720 B1. The method described there is also known under the name HVT (High Viscosity Technology). A carrier liquid containing silicon oil with ink particles (toner particles) dispersed therein is thereby used as a liquid developer. The toner particles typically have a particle size of less than 1 micron. More detail in this regard can be learned from EP 0 756 213 B1 or EP 0 727 720 B1, which are a component of the disclosure of the present application. Electrophoretic liquid development methods of the cited type with silicon oil as a carrier liquid with toner particles dispersed therein are described there, in addition to a developer station made from one or more developer rollers for wetting of the image carrier element with liquid developer corresponding to the potential images on the image carrier element. The developed potential image is then transferred onto the recording medium via one or more transfer rollers.


A problem is to specify a device and a method for electrophoretic liquid development, whereby the general problem comprises various aspects that are divided up in the following into three individual problems;


a) A first problem to be solved is to specify a device and a method with which the feed of the liquid developer to the image carrier element is simplified;


b) A second problem to be solved is to specify a modularly-designed printing device with which a printing system can be achieved for the most varied, complex printing machines for professional, digital high-speed printing; and


c) A third problem to be solved is to specify an electrophotographic printing device and a method with which a variable speed can be realized given constant print quality.


SUMMARY

In a method or device for transport of liquid developer to an image carrier element for electrophoretic digital printing, a developer unit is arranged adjacent to the image carrier element, the developer unit directing a liquid developer comprising toner particles to the image carrier element, the toner particles crossing over to the image carrier element corresponding to previously-generated potential images. A raster unit is arranged adjacent to the developer unit. The raster unit transports the liquid developer to the developer unit by use of a raster. An electrical voltage is applied between the raster unit and the developer unit in order to exert a targeted field effect on the toner particles in a direction towards the developer unit. A doctor blade chamber comprising a dosing doctor blade is arranged adjacent to the raster unit and having liquid developer comprising said toner particles which are already charged. From the doctor blade chamber the raster unit accepts the liquid developer via the dosing doctor blade. The doctor blade chamber is arranged and operable such that the dosing doctor blade is washed over by the liquid developer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a representation of the developer station given a first position relative to the image carrier element;



FIG. 2 is a representation of the developer station given a second position relative to the image carrier element;



FIG. 3 is a representation of the developer station given a third position relative to the image carrier element;



FIG. 4 is a representation of the developer station given a different arrangement of the doctor blade chamber relative to the raster roller;



FIG. 5 is a representation of print modules with developer stations around a recording medium;



FIG. 6 shows a single printing group that can be combined with a printing device as a module;



FIG. 7 shows a printing device for printing of endless printing substrate webs; and



FIG. 8 shows a printing device for printing of individual sheets (cut sheet).





DESCRIPTION OF THE PREFERRED EMBODIMENT

For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the preferred embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and/or method, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur now or in the future to one skilled in the art to which the invention relates.


Advantages of the preferred embodiment are:

    • the flexible use and/or arrangement of a doctor blade chamber within the device (developer station);
    • the device is suitable for application in the field of (digital) electrostatic (electrophoretic) printing methods;
    • the compact design of the device, for example as a significant component of a compact printing group; and
    • a device that is identical given various installation positions in a printing device, thus enabling variable printer configurations.


In order to ensure a bubble free transport of the liquid developer, it is appropriate to arrange the doctor blade chamber such that the dosing doctor blade is overflowed by liquid developer. The same result is achievable when the liquid developer is exposed to an over-pressure in the doctor blade chamber, such that the dosing doctor blade is overflowed by liquid developer.


In order to remove liquid developer exhibiting the inverse residual image from the developer unit, a cleaning device that accepts the residual image can be arranged adjacent to the developer unit. The cleaning device can comprise a cleaning roller and a cleaning element (for example a doctor blade) that strips the liquid developer from the cleaning roller.


The developer unit can be a developer belt, preferably a developer roller. The raster unit is preferably a raster roller, however can also be a raster belt.


The quantity of the liquid developer transported to the developer roller can be influenced in a simple manner via the mastering of the raster roller. It is advantageous when the raster roller exhibits a rastering that enables the transport of a volume of liquid developer of 1 to 40 cm3/m2 (with regard to the roller surface), advantageously 5-20 cm3/m2. The transport of the liquid developer via the raster roller is thus relative to the surface and thus independent of the print speed, such that the same quantity of liquid developer per areal unit is always directed to the developer roller given different printing speeds.


It is advantageous that the developer roller, raster roller and cleaning roller can rotate with constant speed ratios (surface velocities), advantageously in the ratio of 1:1:1. The movement directions of the surfaces of developer roller and image carrier element can thus be in the same direction or in opposing directions, the developer roller and raster roller can rotate in the same direction or in opposing directions, and the developer roller and cleaning roller can rotate in the same direction or in opposing directions.


In order to advantageously influence the transfer of liquid developer, a potential for specific field effect on the charged toner particles can be respectively applied at the developer roller and the image carrier element. This also applies between developer roller and cleaning roller as well as between raster roller and developer roller.


In order to furthermore advantageously influence the transition of liquid developer, it is appropriate to provide the developer roller with an elastic coating in order to achieve defined effective zones with regard to the adjacent elements. The effective zone is then created via a defined deformation of the elastic coating of the developer roller, advantageously via elastic force feed to the adjacent elements (image carrier element; cleaning roller; raster roller). An effective zone is also created by the incompressible layer of the liquid developer that establishes the separation between developer roller and image carrier element, developer roller and cleaning rollers and developer roller and raster roller.


The doctor blade chamber can comprise one chamber sitting on the circumferential surface of the raster roller, two scrapers sealing the chamber—a closing doctor blade at the entrance of the chamber (viewed in the rotation direction of the raster roller), a dosing doctor blade at the exit of the chamber (viewed in the rotation direction of the raster roller)—and two seals laterally applied on the side boundary of the raster roller. The feed of the liquid developer into the chamber can occur via one or more inlet openings, advantageously via pumping; the removal of the liquid developer from the chamber can occur via inlet or outlet openings, whereby the inlet or outlet openings should be exchangeable depending on the installation position relative to the raster roller.


To prevent the inclusion of air bubbles in a disadvantageous installation position, (for example the dosing doctor blade lies above the closing doctor blade in the direction of gravitational pull) and in order to be able to process higher-viscosity liquid developer (for example 1000 mPa*S), a lighter over-pressure can be generated in the chamber.


It is advantageous that the installation position of the chamber doctor blade on the raster roller is executed variably. The installation position of the cleaning direction on the developer roller can likewise be executed variably.


The use of the device as a developer station in an electrophoretic printing device is particularly advantageous. It is then particularly advantageous that the developer roller, the raster roller and the cleaning roller can be arranged at a constant angle relative to one another, such that the arrangement of the developer station is possible at various angular positions around, for example, a roller-shaped image carrier element without changing the association of developer roller, raster roller, cleaning roller relative to one another (i.e. developer stations of the same design can be arranged without alteration at different positions along the image carrier element). This advantage is increased further in that the angular position of the chamber doctor blade on the raster roller can be varied.


Printing modules can thus be achieved that respectively comprise a developer station and an image carrier element that can be arranged at various angular positions along a deflected recording medium, whereby the arrangement of doctor blade chamber, raster roller and developer roller relative to one another is sustained in the developer station. The printing module can additionally comprise a transfer roller that, for example, transfers the toner images from the image carrier element to the recording medium.


Advantages of the preferred embodiment are:

    • the speed of the development can be flexibly adapted depending on the usage purpose, start, stop via feed of the liquid developer via the raster roller;
    • the simple design (for example only three rollers) enables a compact structural shape and therewith compact printing group designs; and
    • the dosing ratio of a doctor blade chamber is largely viscosity-independent in a large range (0.5-1000 mPa*s) and thus effects
      • a stable processing of different concentrations of the liquid developer and thus high process stability; and
      • the usage of identically-designed developer stations for different liquid developers (for example for different applications).


As to the second problem, the printing device for printing of a printing substrate is comprised of a combination of one or more printing groups with a common printing substrate guidance group as well as with a central control group for coordination of the workflows in the printing groups, in the printing substrate guidance group, as well as in possible connected apparatuses of the printing substrate pre- or post-processing.


The combination of essentially structurally identical (identical in cross-section arrangement, depth corresponding to that of the printing substrate width to be processed), compact and easily manipulable printing modules into a printing device with respectively different printing substrate guidance group, both for “Continuous Feed” (printing on continuous printing substrate web) and for “Cut Sheet” (single sheet or sheet printing), enables the flexible design of the most varied printing devices: from black-and-white (black/white) simplex to black-and-white duplex, YMCK (yellow, magenta, cyan, black) full color simplex to complex, full color duplex printers with four or more printing groups on each printing substrate side. In addition to the uncomplicated design of the complex printing devices at the manufacturer, the comparably easy retrofit and upgrade capability of existing printing devices at the client is advantageous. The use of structurally-identical modules, in particular in the printing groups, additionally enables the cost-effective manufacture via large-scale manufacturing.


Advantageous properties of the printing groups and printing substrate group are:

    • larger speed range (for example 0.3 to 3 m/s);
    • printing substrate width advantageously up to at least 22 inches, however narrower is possible;
    • variable speed during the running printing operation in the overall speed range;
    • compact structural shape of the printing groups (for example (50×100) cm2 cross-section, depth corresponding to printing substrate width); and
    • easy handling capability of the printing groups given the installation and demounting in existing printing devices (retrofitting or, respectively, upgrading), if applicable via suitable auxiliary printing devices.


As to the third problem, the printing device has the advantage that a change of the printing speed is possible in a continuously variable manner and in a large range without reduction of the print quality.


According to the preferred embodiment, a printing device is provided that is comprised of an image-generating system that generates an electronic charge image on an image carrier element (for example photoconductor), which electronic charge image is made visible by means of a developer station via charged ink particles (toner particles) and is subsequently transferred onto a recording medium or final image medium (for example paper) and fixed on this.


Given such a printing device it is possible

    • to vary the speed of the image carrier element continuously from 0 to the limit speed;
    • to adapt (with regard to information location and energy per area) the electronic character generation and, if applicable, the charge intensity of the speed of the image carrier element such that (for example in the electrographic process) the charge image (with regard to form and potential values) is always created in the same manner independent of the speed of the image carrier element; and
    • to implement the development of the charge image with a charge image that allows it to develop the signal distribution on the image carrier element independent of its speed (in the electrographic process, this means that the same potential distributions on the image carrier element always generate the same toner distributions on the charge image during the development process).


For the case that the development of the charge image is not entirely independent of the speed of the image carrier element, the process parameters (for example photoconductor potential, light energy, auxiliary potential over the developer gap, toner concentration or auxiliary potentials for transfer onto the final image medium) can be varied such that the toner image deposition on the image carrier element or the final image medium is nearly identical given different velocity. The parameters to be influenced are advantageously to be coupled with one another via one or more regulatory processes.


A development method is advantageously used that naturally generates an independent toner deposition up to the limit speed of the image carrier element. This occurs, for example, via a liquid development in which fine toner particles (advantageously approximately 1 μm in diameter or smaller) are dispersed in a high-ohmic carrier fluid (for example silicon oil), whereby the concentration of the toner particles can be selected so high that so many toner particles are located in a thin developer gap (advantageously 5 to 10 μm) that the desired inking (optical density or ink density) on the image carrier element is created given complete (or nearly complete) deposition of all toner particles located in the developer gap. It is furthermore a requirement for the function that the movement capability of the toner particles in the development gap is at least so large that, during the residence duration of the toner particles in the developer gap, all (or almost all) toner particles under the influence of the electrical field strength existing over the regions of the image carrier element to be inked completely traverse the developer gap and are deposited on the regions to be inked on the surface of the image carrier element and, under the influence of the electrical field strength existing over the regions of the image medium that are not to be inked, are not or are nearly not, deposited on the surface of the image medium.


In this method, the respective achievable maximum inking can be pre-selected or set in connection with the targeted adjustment of the toner concentration in the developer fluid. In this printing process, a specifically set maximum inking can thus be held constant given variable printing speed.


Such a developer station can comprise a developer roller that transports a liquid developer past the image carrier element such that the toner deposition on the image carrier element is independent of its speed.


The developer station can be executed such that

    • a developer roller is provided adjacent to the image carrier element, which developer roller directs the liquid developer comprising toner particles past the image carrier element and from which toner particles cross over to the image carrier element corresponding to the previously-generated charge images,
    • a raster roller in whose rastering the liquid developer is transported to the developer roller is arranged adjacent to the developer roller,
    • a doctor blade chamber comprising a dosing doctor blade is arranged adjacent to the raster roller, from which doctor blade chamber the raster roller accepts the liquid developer via the dosing doctor blade whose position relative to the raster roller is adjustable and that is designed such that the dosing doctor blade is overflowed by liquid developer.


The overflow can be achieved based on the gravitation of the liquid developer or via utilization of over-pressure.


It is advantageous that the quantity of the liquid developer transported by the raster roller can be established via the rastering of the raster roller. The transport of the liquid developer via the raster roller is thus relative to the area and thus independent of the print speed, such that the same quantity of liquid developer per areal unit is always directed to the developer roller given different printing speeds.


It is advantageous when the raster roller exhibits a rastering that enables the transport of a volume of liquid developer from 1 to 40 cm3/m2 (corresponding to the roller surface), advantageously 5-20 cm3/m2.


It is furthermore advantageous when the developer roller comprises an elastic coating that is in contact with the image carrier element and with the raster roller.


The doctor blade chamber can be a chamber situated on the circumferential surface of the raster roller, with two doctor blades sealing the chamber, namely a closing doctor blade at the entrance of the chamber (viewed in the rotation direction of the raster roller), a dosing doctor blade at the exit of the chamber (viewed in the rotation direction of the raster roller), and with two seals laterally applied at the edge of the raster roller. The feed of the liquid developer into the chamber can thus occur via one or more inlet openings, advantageously via pumping, and the removal of the liquid developer from the chamber can occur via inlet or outlet openings.


A) First Aspect of the Preferred Embodiment—A Device for Transport of Liquid Developer to an Image Carrier Element Given Electrophoretic Digital Printing


For design of a developer station E according to FIG. 1, the developer station E comprises:

    • a developer roller 203 with an elastic coating 206; multiple developer stations can also naturally be provided;
    • a raster roller 202 with a rastering made up of depressions (cups) arranged thereupon; a plurality of raster rollers can also be provided; the rastering can be executed differently depending on the application case;
    • a chamber doctor blade 201 that is variable in terms of its position relative to the raster roller;
    • a cleaning device with a cleaning roller 204 and a cleaning element 205.


The developer roller 203 contacts an image carrier element F, for example a photoconductor on a photoconductor belt or a roller with a photoconductor layer arranged thereupon. Furthermore, a transfer roller 121 (FIG. 5) can be provided for transfer of the toner image inked with fluid toner from the image carrier element F onto a belt-shaped recording medium 1 or a sheet-shaped recording medium.


A liquid developer with ink (toner particles) distributed therein, which liquid developer is suitable for electrophoretic development, can be used as it is known, for example, from EP 0 756 213 B1 or EP 0 727 720 B1.


The feed of the liquid developer for inking with toner particles of the image carrier element F according to the image occurs over the chamber scraper 201 and the raster roller 202 to the developer roller 203. The cleaning of the inverse residual image from the developer roller 203 in turn occurs via its transfer to the cleaning roller 204 and removal of the liquid developer from the cleaning roller 204 via a cleaning element 205 (for example a scraper). From the cleaning device 204, 205, the removed liquid developer can be transferred back to a reservoir for the liquid developer (not shown).


The developer roller 203, the raster roller 202, and the cleaning roller 204 rotate in an advantageous manner with constant speed ratios relative to one another (surface velocities), advantageously in a ratio of 1:1:1. The rotation direction of the developer roller 203 and of the medium element F can be in the same direction or in opposite directions; those of the developer roller 203 and of the raster roller 202 as well as of the developer roller 203 and of the cleaning roller 204 can be in the same direction or in opposite directions. Defined potentials for targeted field effect on the charged toner particles can be applied to them as shown at E1, E2, and E3 in FIG. 1.


The developer roller 203 has an elastic coating 206 and is in contact with the image carrier element F, with the raster roller 202 and with the cleaning roller 204.


The raster roller 202 is adapted in terms of its rastering for the transport of a volume of liquid developer from 1 to 40 cm3/m2 (relative to the roller surface), advantageously 5-20 cm3/m2.


The transport of liquid developer is additionally relative to the area and thus independent of the printing speed, i.e. the same quantity of liquid developer per areal unit of the developer roller 203 can always be supplied given different printing speeds.


The formation of defined effective zones for the transfer of liquid developer between developer roller 203 and image carrier element F, developer roller 203, and cleaning roller 204 and developer roller 203 and raster roller 202 can be achieved in varying manners:

    • via defined deformation of the elastic coating 206 of the developer roller 203, advantageously via elastic force delivery to adjacent elements such as, for example image carrier element F, raster roller 202 or cleaning roller 204;
    • via the incompressible layer of the liquid developer between developer roller 203 and image carrier element F, developer roller 203, and cleaning roller 204 or developer roller 203 and raster roller 202.


Design and Arrangement of the Chamber Scraper 201, in Particular According to FIG. 4


The doctor blade chamber 201 for offset printing is known from Kipphan, Handbuch der Printmedien, Springer Verlag, 2000. Its use for electrophoretic digital printing given different positions of the developer station 200 relative to the image carrier element F results from FIGS. 1 through 4.


The doctor blade chamber 201 is a chamber 207 situated on the circumferential surface of the raster roller 202, which chamber 207 is sealed by two doctor blades (the closing scraper R1 at the entrance of the chamber as viewed in the rotation direction of the raster roller 202 and the dosing doctor blade R2 at the exit of the chamber 207 as viewed in the rotation direction of the raster roller 202) and two seals for sealing at the lateral edge of the raster roller 202 (not visible in the Figures). The feed of the liquid developer into the chamber 207 of the doctor blade chamber 201 can occur via one or more inlet openings, advantageously via pumping. The removal of the liquid developer from the chamber 207 (for example advantageously for better mixing of the liquid developer) and the emptying of the chamber 207 can occur via either inlet or outlet openings.


An exchange of the inlet or outlet openings depending on the installation position of the doctor blade chamber 201 (FIG. 2, FIG. 3, FIG. 4) is thereby possible (in FIGS. 2 and 3, g designates the effective direction of gravity and therewith its influence on the liquid level in the doctor blade chamber 201).


The angular position of the doctor blade chamber 201 relative to the raster roller 202 is thus limited in that the dosing doctor blade R2 must always be located below the surface of the liquid developer (this serves for air bubble-free filling of the cups of the rastering of the raster roller 202).


The generation of slight over-pressure in the doctor blade chamber 201 can optionally be used in order to keep the dosing doctor blade R2 below the fluid surface. This solution is moreover suitable for processing of higher-viscosity liquid developer (for example 1000 mPa*s).


The installation positions of the doctor blade chamber 201 relative to the raster roller 202 are selectable, as FIG. 4 shows. The raster roller 202 together with the doctor blade chamber 201 can be arranged relative to the developer roller 203, depending on the installation position of the developer roller 203, such that the dosing doctor blade R2 is overflowed with liquid developer (FIG. 1 through 4). The following embodiments are advantageous:

    • one embodiment provides a constant angle between developer roller 203, cleaning roller 204 and raster roller 202 and enables an arrangement at various angles around the image carrier element F;
    • an extension of the installation positions results via the additional possibility to vary the angular position of the chamber doctor blade 201 on the raster roller 202 (FIG. 4).



FIG. 5 shows an arrangement of a plurality of printing modules (PM), for example in a digital color printing device. Here printing modules PM, with an image carrier element F, a developer station (designated with E in FIG. 5) and a transfer roller 121 that transfers the toner image from the image carrier element F to a recording medium 1, are respectively arranged around the recording medium 1 that is deflected by a deflection roller 2. The design of the developer station E corresponding to FIGS. 1 through 4 allows structurally identical printing modules PM to be arranged at various angles in the deflection region of the recording medium 1. This is in particular achieved via a usage of doctor blade chambers 201 for feed of the liquid developer to the image carrier element F, since with this the use of the structurally identical developer stations E is possible at various installation positions (simplex, duplex, horizontal, vertical, angle range>120° given satellite arrangement) of the printing device; see FIG. 5 for a digital color printing device with multiple developer stations E1-E5 corresponding to the desired color separations. The angular range can thus be carried via additional adjustable positions of the doctor blade chamber 201 (and of the cleaning device 204, 205) via an adjustment device or via adjustable design of doctor blade chamber 201 and cleaning device 204, 205 (FIG. 2, FIG. 3).


B) Second Aspect of the Preferred Embodiment:—Modularly Designed Printing Device


In the following, as shown in FIGS. 6 and 7, a printing system is comprised of a combination of multiple printing groups 100 arranged in succession with a common printing substrate guidance group 200. Machines of printing substrate pre- or post-processing can be connected to the printing system. A central control group 400 for coordination of the workflows in the printing groups 100 and in the printing substrate guidance group 200 is additionally provided.


The printing groups 100 are executed as modules that can be combined with one another, which modules are structurally identical, compact and easily manipulable. They can be adapted to the width of the printing substrate 1.


Design of an Individual Module=Printing Group 100

In the exemplary embodiment, the printing groups 100 are executed as electrographic printing groups as they are known, for example, from EP 0 727 720 B1. They comprise a printing unit 110 with an image generation element 111, a charge station 112, an image exposure station 113, a developer station 114 and an image generation element cleaning station 115. The image generation element 111 can comprise a photoconductor such as a photoconductor drum or a photoconductor belt. The exposure station 113 can be an LED character generator or laser. The developer station 114 can be realized as an electrophoretic liquid developer station.


For example, the developer station 114 can comprise a developer roller that transports a liquid developer past an image generation element 111 such that the toner deposition on the image generation element 111 is independent of its speed. A high-ohmic carrier fluid in which toner particles are dispersed can be provided as a liquid developer. An example of such a carrier fluid is silicon oil. The toner particles can advantageously exhibit a diameter of approximately 1 μm.


The toner concentration in the liquid developer is additionally selected such that so many toner particles are located in the developer gap between developer roller and image generation element 111 that all or nearly all toner particles located in the developer gap create the desired inking of the charge images given complete deposition. The developer gap should advantageously be 5 to 10 μm, and the mobility of the toner particles in the developer gap should advantageously be such that, during the residence duration of the toner particles in the developer gap, optimally all toner particles under the influence of the electrical field strength existing over the image generation element 111 to be inked traverse the developer gap and are deposited on the surface of the image generation element 111 to be inked.


An advantageous developer station 114 can have the following design (FIG. 4):

    • a developer roller 203 is arranged adjacent to the image generation element 111 (F), which developer roller 203 directs liquid developer comprising the toner particles past the image generation element 111 and from which developer roller 203 toner particles cross to the image generation element 111 (F) corresponding to the previously-generated charge images.
    • A raster roller 202 is arranged adjacent to the developer roller 203, in the rastering of which raster roller 202 the liquid developer is transported to the developer roller 203.
    • A doctor blade chamber 201 comprising a dosing doctor blade R2, is arranged adjacent to the raster roller 202, from which doctor blade chamber 201 the raster roller 202 accepts the liquid developer via the dosing doctor blade R2, the position of which doctor blade chamber 201 is adjustable relative to the raster roller 202 and which doctor blade chamber 201 is designed such that the dosing doctor blade R2 is overflowed by liquid developer.


The printing group 100 furthermore comprises a transfer unit 120 made up of a transfer element 121 (advantageously a transport roller or a transfer belt) and of a transfer printing station 123 with one or more rollers. The transfer printing station 123 can be combined with a transfer printing auxiliary unit, advantageously with a corona device.


Furthermore, the transfer unit 120 can comprise a toner image conditioner station 122, advantageously a roller or a belt in contact with the transfer element 121 that, if applicable, can be electrically adjusted or tempered. The transfer unit 120 can additionally comprise a cleaning station 124 for cleaning of the transfer element 121 that, for example, is realized as a blade roller or fleece cleaner.


The printing group 100 furthermore comprises a printing group activation unit 130 with a power electronics 131 and a digital electronics 132. The power electronics 131 is associated with the motor controllers and high voltage feeds of the printing unit 110 or of the transfer unit 120; the digital electronics 132 (for example a microprocessor controller) serves for realization of process regulations in cooperation with the central control group 400 (FIG. 7), advantageously the signal processing including the interface controller to sensors of the printing unit 110 or of the transfer unit 120.


The printing group 100 can additionally comprise an additional and auxiliary process unit 140 with an ink feed station 141 and/or with a printing substrate conditioner station 142 (advantageously for paper moistening) and/or with a filter and suction station 143 (advantageously for the developer station or for the corona device).


Finally, the printing group 100 comprises an image data processing unit 150 (a controller).


Design of the Modularly-Designed Printing Device

The design of a printing device for printing of a continuous printing substrate web (“continuous feed” results from FIG. 7. Here printing groups 100 are variably connected in series in a number corresponding to the object to be fulfilled. The printing substrate guidance group (200) is common to the printing groups 100. This printing substrate guidance group 200 comprises a printing substrate guidance unit 220 within the printing groups 100, a printing substrate web tension generation station 211 and/or a printing substrate web alignment station 212 and/or a printing substrate web extraction station 213.


The printing substrate web tension generation station 211 can be a negative pressure brake or an Omega draw that is arranged at the input of the printing system. The printing substrate web alignment station 212 can be realized as a pivoting frame that is likewise arranged at the input of the printing system. The printing substrate web extraction station 213 can be a transport roller pair that is arranged at the output of the printing system.


At least one print image conditioner unit can be provided between the printing groups 100 and/or at the output of the printing system. Respectively one unit for intermediate fixing 231 can be arranged as a print image conditioner unit between the printing groups 100; and a fixing station 232 (advantageously an IR radiation fixing or heat-pressure fixing) can be arranged at the output of the printing system. The unit for intermediate fixing or conditioning station 231 can, for example, also be omitted given a printing group 100 operating according to the electrophoretic principle.


Furthermore, a gloss station 233 can be provided at the output of the printing system.


To control the printing substrate guidance group 200, at least one electronic activation unit 240 is provided

    • with a power electronics 241, advantageously for motor controllers and high voltage supplies within the printing substrate guidance group 200,
    • and/or with a digital electronics 242 (for example microprocessor controller) for realization of the regulatory workflows for control or regulation of the printing substrate guidance in cooperation with the central control group 400 and/or for signal processing, including control of the interfaces to sensors of the printing substrate guidance group 200, the transfer printing unit(s) 123 as well as the print image conditioner units 231, 232, 233.


The design of the modular printing device for the printing of single sheets (cut sheet) can be learned from FIG. 8. In the following, only the components differing with regard to FIG. 7 are explained; the explanation regarding FIG. 7 is referred to for the identical components. It is thereby to be noted that identical associated reference characters exhibit a “3” at the beginning instead of a “2”.


One difference with regard to FIG. 7 is to be seen in the printing substrate guidance group 300. This must be suitable for single sheet/sheet printing. The printing substrate guidance group 300 comprises a printing substrate guidance unit 310 with a transport belt 311 on which the individual sheets or sheets 1 rest and via which these are moved through the printing system. Furthermore, an activation unit 340 is provided whose tasks correspond to those of the activation unit 240. This is referenced.


A central control group 400 is provided both in the printing device according to FIG. 7 and in FIG. 8. This central control group 400 comprises

    • a central power electronics 410,
    • a central electronic printer activation unit 420.


The central activation unit 420 controls

    • the interface to the printing substrate pre- and post-processing,
    • and/or the interface to the printing groups 100,
    • and/or the interface to the printing substrate guidance group 200 or 300,
    • and/or the central printer controller for timely coordination of all workflows in the printing system as well as the entire printing path.


The central power electronics 410 comprises a mains voltage switching and safety system as well as the central power supply of the printing system.


C) Third Aspect of the Preferred Embodiment Electrographic Printing Device of Variable Printing Speed


In the exemplary embodiment of FIG. 6, a printing group 100 is executed as electrographic printing groups as is known, for example, from EP 0 727 720 B1. It comprises a printing unit 110 with an image generation element 111, a charge station 112, an image exposure station 113, a developer station 114 and an image generation element cleaning station 115. The image generation element 111 can comprise a photoconductor such as a photoconductor drum or a photoconductor belt. The exposure station 113 can be an LED character generator or laser. The developer station 114 can be realized as an electrophoretic liquid developer station according to FIG. 2.


The printing group 100 furthermore comprises a transfer unit 120 made up of a transfer element 121 (advantageously a transport roller or a transfer belt) and of a transfer printing station 123 with one or more rollers. The transfer printing station 123 can be combined with a transfer printing auxiliary unit, advantageously with a corona device.


Furthermore, the transfer unit 120 can comprise a toner image conditioner station 122, advantageously a roller or a belt in contact with the transfer element 121 that, if applicable, can be electrically adjusted or tempered. The transfer unit 120 can additionally comprise a cleaning station 124 for cleaning of the transfer element 121 that, for example, is realized as a blade roller or fleece cleaner.


The printing group 100 furthermore comprises a printing group activation unit 130 with a power electronics 131 and a digital electronics 132. The power electronics 131 is associated with the motor controllers and high voltage feeds of the printing unit 110 or of the transfer unit 120; the digital electronics 132 (for example a microprocessor controller) serves for realization of process regulations in cooperation with the central control group 400, advantageously the signal processing including the interface controller to sensors of the printing unit 110 or of the transfer unit 120.


The printing group 100 can additionally comprise an additional and auxiliary process unit 140 with an ink feed station 141 and/or with a printing substrate conditioner station 142 (advantageously for paper moistening) and/or with a filter and suction station 143 (advantageously for the developer station or for the corona device).


Finally, the printing group 100 comprises an image data processing unit 150 (a controller).


The developer station E of FIG. 4 comprises the following components:

    • a developer roller 203 with an elastic coating 206
    • a raster roller 202 with a rastering made up of depressions (cups) arranged thereupon; a plurality of raster rollers can also be provided; the rastering can be executed differently depending on the application case;
    • a doctor blade chamber 201 that is variable in terms of its position relative to the raster roller;
    • a cleaning device with a cleaning roller 204 and a cleaning element 205.


The developer roller 203 contacts an image carrier element F, for example a photoconductor on a photoconductor belt or a roller with a photoconductor layer arranged thereupon. The charge images that should be inked with toner particles are provided on the image carrier element F.


A liquid developer with ink (toner particles) distributed therein, which liquid developer is suitable for electrophoretic development, can be used for said inking as it is known, for example, from EP 0 756 213 B1 or EP 0 727 720 B1. The liquid developer is transported by the developer roller 203 through a developer gap existing between image carrier element F and developer roller 203. There the toner particles cross over onto the image carrier element F corresponding to the development method described above.


The feed of the liquid developer for inking with toner particles of the image carrier element F according to the image occurs over the doctor blade chamber 201 and the raster roller 202 to the developer roller 203. The cleaning of the inverse residual image from the developer roller 203 in turn occurs via its transfer to the cleaning roller 204 and removal of the liquid developer from the cleaning roller 204 via a cleaning element 205 (for example a scraper). From the cleaning device 204, 205, the removed liquid developer can be transferred back to a reservoir for the liquid developer (not shown).


The developer roller 203, the raster roller 202 and the cleaning roller 204 rotate in an advantageous manner with constant speed ratios relative to one another (surface velocities), advantageously in a ratio of 1:1:1. The rotation direction of the developer roller 203 and of the medium element F can be in the same direction or in opposite directions; directions of the developer roller 203 and of the raster roller 202 as well as of the developer roller 203 and of the cleaning roller 204 can be in the same direction or in opposite directions. Defined potentials for targeted field effect on the charged toner particles can be applied to them.


The developer roller 203 has an elastic coating 206 and is in contact with the image carrier element F, with the raster roller 202, and with the cleaning roller 204.


The raster roller 202 is realized in terms of its rastering for the transport of a volume (adapted to the speed of the image carrier element F) of liquid developer of, for example, 1 to 40 cm3/m2 (relative to the roller surface). The transport of liquid developer is relative to the area and thus independent of the printing speed; this means that, given different printing speeds, the same quantity of liquid developer per areal unit of the developer roller 203 can always be supplied.


The formation of defined effective zones for the transfer of liquid developer between developer roller 203 and image carrier element F, developer roller 203, and cleaning roller 204 and developer roller 203 and raster roller 202 can be achieved in various manners:

    • via defined deformation of the elastic coating 206 of the developer roller 203, advantageously via elastic force delivery to adjacent elements such as, for example image carrier element F, raster roller 202, or cleaning roller 204;
    • via the incompressible layer of the liquid developer between developer roller 203 and image carrier element F, developer roller 203 and cleaning roller 204, or developer roller 203 and raster roller 202.


The developed charge images on the image carrier element F are finally transferred onto a recording medium directly or via a transfer roller. This process can occur in a known manner, for example as described in EP 0 727 720 B1.


While a preferred embodiment has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention both now or in the future are desired to be protected.

Claims
  • 1. A device for transport of liquid developer to an image carrier element for electrophoretic digital printing, comprising: a developer unit arranged adjacent to the image carrier element, the developer unit directing a liquid developer comprising toner particles to the image carrier element, the toner particles crossing over to the image carrier element corresponding to previously-generated potential images;a raster unit arranged adjacent to the developer unit, the raster unit transporting the liquid developer to the developer unit by use of a raster;an electrical voltage applied between the raster unit and the developer unit in order to exert a targeted field effect on the toner particles in a direction towards the developer unit;a doctor blade chamber comprising a dosing doctor blade arranged adjacent to the raster unit and having said liquid developer comprising said toner particles which are already charged, and from the doctor blade chamber the raster unit accepting the liquid developer via the dosing doctor blade; andthe doctor blade chamber being arranged and operable such that the dosing doctor blade is washed over by said liquid developer.
  • 2. A device according to claim 1 wherein the doctor blade chamber is arranged relative to the raster unit such that the dosing doctor blade is washed over by said liquid developer due to gravity.
  • 3. A device according to claim 1 wherein the liquid developer in the doctor blade chamber is exposed to an over-pressure such that the dosing doctor blade is washed over by said liquid developer.
  • 4. A device according to claim 1 wherein a cleaning device is arranged adjacent to the developer unit for removal from the developer unit of the liquid developer comprising an inverse residual image, said cleaning device accepting the residual image.
  • 5. A device according to claim 4 wherein the cleaning device comprises a cleaning roller.
  • 6. A device according to claim 5 wherein the liquid developer is stripped from the cleaning roller by a cleaning element.
  • 7. A device according to claim 1 wherein the developer unit comprises a developer roller.
  • 8. A device according to claim 7 wherein movement directions of surfaces of the developer roller and the image carrier element are in a same direction or in opposing directions.
  • 9. A device according to claim 7 wherein the developer roller and a cleaning roller rotate in a same direction or in opposing directions.
  • 10. A device according to claim 7 wherein an electrical potential for targeted field effect on the charged toner particles is respectively applied on the developer roller and the image carrier element.
  • 11. A device according to claim 7 wherein an electrical potential for targeted field effect on the charged toner particles is applied on the developer roller and on a cleaning roller.
  • 12. A device according to claim 1 wherein the raster unit comprises a raster roller.
  • 13. A device according to claim 12 wherein a quantity of the liquid developer transported by the raster roller is established by said raster of the raster roller.
  • 14. A device according to claim 12 wherein the developer roller, the raster roller, and a cleaning roller rotate with constant speed ratios.
  • 15. A device according to claim 14 wherein the developer roller, raster roller, and cleaning roller rotate in a ratio of 1:1:1.
  • 16. A device according to claim 12 wherein the developer unit comprises a developer roller, and the developer roller and the raster roller rotate in a same direction or in opposing directions.
  • 17. A device according to claim 12 wherein the developer unit comprises a developer roller, and the developer roller comprises an elastic coating that is in contact with the image carrier element, with the raster roller and with a cleaning roller.
  • 18. A device according to claim 12 wherein the developer unit comprises a developer roller, and in which the transport of the liquid developer by the raster roller is relative to an area and thus independent of a printing speed, such that a same quantity of liquid developer per unit of area is always directed to the developer roller given different printing speeds.
  • 19. A device according to claim 18 wherein the raster roller exhibits a raster that enables the transport of a volume of liquid developer from 1 to 40 cm3/m2.
  • 20. A device according to claim 12 wherein a developer roller and the image carrier element or the developer roller and a cleaning roller or the developer roller and the raster roller are arranged relative to one another such that defined effective zones in which liquid developer migrates are provided.
  • 21. A device according to claim 20 wherein the effective zones are formed via a defined deformation of an elastic coating of the developer roller via elastic force delivery to the adjacent image carrier element, cleaning roller, and raster roller.
  • 22. A device according to claim 20 wherein an incompressible layer of the liquid developer establishes a separation between developer roller and image carrier element, or developer roller and cleaning roller, or developer roller and the raster roller.
  • 23. A device according to claim 12 wherein the doctor blade chamber comprises a chamber situated on a circumferential surface of the raster roller, a closing doctor blade at an entrance of the chamber as viewed in a rotation direction of the raster roller and said dosing doctor blade at an exit of the chamber as viewed in the rotation direction of the raster roller sealing the chamber by providing seals laterally situated on an edge of the raster roller.
  • 24. A device according to claim 23 wherein a feed of the liquid developer into the chamber occurs via one or more inlet openings.
  • 25. A device according to claim 23 wherein removal of the liquid developer from the chamber occurs via outlet openings.
  • 26. A device according to claim 25 wherein the inlet opening or the outlet openings are exchangeable depending on an installation position relative to the raster roller.
  • 27. A device according to claim 23 wherein an angular position of the doctor blade chamber relative to the raster roller is limited in that the dosing doctor blade is located below a surface of the liquid developer in the chamber.
  • 28. A device according to claim 23 wherein a processing of a higher-viscosity liquid developer is made easier via generation of a slight over-pressure in the chamber.
  • 29. A device according to claim 23 wherein an installation position of the doctor blade chamber on the raster roller is variable.
  • 30. A device according to claim 23 wherein an installation position of a cleaning device on the developer roller is variable.
  • 31. An electrophoretic printing device, comprising: at least one developer station for development of potential images on an image carrier element, said developer station comprising a developer unit arranged adjacent to the image carrier element, the developer unit directing a liquid developer comprising toner particles to the image carrier element, the toner particles crossing over to the image carrier element corresponding to previously-generated potential images;a raster unit arranged adjacent to the developer unit;the raster unit transporting the liquid developer to the developer unit by use of a raster;an electrical voltage applied between the raster unit and the developer unit in order to exert a targeted field effect on the toner particles in a direction towards the developer unit;a doctor blade chamber comprising a dosing doctor blade arranged adjacent to the raster unit and having said liquid developer comprising said toner particles which are already charged, and from the doctor blade chamber the raster unit accepting the liquid developer via the dosing doctor blade; andthe doctor blade chamber being arranged and operable such that the dosing doctor blade is washed over by said liquid developer.
  • 32. An electrophoretic printing device according to claim 31 wherein a developer roller, a raster roller, and a cleaning roller are arranged in the developer station at a constant angle relative to one another such that an arrangement of developer stations around the image carrier element at various angular positions is possible without changing an association of the developer roller raster roller and the cleaning roller relative to one another.
  • 33. An electrophoretic printing device according to claim 32 wherein printing modules respectively made up of a developer station and the image carrier element are provided,a developer roller, a raster roller, and a cleaning roller are arranged in the developer station at a constant angle relative to one another,the printing modules are arranged at various angular positions along a deflected recording medium, wherein an arrangement of the doctor blade chamber, the raster roller and the developer roller relative to one another is maintained in the respective developer station, anda transfer roller arranged in the printing module between the image carrier element and the recording medium.
  • 34. An electrophoretic printing device according to claim 32 wherein the angular position of the developer stations relative to the image carrier element or of printing modules relative to a recording medium can additionally be expanded by a variable angular position of a doctor blade chamber on the raster roller.
  • 35. An electrophoretic printing device according to claim 31 wherein a plurality of developer stations are arranged in a digital color printing device.
  • 36. An electrophoretic printing device according to claim 31 wherein identically designed developer stations are used for different developer fluids.
  • 37. A method for transport of liquid developer to an image carrier element in electrophoretic digital printing, comprising the steps of: providing a developer unit adjacent to the image carrier element, and providing a raster unit having a raster adjacent to the developer unit;providing a doctor blade chamber comprising a dosing doctor blade arranged adjacent to the raster unit, the doctor blade chamber having said liquid developer comprising toner particles which are already charged, and arranging the doctor blade chamber so that the dosing doctor blade is washed over by said liquid developer;applying an electrical voltage between the raster unit and the developer unit in order to exert a targeted field effect on the toner particles of the liquid developer in a direction towards the developer unit;with the doctor blade chamber, delivering to the raster unit the liquid developer via the dosing doctor blade; andwith the raster of the raster unit, transporting the liquid developer to the developer unit, and with the developer unit, directing the liquid developer with the toner particles to the image carrier element, the toner particles from the developer unit crossing over to the image carrier element corresponding to previously-generated potential images.
  • 38. A device for transport of liquid developer to an image carrier element for electrophoretic digital printing, comprising: a developer unit arranged adjacent to the image carrier element, the developer unit directing a liquid developer comprising toner particles to the image carrier element, the toner particles crossing over to the image carrier element corresponding to previously-generated potential images;a raster unit arranged adjacent to the developer unit, the raster unit transporting the liquid developer to the developer unit by use of a raster of depressions;an electrical voltage applied between the raster unit and the developer unit in order to exert a targeted field effect on the toner particles in a direction towards the developer unit; anda chamber with said liquid developer adjacent said raster unit, a dosing doctor blade of said chamber washed over by said liquid developer delivering said liquid developer to said raster unit.
Priority Claims (1)
Number Date Country Kind
103 34 532 Jul 2003 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2004/008530 7/29/2004 WO 00 2/22/2007
Publishing Document Publishing Date Country Kind
WO2005/013013 2/10/2005 WO A
US Referenced Citations (8)
Number Name Date Kind
4411514 Komori et al. Oct 1983 A
5258809 Wiedemer Nov 1993 A
6219516 Furst et al. Apr 2001 B1
6371024 Scholzig et al. Apr 2002 B1
6778799 Shin et al. Aug 2004 B2
6876833 Berg et al. Apr 2005 B2
7149459 Kamijo et al. Dec 2006 B2
7167666 Munakata et al. Jan 2007 B2
Foreign Referenced Citations (6)
Number Date Country
0 727 720 Dec 2000 EP
1 090 756 Apr 2001 EP
1 097 813 May 2001 EP
0 756 213 Dec 2002 EP
2 023 503 Jan 1980 GB
WO 0192968 Dec 2001 WO
Related Publications (1)
Number Date Country
20070212113 A1 Sep 2007 US