The invention relates to an electrosurgical device and more specifically to a device that can be used in the treatment of pain through the application of energy.
Chronic back pain is a cause for concern throughout the world, including the United States, affecting as many as 80% of all Americans at some point in their lives. Lower back pain can arise from any number of sources, including but not limited to conditions of the spinal vertebrae themselves, the intervertebral disks and the facet joints of the spine. Although the precise cause of back pain is still a matter of debate, it is recognized that nerves present in these structures contribute to the sensation and transmission of these pain signals. Some of the recent advances in the treatment of back pain, therefore, have focused on treating the nerves deemed to be contributing to the pain sensations.
A minimally invasive technique of delivering high frequency electrical current has been shown to relieve localized pain in many patients. The high frequency electrical current is typically delivered from a generator via one or more electrodes that are placed in a patient's body. Resistance to the high frequency electrical current at the tip of the electrode causes heating of adjacent tissue and when the temperature increases sufficiently, the tissue coagulates. The temperature that is sufficient to coagulate unmyelinated nerve structures is 45° C., at which point a lesion is formed and pain signals are blocked. This procedure is known as tissue denervation and it usually results in significant pain relief. Radio frequency (RF) denervation refers to tissue denervation using energy in the RF range. This technique has proven especially beneficial in the treatment of back pain and more specifically, lower back pain. The field of medicine that relates to the lesioning of neural structures for the purpose of reducing pain is known as “pain management”. In this disclosure the term is used to describe the lesioning of neural structures to reduce pain.
U.S. Pat. No. 6,736,835 B2, issued May 18, 2004, U.S. Pat. No. 5,571,147, issued Nov. 5, 1996 and PCT patent application WO 01/45579 A1, published Jun. 28, 2001, all of which are incorporated herein by reference, amongst others, disclose methods and devices for performing RF denervation of various tissues of the back, including spinal vertebrae, intervertebral disks and facet joints of the spine. In general, the procedure entails introduction of an electrosurgical device into the body, positioning the device proximate to the neural tissue to be treated and applying RF electrical energy in order to denervate the tissue.
More specifically, an electrosurgical device comprising a cannula having a hollow shaft and a removable stylet therein is inserted into a patient's body and positioned at a desired treatment site. The cannula typically comprises an elongate, insulated region, along with an electrically conductive and exposed distal tip. Once the distal tip of the cannula is in position, the stylet is withdrawn and the distal end of a probe capable of delivering high frequency electrical energy is inserted until the distal end of the probe is at least flush with the exposed distal tip of the cannula. The proximal end of the probe is connected to a signal generator capable of generating high frequency electrical current. Once the distal end of the probe is in position, energy is supplied by the generator via the probe to denervate the tissue proximate to the distal end of the probe.
Accurate placement of the cannula requires significant technical skill and is a crucial aspect of any denervation procedure. If the cannula, and through it the probe, is positioned incorrectly, the results for the patient can be disastrous, as the denervating energy may be applied to a region of tissue that should not be denervated.
In order to facilitate accurate localization of the cannula in tissue denervation procedures, X-ray fluoroscopy is used to observe the cannula and to help guide the cannula through the body. Contrast in fluoroscopic images is achieved by means of variation in the absorbance of X-rays amongst different materials. Materials that are relatively radiopaque, such as bones and most metals, appear darker on fluoroscopic images, in contrast to the relatively radiolucent soft tissues of the body. One limitation of the technique used currently for RF denervation is that the insulated shaft of the cannula is indistinguishable from the exposed distal tip of the cannula under X-ray fluoroscopy, due to the fact that the entire cannula, i.e. both the insulated as well as the exposed regions, is generally made up of a radiopaque substance. Therefore, precise localization of the conductive distal tip of the cannula is very difficult as the entire cannula, comprising both the tip and the shaft, appears dark on the fluoroscopic image. In practice, doctors using tissue denervation to treat pain believe that the conventional method of positioning a conventional needle without additional radiopaque markers by conventional methods is sufficiently precise to generate the desired lesions in the target location and do not consider there to be any value in adding radiopaque markers to the electrical needles used in the lesioning of nerves. Conventional methods to position the active tip portion include visualizing a portion of the needle or visualizing the needle as a whole by interpreting the available fluoroscopic images. Improved specific localization of the distal tip of the cannula would be desirable as it is this region of the cannula that is electrically exposed and is therefore responsible for creating the lesion in the tissue.
In addition to fluoroscopy, two tests are typically conducted to confirm proximity to the target nerve and to confirm that the probe is not in proximity to other nerves prior to denervation. To assess proximity to the target nerve, an electrical stimulation is applied to the probe using a frequency that excites sensory nerves, typically 50 Hz with a current of up to 1 mA. A positive stimulation result reproduces the patient's pain, without producing other sensory responses in the lower extremity or buttocks. To confirm that the probe is not in proximity to an untargeted nerve, motor nerve stimulation is performed typically at a frequency of 2 Hz and a current of 3-5 mA. In this test, a lack of elicited muscle twitch in the lower limbs confirms that the probe is not at an undesired location near a spinal nerve. In the case of negative stimulation results, where there is a failure to reproduce the patient's pain or there is clear sensory or motor stimulation of the lower extremities, denervation is not performed. Rather, the probe is repositioned and proximity testing is repeated. Providing a manner of distinguishing the conductive distal tip of the cannula in fluoroscopic images may facilitate more accurate initial placement of the distal tip and avoid the requirement for probe repositioning.
Specifically with respect to facet joint denervation, positioning the cannula at the facet joint often requires the surgeon to steer or otherwise manipulate the trajectory of the device around a neural structure known as the sympathetic chain. The sympathetic chain refers to either of the pair of ganglionated longitudinal cords of the sympathetic nervous system of which one is situated on each side of the spinal column. Due to the proximity of the sympathetic chain which carries nerves that are critical to bodily function, facet joint denervation is a specific example of a procedure that may benefit from a manner of distinguishing portions of the cannula upon insertion in the body. The clinical success rate of this procedure ranges from 9% (Lora & Long, 1976) to 83% (Ogsbury et al., 1977). The wide range of success rates is thought to be chiefly due to variability in positioning the electrode and the resulting lesion relative to the target nerve, even when using fluoroscopy and stimulation pulses. An improvement in technique and apparatus for positioning the cannula, and through it the electrical probe, proximate to the facet nerve may increase the success rate of this procedure and reduce improper prone positioning as a reason for poor success.
The incorporation of radiopaque markers onto surgical devices has been used to increase the visibility of such devices under x-ray fluoroscopy. While techniques vary for producing and incorporating radiopaque markers onto surgical devices, the general concept involves incorporating a material with high x-ray absorption onto a specified medical device. U.S. Pat. No. 5,429,597, issued Jul. 4, 1995, which is incorporated herein by reference, discloses a balloon catheter having a radiopaque distal tip composed of a polymer mixed with a radiopaque powder sued as tungsten. U.S. Pat. No. 6,315,790 B1, issued Nov. 13, 2001, which is incorporated herein by reference, describes a stent delivery system having a catheter constructed with radiopaque polymer hubs wherein the hubs accomplish the dual functions of stent crimping and radiopaque marking. Another example of a catheter with a radiopaque marker is described in U.S. Pat. No. 5,759,174, issued Jun. 2, 1998, which is incorporated herein by reference. This catheter has a single external metal marker band used to identify the central portion of the stenosis once the delivery catheter is removed.
In all of the references noted above, radiopaque markers have been applied or attached to non-radiopaque devices, such as plastic or silicone-based catheters, and not to radiopaque devices such as metallic cannulae or needles.
In order that the invention may be readily understood, embodiments of the invention are illustrated by way of possible examples in the accompanying drawings, in which:
The disclosure is directed to a cannula for insertion into a patient's body and a method for treating pain using the cannula.
In accordance with a first aspect of the disclosure, a cannula for insertion into a patient's body is provided. The cannula comprises a radiopaque and electrically conductive elongate member having a proximal end, a distal end and a lumen defined therebetween. The elongate member includes an electrically exposed region and an electrically insulated region. A radiopaque marker is associated with the elongate member, the radiopaque marker being visible under radiographic imaging and located for distinguishing the exposed region from the insulated region.
As a feature of this aspect of the disclosure, the radiopaque marker is located substantially adjacent a distal end of the insulated region. In addition, the radiopaque marker comprises a material optionally selected from the group consisting of platinum, iridium, gold, silver, tantalum, palladium and alloys thereof. Additional possible features include that: at least a portion of the distal end of the elongate member is bent; the distal end of the elongate member defines an aperture in communication with the lumen; the elongate member defines a lateral aperture in communication with the lumen; the cannula is operable to connect to an energy source; and the electrically insulated region comprises a coating of an electrically insulating material disposed external to the elongate member along at least a portion of the elongate member.
Other additional possible features include that: the electrically insulating material comprises a material selected from the group consisting of parylene, PET and PTFE; the marker is affixed to the elongate member by a laser weld; the radiopaque marker comprises a band that substantially completely circumscribes the elongate member; the radiopaque marker comprises a material of a greater radiopacity than the material comprising the elongate member; and/or the elongate member is substantially rigid.
According to a second aspect of the disclosure, a cannula for insertion into a patient's body is provided. The cannula optionally comprises an electrically conductive radiopaque elongate member comprising an electrically insulated region and an electrically exposed region, and a means for improving radiographic visualization of at least a portion of the elongate member. The means for improving radiographic visualization is located for distinguishing the exposed region from the insulated region and can be external to and disposed along an intermediate position of the elongate member.
In accordance with a third aspect of the disclosure, a method for treating pain by delivering energy to a patient's body is described. The method comprises the following: (i) providing an electrically conductive radiopaque cannula comprising an electrically insulated region, an electrically exposed region and a radiopaque marker for distinguishing the insulated region from the exposed region; (ii) identifying the radiopaque marker, distinguishing the insulated region from the exposed region and positioning the exposed region to locate the exposed region proximate a neural structure; and (iii) delivering energy through the cannula to the neural structure to treat pain.
Additional possible features of the method include that: the neural structure is located proximate to or within a facet joint of a patient's spine; the energy is delivered directly to the neural structure to ablate the neural structure; a position of said electrically insulated region relative to said electrically exposed region is fixed; step (ii) further comprises positioning the exposed region substantially parallel and adjacent to one neural structure; step (ii) further comprises visualizing one or more anatomical landmarks associated with a location of the neural structure to facilitate positioning the exposed region to locate the exposed region proximate to the neural structure; and/or the method is used for allowing a user to determine the orientation of the cannula by visualizing the exposed region and the radiopaque marker.
The method can optionally further comprise: that in step (iii) the energy is delivered to create a first lesion and: (iv) determining the locations of a proximal end and of a distal end of the electrically exposed region; (v) either repositioning the cannula such that the distal end of the electrically exposed region is positioned substantially at the location in which the proximal end of the electrically exposed region had been determined to be located in step (iv) or repositioning the cannula such that the proximal end of the electrically exposed region is positioned substantially at the location in which the distal end of the electrically exposed region had been determined to be located in step (iv); and (vi) delivering energy through the cannula to the neural structure to create a second lesion.
Thus, the disclosure describes a novel cannula and methods of use thereof, wherein the cannula incorporates a means for improving radiographic visualization, for example a radiopaque marker, to allow for distinguishing an electrically exposed region of the cannula from an electrically insulated region utilizing radiographic imaging techniques such as fluoroscopy.
These features and others will become apparent in the detailed description that follows.
With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of certain embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
It should be noted that in this disclosure the term “pain management” is used to describe the field of medicine that relates to the lesioning of neural structures, located, for example, in the spine, for the purpose of reducing pain.
Referring first to
Shaft 102 optionally defines a lumen 110 extending longitudinally from a proximal region 112 to a distal region 114 of cannula 100. In this first embodiment, distal tip portion 106 defines an aperture 116 in communication with lumen 110 of shaft 102. The combination of lumen 110 and aperture 116 allows for the introduction of a fluid or other material into a patient's body. Cannula 100 optionally further comprises a hub 118 located at or adjacent to proximal region 112. Hub 118 is optionally manufactured from ABS (Acrylonitrile Butadiene Styrene) or a similar material and may be attached to shaft 102 using various methods, including but not limited to insert molding, gluing and other forms of bonding. In the context of the present invention, the term hub indicates a fitting or any other means of facilitating a secure connection between separate components such as a cannula and a probe. As such, hub 118 is optionally structured to cooperatively engage and mate with a probe, stylet or other device which may be introduced into shaft 102. In those embodiments that comprise a hub, lumen 110 is optionally sized to simultaneously accommodate a stylet, probe or other device as well as a diagnostic or therapeutic agent. The diagnostic or therapeutic agents may include, but are not limited to, contrast or other chemical agents, pharmaceuticals, and biological agents. In other embodiments, lumen 110 may be designed to receive a probe, stylet or other device without having sufficient space to accommodate a diagnostic or therapeutic agent. In such embodiments, the probe, stylet or other device may be removed from lumen 110, allowing for injection of a diagnostic or therapeutic agent if so desired. It should be noted that, while cannula 100 has been described as having a single lumen, alternate embodiments with no lumen or more than one lumen are also envisioned. Likewise, although this embodiment depicts a cannula with a single aperture, more than one aperture may be disposed along the cannula and the one or more apertures may be disposed at various locations along cannula 100 and are not limited to the locations shown in the appended drawings. Shaft 102 may be generally rigid and substantially entirely straight, as in the example of
In the first embodiment shown in
Suitable materials for radiopaque band 108 include, but are not limited to, high-density metals such as platinum, iridium, gold, silver, tantalum, palladium or their alloys, or radiopaque polymeric compounds. Such materials are highly visible under fluoroscopic imaging and are therefore visible even at minimal thicknesses. In the embodiment depicted in
Radiopaque band 108 is optionally laser welded to shaft 102, thus improving the heat resistance of the band-to-cannula bond and allowing the cannula to withstand multiple thermal cycles, as may be experienced when using cannula 100 in conjunction with electrosurgical procedures.
Alternatively, radiopaque band 108 may be applied using a number of techniques known in the art, including but not limited to vapor deposition, ion implantation, ion-bombardment, dip coating, metal plating, welding, soldering and electro plating. In addition, in embodiments wherein radiopaque band 108 is manufactured from a material such as platinum iridium, the band may be fused onto shaft 102. Radiopaque band 108 optionally has a width of about 1 to about 2 mm (approximately 0.04-0.08 inches) and, in some embodiments, has a width of about 1.2 to about 1.3 mm (approximately 0.45-0.05 inches), but this invention may be practiced with radiopaque bands of various widths and is not limited to the specific widths described in conjunction with this first embodiment.
Cannula 100 may be manufactured out of any number of suitable materials, including but not limited to stainless steel, titanium, nitinol or other radiopaque materials in order to impart varying degrees of flexibility, strength, and radiopacity to the device. Cannula 100 is optionally about 18-22 AWG and about 5-10 cm (approximately 2-4 inches) in length and active tip 106 is optionally about 2-10 mm (approximately 0.075-0.4 inches) in length. However, cannula 100, as well as active tip 106, may be designed in a variety of gauges and lengths and the invention is not limited in this regard. In some embodiments, shaft 102 is manufactured from a single radiopaque material resulting in active tip portion 106 and insulated region 122 having substantially the same radiopacity.
In addition to the band shown in
Referring now to the embodiment shown in
In the embodiment shown in
Referring now to
Energy generator 1000 may be any device capable of operating as a source of energy. In one embodiment, energy generator 1000 is an electrical generator capable of providing high-frequency electrical current. Specifically, energy generator 1000 is optionally operable in a radio-frequency (RF) range and is capable of delivering sufficient power at this frequency so as to effectively treat a patient's pain. Such treatment may take the form of an RF denervation procedure, whereby a lesion is created at a specific neural tissue through heat generated by the application of RF energy, as has been described. Other treatments are possible with such a generator, as is known in the art, and the present invention is not limited to being used in conjunction with any specific procedures.
In the embodiment shown in
Reference electrode 1020 is optionally sufficiently large to prevent localized heating on the surface of body 1030 where reference electrode 1020 is placed. In alternate embodiments, probe 1010 may contain two or more separate electrodes, whereby one electrode (the active electrode) may be electrically connected to cannula 100 and a second electrode may act as a reference electrode, replacing reference electrode 1020. In additional embodiments, reference electrode 1020 may be replaced by a reference electrode located on a second probe inserted into the body proximate to probe 1010.
Electrical connections 1022 and 1024 are any means of conveying or transmitting energy from generator 1000 to probe 1010 and from reference electrode 1020 to generator 1000. For example, electrical connections 1022 and 1024 may comprise electrical cables along with associated connectors for interfacing with generator 1000, probe 1010 and reference electrode 1020. Various other means of electrical coupling are possible and the invention is not limited in this regard.
In general, high frequency electrical current flows from generator 1000 via electrical connection 1022 to probe 1010 and via probe 1010 to active tip 106. This delivery of energy results in electrical stimulation or high frequency heating of tissue in the region surrounding active tip 106. If the tissue surrounding active tip 106 comprises one or more neural structures, the formation of a lesion 1050 may lead to pain relief due to the denervation of said neural structures.
The disclosed cannula is particularly useful for procedures where precise lesioning of the area to be treated is critical. The radiopaque marker adds an element of safety by allowing an operator to reduce unnecessary exposure of energy to tissue that should not be ablated. In facet joint denervation, for example, it is critical that certain nerves, specifically those of the sympathetic chain, are not damaged during the treatment procedure. A radiofrequency treatment procedure, using a device as disclosed herein, may optionally be performed as follows: With a patient lying prone on a radiolucent table, a cannula as presently disclosed, along with a stylet disposed within a lumen of the cannula, is inserted and positioned parallel to the target nerve to be lesioned. Under fluoroscopic guidance, a radiopaque marker located on the cannula may assist in positioning the cannula due to the improved visualization afforded by the radiopaque marker. In particular, the radiopaque marker may assist in positioning the active tip 106 at a specific location relative to one or more anatomical landmarks as described in greater detail herein below. Once positioned, the stylet is removed and replaced by a radiofrequency probe, and the target nerve is located by sensory stimulation. At this point, the position of the active tip of the cannula may be verified using the radiopaque marker as a guide. Finally, following a test for motor stimulation as an added safety measure, energy is delivered from an energy generator through the probe to the active tip of the cannula in order to create a lesion about the target nerve.
In addition to improving treatment safety, it is possible for a radiopaque marker to assist in the visualization of lesion length and to thereby improve treatment efficacy by achieving adequacy of target coverage with minimal repositioning. In some particular applications, radiopaque marker 108 assists in performing sequential lesions using a “tip to tail” repositioning technique, described herein below.
In some embodiments of the treatment procedure, anaesthetic or other diagnostic or therapeutic agents may be injected through the cannula. In such embodiments, a radiopaque marker may be useful in determining the location of any apertures present on the cannula in order to effectively direct the injection of any such agents to the appropriate location. The method aspect of the present invention also provides for the insertion of multiple cannulae of the present invention over the course of a treatment procedure, whereby any or all of the cannulae may be positioned under fluoroscopic guidance, as described above. There are also other possible embodiments of the method using electrosurgical devices that do not require the removal of a stylet and the subsequent insertion of an ablation probe. Such possible embodiments include devices that nave a single insertable element that functions both as a stylet and an electrically powered probe, as well as other variations. In all of the embodiments described herein, the radiopaque marker may be used to improve accuracy of cannula positioning, to assist in the determination of lesion length and to achieve adequacy of target coverage.
Advantageously, marker 108 can also be used to indicate the orientation of active tip 106. This feature can be used to position the electrically exposed region 106 substantially parallel and adjacent to a targeted nerve branch. For example, as illustrated in
In some embodiments, the method comprises using fluoroscopy or other radiographic imaging techniques to visualize one or more anatomical landmarks in order to facilitate positioning the electrically exposed region 106 proximate to a neural structure having a location definable relative to the fluoroscopically visible anatomical landmarks. Examples of using landmarks in this manner can be seen in
In the examples of the cervical region (
As illustrated in the example of
When making lesions in the thoracic region of
Some of the embodiments of the disclosed cannula 100 may comprise other useful features as well as those mentioned above. For example, in some embodiments, hub 118 may comprise some type of visual or tactile marker in order to enable a user to more accurately position cannula 100 before referring to one fluoroscopic image, such as marker 630 in
It should be noted that the terms radiopaque band, marker, marking etc. as used herein denote any addition or reduction of material that increases or reduces the radiopacity of the device. Furthermore, the terms probe, cannula, stylet etc. are not intended to be limiting and denote any medical and surgical tools that can be used to perform similar functions to those described. In addition, the invention is not limited to be used in the clinical applications disclosed herein, and other medical and surgical procedures wherein a device of the present invention would be useful are included within the scope of the present invention. Furthermore, the cannulae described herein are not intended to be limited to a specific length or gauge, as has been mentioned.
The embodiments of the cannula described above are intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/079,318, filed on Mar. 15, 2005 which is a continuation-in-part of U.S. patent application Ser. No. 10/382,836, filed on Mar. 7, 2003.
Number | Date | Country | |
---|---|---|---|
Parent | 11079318 | Mar 2005 | US |
Child | 12563699 | US | |
Parent | 10382836 | Mar 2003 | US |
Child | 11079318 | US |