The present invention relates to a device and method for encoding written information on a readable surface, and more specifically, to a device and method for encoding supplemental information in a written message on any readable surface.
In meetings and other settings, while a person is taking notes it is often useful to capture and record contextual or auxiliary information for later retrieval and analysis. In addition, automated assemblage of notes from a group of note-takers can be a useful artifact for the group during later discussions.
By way of example, useful auxiliary information from an individual note-taker or group of note-takers may include location, pen/author identification, time of day, synchronized strokes, audio/video sequence, stroke signature, etc. Some current generation “smart” pens capture audio, support electronic archiving, and synchronized audio and inking playback, including contextual playback triggered by tapping a pen on handwritten text. However, these current generation pens typically require tracking devices or pads of specialized paper with which the smart pen must be used in order to function properly.
Accordingly, a writing device capable of encoding information in handwritten text without the use of excessive auxiliary equipment and supplies (such as “smart” paper, including the type that may include readable, non-repeating dot patterns) would be desirable.
Disclosed is a device for encoding information written on a readable surface, the device including a device housing containing at least one ink reservoir, an ink dispensing tip in communication with said at least one ink reservoir; and ink stored in the at least one ink reservoir and configured to flow from the ink dispensing tip, the ink being encodable to include supplemental encoded information, the supplemental encoded information being detectable by at least one detecting sensor when dispensed on the readable surface, wherein the readable surface is any surface that will accept the ink.
Also disclosed is a method for encoding information written on a readable surface, the method including encoding ink in a writing device to include supplemental encoded information, dispensing the ink from said writing device onto the readable surface with the supplemental encoded message, the readable surface being any surface that will accept the ink, and detecting the supplemental encoded information via at least one detecting sensor disposed with or remote of the writing device.
A system for encoding written information, the system including a standard writing surface, and a writing device including a device housing containing at least one ink reservoir, an ink dispensing tip in communication with the at least one ink reservoir, and ink stored in the at least one ink reservoir and configured to flow from the dispensing tip, the ink being encodable to include supplemental encoded information, the supplemental encoded information being detectable by at least one detecting sensor when dispensed on the readable surface, wherein the readable surface is any surface that will accept said ink.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The forgoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings (the relative sizes of the components shown in the diagrams being exemplary and/or schematic in nature, and not necessarily indicative of actual relative component size) in which:
With reference now to
Connected to the standard and encodable ink reservoirs 16 and 18 is an ink dispensing tip 20. Ink stored in the reservoirs 16 and 18 flows to the dispensing tip 20 for dispensing on the readable surface 12. Notably, ink dispensed from the encoding ink reservoir 18 is dispensable with supplemental encoded information that is supplemental to the writing (i.e. human hand written message, scribble, or any other kind of marking) dispensed on the readable surface 12. These supplemental encoded information may be invisible, partially visible, or wholly visible to the unaided human eye, and are also detectable by a detecting sensor 32 attached to, or remote from, the writing device (attached in
As shown in
Via pre-programming with encoding data or receipt of encoding data, the processor 24 controls one or more dispensing parameters pertaining to flow of ink from the standard and encoding ink reservoirs 16 and 18 to the readable surface 12 via the dispensing tip 20. The processor 24 controls the ink dispensing parameters based on the encoding data received, with the supplemental encoded information being determined (including presence of supplemental encoded information at all) via dispensing parameter(s) implemented by the processor 24. This control by the processor 24 occurs in conjunction with a flow sensor 36 and dispensing valves 38 and 40 discussed in greater detail below.
For example, if the encoding ink reservoir 18 includes UV or IR ink, one or more dispensing parameters might pertain to an amount of UV or IR ink that is allowed to flow from encoding ink reservoir 18 to the readable surface 12 via dispensing tip 20. In a simplest instance, the processor 24 (based on pre-programming or encoding data received) may communicate a desire for a written message to be free of any supplemental encoded information (such as is represented in
As mentioned above, if the parameter implemented is a “no encoding” parameter, the written text 34 will be applied via ink from the standard ink reservoir. If the detecting sensor 32 were to be directed at the written text 34, there would be no supplemental encoded information detected (represented as “null” in
In some exemplary instances, it should be appreciated that the encodable ink 31 dispensed onto the readable surface may be invisible or not fully decodable to the unaided human eye. In such instances (and even in instances where the supplemental encoded information is fully visible to the unaided human eye), the supplemental encoded information, such as that represented as information 30 in the written text 34 provided in encodable ink 31 as shown in
In an exemplary embodiment using UV or IR ink, such as is shown in
Presence of the base K representing bands in the dispensed ink 31 is controllable via the processor 24 as instructed by the pre-programmed or received encoding data, with the bands being detectable via the detecting sensor 32. In an exemplary embodiment, the detecting sensor 32 may be in communication (wirelessly or otherwise) with the processor 24 and/or the auxiliary computing device 25, wherein the binary sequence sensed by the detecting sensor 32 may be deciphered and displayed as the supplemental encoded information 30 at the input and/or display component 28 of the writing instrument 10 and/or a display component of the auxiliary computing device 25.
Notably, it should be appreciated that a readable surface or standard readable surface as used herein is defined as any writing surface that can receive ink from a typical pen or marker. While so called “smart” paper would certainly be usable with the writing device 10, and method(s) and system(s) for using the writing device 10 as described herein, this type of smart paper (or paper enhanced in any way at all) is not necessary to the dispensing of supplemental encoded information or detecting and interpreting of the supplemental encoded information (such as supplemental encoded information 30). Indeed, a readable surface or standard readable surface as used herein will be inclusive of any paper products without non-repeating dot patterns. Similarly, any readable surface or standard readable surface as used herein may include any surfaces of tables, walls, boards, or any other surfaces that can receive ink, along with erasable type “whiteboard” material (though not necessarily white) or Plexiglas type material that may receive ink from a typical dry erase or permanent marker.
In addition, while the supplemental encoded information 30 in
Further, while the exemplary embodiment of
One such example is shown in
With reference to
As shown in operational block 104, the method 100 further includes provision of encoding data to the processor 24 of the writing device 10 (possibly prior to the meeting). This data includes instruction as to what information it is to be encoded in the supplemental encoded information 30 during the inking.
As shown in operational block 106, the method 100 also includes monitoring ink output via communication between the flow sensor 36 and processor 24, and adjusting some parameter the ink dispensing to encode the supplemental encoded information 30 in or near the written message 34. As discussed above, possible vehicles for performing this encoding include ink chemistry (UV or IR), stroke width, ink magnetic polarity, inserted encodable nano-materials, distinctive semi-random texture materials, etc. As is shown in operation block 108, the ink with the supplemental encoded information is then actually dispensed on the readable surface 12, with the readable surface being any surface that will accept the ink.
As shown in operational block 110, the method 100 further includes detecting the supplemental encoded information 30 via an appropriate detecting sensor disposed with or remote of the writing device 10. If with the writing device 10, this sensing/detecting is accomplished by pointing the detecting sensor on the device 10 at the written message 34, or stroking over a short segment of the written message 34.
As shown in operational block 112, the method 100 still further includes communicating the detected supplemental encoded information 30 to the processor 24 of the writing device and/or auxiliary computing device 25 for analysis and display.
Any flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
This application is a divisional application and claims the benefit of priority to U.S. application Ser. No. 14/982,383, which was filed on Dec. 29, 2015. The entire contents of U.S. application Ser. No. 14/982,383 are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14982383 | Dec 2015 | US |
Child | 15198745 | US |