Device and method for forming hands of randomly arranged decks of cards

Information

  • Patent Grant
  • 6588750
  • Patent Number
    6,588,750
  • Date Filed
    Monday, October 16, 2000
    23 years ago
  • Date Issued
    Tuesday, July 8, 2003
    21 years ago
Abstract
The present invention provides an apparatus and method for moving playing cards from a first group of cards into plural hands of cards, wherein each of the hands contains a random arrangement of the same quantity of cards. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for moving the stack, a card-moving mechanism between the card receiver and the stack, and a microprocessor that controls the card-moving mechanism and the elevator so that an individual card is moved into an identified compartment. The number of compartments receiving cards and the number of cards moved to each compartment may be selected.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to devices for handling cards, including cards known as “playing cards.” In particular, the invention relates to an electromechanical machine for organizing or arranging playing cards into a plurality of hands, wherein each hand is formed as a selected number of randomly arranged cards.




2. Background of the Art




Wagering games based on the outcome of randomly generated or selected symbols are well known. Such games are widely played in gaming establishments such as casinos and the wagering games include card games wherein the symbols comprise familiar, common playing cards. Card games such as twenty-one or blackjack, poker and variations of poker and the like are excellent card games for use in casinos. Desirable attributes of casino card games are that the games are exciting, they can be learned and understood easily by players, and they move or are played rapidly to a wager-resolving outcome.




From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of hands placed, reduces the number of wagers placed and resolved in a given amount of time, thereby reducing revenue. Casinos would like to increase the amount of revenue generated by a game without changing games, particularly a popular game, without making obvious changes in the play of the game that affect the hold of the casino, and without increasing the minimum size of wagers. One approach to speeding play is directed specifically to the fact that playing time is decreased by shuffling and dealing events. This approach has lead to the development of electromechanical or mechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, thereby increasing playing time. Such devices also add to the excitement of a game by reducing the time the dealer or house has to spend in preparing to play the game.




U.S. Pat. No. 4,513,969 (Samsel, Jr.) and U.S. Pat. No. 4,515,367 (Howard) disclose automatic card shufflers. The Samsel, Jr. patent discloses a card shuffler having a housing with two wells for receiving stacks of cards. A first extractor selects, removes and intermixes the bottommost card from each stack and delivers the intermixed cards to a storage compartment. A second extractor sequentially removes the bottommost card from the storage compartment and delivers it to a typical shoe from which the dealer may take it for presentation to the players. The Howard patent discloses a card mixer for randomly interleaving cards including a carriage supported ejector for ejecting a group of cards (approximately two playing decks in number) which may then be removed manually from the shuffler or dropped automatically into a chute for delivery to a typical dealing shoe.




U.S. Pat. No. 4,586,712 (Lorber et al.) discloses an automatic shuffling apparatus designed to intermix multiple decks of cards under the programmed control of a computer. The Lorber et al. apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe.




U.S. Pat. No. 5,000,453 (Stevens et al.) discloses an apparatus for automatically shuffling cards. The Stevens et al. machine includes three contiguous magazines with an elevatable platform in the center magazine only. Unshuffled cards are placed in the center magazine and the spitting rollers at the top of the magazine spit the cards randomly to the left and right magazines in a simultaneous cutting and shuffling step. The cards are moved back into the center magazine by direct lateral movement of each shuffled stack, placing one stack on top of the other to stack all cards in a shuffled stack in the center magazine. The order of the cards in each stack does not change in moving from the right and left magazines into the center magazine.




U.S. Pat. No. 3,897,954 (Erickson et al.) discloses the concept of delivering cards one at a time, into one of a number vertically stacked card shuffling compartments. The Erickson patent also discloses using a logic circuit to determine the sequence for determining the delivery location of a card, and that a card shuffler can be used to deal stacks of shuffled cards to a player. U.S. Pat. No. 5,241,140 (Huen) discloses a card dispenser which dispenses or deals cards in four discrete directions onto a playing surface, and U.S. Pat. No. 793,489 (Williams), U.S. Pat. No. 2,001,918 (Nevius), U.S. Pat. No. 2,043,343 (Warner) and U.S. Pat. No. 3,312,473 (Friedman et al.) disclose various card holders some of which include recesses (e.g., Friedman et al.) to facilitate removal of cards. U.S. Pat. No. 2,950,005 (MacDonald) and U.S. Pat. No. 3,690,670 (Cassady et al.) disclose card sorting devices which require specially marked cards, clearly undesirable for gaming and casino play.




U.S. Pat. No. 4,770,421 (Hoffman) discloses a card shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a finite number of distribution schedules sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Each distribution schedule comprises a preselected distribution sequence which is fixed as opposed to random. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the microprocessor completes the execution of a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir. Thus, the Hoffman patent requires a two step shuffle, i.e., a program is required to select the order in which stacks are loaded and moved onto the second elevator and delivers a shuffled deck or decks. The Hoffman patent does not disclose randomly selecting a location within the vertical stack for delivering each card. Nor does the patent disclose a single stage process which randomly delivers hands of shuffled cards with a degree of randomness satisfactory to casinos and players. Further, there is no disclosure in the Hoffman patent about how to deliver a preselected number of cards to a preselected number of hands ready for use by players or participants in a game. Another card handling apparatus with an elevator is disclosed in U.S. Pat. No. 5,683,085 (Johnson et al.). U.S. Pat. No. 4,750,743 (Nicoletti) discloses a playing card dispenser including an inclined surface and a card pusher for urging cards down the inclined surface.




Other known card shuffling devices are disclosed in U.S. Pat. No. 2,778,644 (Stephenson), U.S. Pat. No. 4,497,488 (Plevyak et al.), U.S. Pat. Nos. 4,807,884 and 5,275,411 (both Breeding) and U.S. Pat. No. 5,695,189 (Breeding et al.). The Breeding patents disclose machines for automatically shuffling a single deck of cards including a deck receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards.




The Breeding single deck shufflers used in connection with LET IT RIDE® Stud Poker are programmed to first shuffle a deck of cards, and then sequentially deliver hands of a preselected number for each player. LET IT RIDE® stud poker is the subject of U.S. Pat. Nos. 5,288,081 and 5,437,462 (Breeding), which are herein incorporated by reference. The Breeding single deck shuffler delivers three cards from the shuffled deck in sequence to a receiving rack. The dealer removes the first hand from the rack. Then, the next hand is automatically delivered. The dealer inputs the number of players, and the shuffler deals out that many hands plus a dealer hand. The Breeding single deck shufflers are capable of shuffling a single deck and delivering seven player hands plus a dealer hand in approximately 60 seconds. The Breeding shuffler is a complex electromechanical device which requires tuning and adjustment during installation. The shufflers also require periodic adjustment. The Breeding et al. device, as exemplified in U.S. Pat. Nos. 6,068,258; 5,695,189; and 5,303,921 are directed to shuffling machines for shuffling multiple decks of cards with three magazines wherein unshuffled cards are cut then shuffled. Although the devices disclosed in the preceding patents, particularly the Breeding machines, provide improvements in card shuffling devices, none discloses or suggests a device and method for providing a plurality of hands of cards, wherein the hands are ready for play and wherein each comprises a randomly selected arrangement of cards, without first randomly shuffling the entire deck. A device and method which provides a plurality of ready-to-play hands of a selected number of randomly arranged cards at a greater speed than known devices without shuffling the entire deck or decks would speed and facilitate the casino play of card games.




SUMMARY OF THE INVENTION




The present invention provides an electromechanical card handling apparatus and method for creating or generating a plurality of hands of cards from a group of unshuffled cards wherein each hand contains a predetermined number of randomly selected or arranged cards. The apparatus and, thus, the card handling method or process, is controlled by a programmable microprocessor and may be monitored by a plurality of sensors and limit switches. While the card handling apparatus and method of the present invention is well suited for use in the gaming environment, particularly in casinos, the apparatus and method may find use in homes, card clubs, or for handling or sorting sheet material generally.




In one embodiment an apparatus provides for moving playing cards from a first group of unshuffled cards into shuffled hands of cards, wherein at least one and usually all of the hands contains a random arrangement or random selection of a preselected number of cards. The apparatus comprises a card receiver for receiving the first group of cards, a generally vertical stack of horizontally disposed card-receiving compartments generally adjacent to the card receiver(the vertical stack generally is vertically movable), an elevator for raising and lowering the stack, a card-moving mechanism between the card receiver and the stack for moving cards, one at a time, from the card receiver to a selected card-receiving compartment, and a microprocessor that controls the card-moving mechanism and the elevator so that each card in the group of unshuffled cards is placed randomly into one of the card-receiving compartments. Sensors monitor and may trigger at least certain operations of the apparatus, including activities of the the microprocessor, card moving mechanisms, security monitoring, and the elevator. The controlling microprocessor, including software, randomly selects or identifies which slot or card-receiving compartment will receive each card in the group before card-handling operations begin. For example, a card designated as card


1


may be directed to a slot


5


(numbered here by numeric position within an array of slots), a card designated as card


2


may be directed to slot


7


, a card designated as card


3


may be directed to slot


3


, etc.




A feature of the present invention is that it provides a programmable card handling machine with a display and appropriate inputs for adjusting the machine to any of a number of games wherein the inputs include a number of cards per hand selector, a number of hands delivered selector and a trouble-shooting input. Additionally, there may be an elevator speed adjustment and sensor to accommodate or monitor the position of the elevator as cards wear or become bowed or warped. These features also provide for interchangeability of the apparatus, meaning the same apparatus can be used for many different games and in different locations thereby reducing the number of back-up machines or units required at a casino. The display may include a game mode or game selected display, and use a cycle rate and/or hand count monitor and display for determining or monitoring the usage of the machine.




Another feature of the present invention is that it provides an electromechanical playing card handling apparatus for more rapidly generating multiple random hands of playing cards as compared to known devices. The preferred device completes a cycle in approximately 30 seconds, which is double the speed of the Breeding single deck shuffler disclosed in U.S. Pat. No. 4,807,884, which has itself achieved significant commercial success. Although some of the groups of playing cards (including player and dealer hands and discarded or unused cards) arranged by the apparatus in accordance with the method of the present invention may contain the same number of cards, the cards within any one group or hand are randomly selected and placed therein. Other features of the invention include a reduction of set up time, increased reliability, lower maintenance and repair costs, and a reduction or elimination of problems such as card counting, possible dealer manipulation and card tracking. These features increase the integrity of a game and enhancing casino security.




Yet another feature of the card handling apparatus of the present invention is that it converts a single deck of unshuffled cards into a plurality of hands ready for use in playing a game. The hands converted from the single deck of cards are substantially completely random, i.e., the cards comprising each hand are randomly placed into that hand. To accomplish this random distribution, a preferred embodiment of the apparatus includes a number of vertically stacked, horizontally disposed card-receiving compartments one above another into which cards are inserted, one at a time, until an entire group of cards is distributed. In this preferred embodiment, each card-receiving compartment is filled (filled to the assigned number of cards for a hand, and with the residue of cards being fed into the discard compartment, for example), regardless of the number of players participating in a particular game. For example, when the card handling apparatus is being used for a seven player game, seven player compartments, a dealer compartment and one compartment for cards not used in forming the random hands to be used in the seven player game are filled. After the last card from the unshuffled group is delivered, the hands are ready to be removed from the compartments and put into play, either manually, automatically, or with a combined automatic feed and hand removal.




The device can also be readily adapted for games that deal a hand or hands only to the dealer, such as David Sklansky's Hold ‘Em Challenge™ poker game, described in U.S. Pat. No. 5,382,025.




One type of device of the present invention may include jammed card detection and recovery features, and may include recovery procedures operated and controlled by the microprocessor.




Generally, the operation of the card handling apparatus of the present invention will form a fixed number of hands of cards corresponding to the maximum number of players at a table, plus a dealer hand (if there is a dealer playing in the game), plus a discard pile. For a typical casino table having seven player stations, the device of the present invention would preferably have nine compartments (if there are seven players and a dealer) or eight compartments (if there are seven players and no dealer playing in the game), wherein each of seven player compartments contains the same number of cards. Depending upon the nature of the game, the compartments for the dealer hand may have the same or different number of cards as the seven compartments, and the discard compartment may contain the same or different number of cards as the player compartments and/or the dealer compartment, if there is a dealer compartment. Most preferably, the device is programmed to deliver hands until the dealer (whether playing in the game or operating as a house dealer) presses an input button. The dealer input tells the microprocessor that the last hand has been delivered (to the players or to the players and dealer), and then the remaining cards in the compartments (excess player compartments and/or discard compartment and/or excess card compartment) will be unloaded into the output or discard compartment. The discard, excess or unused card hand (i.e., the cards placed in the discard compartment or slot) may contain more cards and, thus, the discard compartment may be larger than the other compartments. In a preferred embodiment, the discard compartment is located in the middle of the generally vertically arranged stack of compartments.




Another feature is that the apparatus of the present invention may provide for the initial top feeding or top loading of an unshuffled group of cards, thereby facilitating use by the dealer. The hand receiving portion of the machine may also facilitate use by the dealer, by having cards displayed or provided so that a dealer is able to conveniently remove a randomized hand from the upper portion of the machine or from a tray or platform extending from the machine to expose the cards to a vertical or nearly vertical access (within 0 to 30 or 50° of horizontal, for example) by the dealer's hand.




An additional feature of the card handling apparatus of the present invention is that it facilitates and significantly speeds the play of casino wagering games, particularly those games calling for a certain, fixed number if cards per hand (e.g., Caribbean Stud®, Let It Ride®, Pai Gow Poker, Tres Card™ poker, Three Card Pokerg®, Hold ‘Em Challenge® poker, stud poker games and the like), making the games more exciting and less tedious for players, and more profitable for casinos. The device of the present invention is believed to deliver random hands at an increased speed compared to other shufflers, such as approximately twice the speed of known devices. In use, the apparatus of the present invention is operated to process playing cards from an initial, unshuffled or used group of cards into a plurality of hands, each hand containing the same number of randomly arranged cards. It should be understood that the term ‘unshuffled’ is a relative term. A deck is unshuffled a) when it is being recycled after play and b) after previous shuffling before a previous play of a game, as well as c) when a new deck is inserted into the machine without ever having been previously shuffled. The first step of this process is effected by the dealer placing the initial group of cards into the card receiver of the apparatus. The apparatus is started and, under the control of the integral microprocessor, assigns each card in the initial group to a compartment (randomly selecting compartments separately for each card), based on the selected number of hands, and a selected number of cards per hand. Each hand is contained in a separate compartment of the apparatus, and each is delivered (upon the dealer's demand or automatically) by the apparatus from that compartment to a hand receiver or platform for the dealer to distribute it to a player. The number of hands created by the apparatus within each cycle is preferably selected to correspond to the maximum number of hands required to participate in a game (accounting for player hands, dealer hands, or house hands), and the number or quantity of cards per hand is programmable according to the game being played.




Each time a new group of unshuffled cards, hand shuffled cards, used cards or a new deck(s) of cards is loaded into the card receiver and the apparatus is activated, the operation of the apparatus involving that group of cards, i.e., the forming of that group of cards into hands of random cards, comprises a new cycle. Each cycle is unique and is effected by the microprocessor, which microprocessor is programmed with software to include random number generating capability. The software assigns a number to the each card and then randomly selects or correlates a compartment to each number. Under the control of the microprocessor, the elevator aligns the selected compartment with the card feed mechanism in order to receive the next card. The software then directs each numbered card to the selected slots by operating the elevator motor to position that slot to receive a card.




The present invention also describes a unique method and component of the system for aligning the feed of cards into respective compartments and for forming decks of randomly arranged cards. The separators between compartments may have an edge facing the direction from which cards are fed, that edge having two acute angled surfaces (away from parallelism with the plane of the separator) so that cards may be deflected in either direction (above/below, left/right, top/bottom) with respect to the plane of the separator. When there are already one or more cards within a compartment, such deflection by the edge of the separator may insert cards above or below the card(s) in the compartment. The component that directs, moves, and/or inserts cards into the compartments may be controllably oriented to direct a leading edge of each card towards the randomly selected edge of a separator so that the card is inserted in the randomly selected compartment and in the proper orientation (above/below, left/right, top/bottom) with respect to a separator, the compartments, and card(s) in the compartments.




The apparatus of the present invention is compact, easy to set up and program and, once programmed, can be maintained effectively and efficiently by minimally trained personnel who cannot affect the randomness of the card delivery. This means that the machines are more reliable in the field. Service costs are reduced, as are assembly costs and set up costs. The preferred device also has fewer parts, which should provide greater reliability than known devices.




Another feature of the present invention is to have all compartments of equal size and fed into a final deck compartment so that the handling of the cards effects a shuffling of the deck, without creating actual hands for play by players and/or the dealer. The equipment is substantially similar, with the compartments that were previously designated as hands or discards, having the cards contained therein subsequently stacked to form a shuffled deck(s). Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a front perspective view depicting the apparatus of the present invention as it might be disposed ready for use in a casino on a gaming table.





FIG. 2

is a rear perspective view depicting the apparatus of the present invention.





FIG. 3

is a front perspective view of the card handling apparatus of the present invention with the exterior shroud removed.





FIG. 4

is a side elevation view of the present invention with the shroud and other portions of the apparatus removed to show internal components.





FIG. 5

is a side elevation view, largely representational, of the transport mechanism of the apparatus of the present invention.





FIG. 5A

is a detailed cross-sectional view of a shelf of one example of the invention.





FIG. 5B

is a cross-sectional view of a shelf with cards fully inserted.





FIG. 6

is an exploded assembly view of the transport mechanism.





FIG. 7

is a top plan view, partially in section, of the transport mechanism.





FIG. 8

is a top plan view of the pusher assembly of the present invention.





FIG. 9

is a front elevation view of a first rack and elevator assembly of the present invention.





FIG. 10

is an exploded view of the rack and elevator assembly.





FIG. 11

depicts an alternative embodiment of the shelves or partitions for forming the stack of compartments of the present invention.





FIG. 12

depicts the card stop in an open position.





FIG. 13

depicts the card stop in a closed position.





FIG. 14

is a simplified side elevational view, largely representational, of the first card handler of the present invention.





FIG. 15

is an exploded view of the hand receiving assembly of the apparatus of the present invention.





FIG. 16

is a schematic diagram of an electrical control system for one embodiment of the present invention.





FIG. 17

is a schematic diagram of the electrical control system.





FIG. 18

is a schematic diagram of an electrical control system with an optically-isolated bus.





FIG. 19

is a detailed schematic diagram of a portion of the control system illustrated in FIG.


18


.





FIG. 20

schematically depicts an alternative embodiment of the apparatus of the present invention.





FIG. 21

is a flow diagram, comprising two parts, parts


21




a


and


21




b,


depicting a homing sequence.





FIG. 22

is a flow diagram, comprising three parts, parts


22




a,




22




b


and


22




c,


depicting a sequence of operation of the present invention.





FIG. 23

shows a side cutaway view of a rack comprising a series of compartments with separators having two acute surfaces on an edge of the separators facing a source of cards to be inserted into the compartments.





FIG. 24

shows an explosion image of three adjacent acute surface edges of separators in the rack of separators.











DETAILED DESCRIPTION OF THE INVENTION




This detailed description is intended to be read and understood in conjunction with appended Appendices A, B and C, which are incorporated herein by reference. Appendix A provides an identification key correlating the description and abbreviation of certain non-limiting examples of motors, switches and photoeyes or sensors with reference character identifications of the same components in the Figures, and gives the manufacturers, addresses and model designations of certain components (motors, limit switches and sensors). Appendix B outlines steps in a homing sequence, part of one embodiment of the sequence of operations as outlined in Appendix C. With regard to mechanisms for fastening, mounting, attaching or connecting the components of the present invention to form the apparatus as a whole, unless specifically described as otherwise, such mechanisms are intended to encompass conventional fasteners such as machine screws, rivets, nuts and bolts, toggles, pins and the like. Other fastening or attachment mechanisms appropriate for connecting components include adhesives, welding and soldering, the latter particularly with regard to the electrical system of the apparatus.




All components of the electrical system and wiring harness of the present invention may be conventional, commercially available components unless otherwise indicated, including electrical components and circuitry, wires, fuses, soldered connections, chips, boards, microprocessors, computers, and control system components. The software may be developed simply by hired programming without undue experimentation, the software merely directing physical performance without unique software functionality.




Generally, unless specifically otherwise disclosed or taught, the materials for making the various components of the present invention are selected from appropriate materials such as metal, metallic alloys, ceramics, plastics, fiberglass, composites and the like.




In the following description, the Appendices and the claims, any references to the terms right and left, top and bottom, upper and lower and horizontal and vertical are to be read and understood with their conventional meanings and with reference to viewing the apparatus from whatever convenient perspective is available to the viewer, but generally from the front as shown in Figure




A method is provided for randomly mixing cards comprising:




a) providing at least one deck of playing cards;




b) removing cards one-at-a-time from the at least one deck of cards;




c) randomly inserting each card removed one-at-a-time into one of a number of distinct storage areas, each storage area defining a distinct subset of cards; and




d) at least one of the storage areas receives at least two randomly inserted cards one-at-a-time to form a random, distinct subset of at least two cards.




Cards in random, distinct subsets may removed from at least one of the distinct storage areas. The cards removed from at least one of the distinct storage areas may define a subset of cards that is delivered to a player as a hand. One set of the cards removed from at least one of the distinct storage areas may also define a subset of cards that is delivered to a dealer as a hand. Distinct subsets of cards may be removed from at least one distinct storage area and be delivered into a receiving area. Each distinct subset of cards may be removed from the storage area and delivered to a position on a gaming table that is distinct from a position where another removed subset is delivered. All removed subsets may be delivered to the storage area without removal of previous subsets being removed from the receiving area. At least two received subsets each may become hands of cards for use in a game of cards.




Referring then to the Figures, particularly

FIGS. 1

,


3


and


4


, the card handling apparatus


20


of the present invention includes a card receiver


26


for receiving a group of cards, a single stack of card-receiving compartments


28


(see

FIGS. 3 and 4

) generally adjacent to the card receiver


26


, a card moving or transporting mechanism


30


between and linking the card receiver


26


and the compartments


28


, and a processing unit, indicated generally at


32


, that controls the apparatus


20


. The apparatus


20


includes a second card mover


34


(see

FIG. 4

) for emptying the compartments


28


into a second receiver


36


.




Referring now to

FIG. 1

, the card handling apparatus


20


includes a removable, substantially continuous exterior housing, casing or shroud


40


. The exterior design features of the device of the present invention are disclosed in U.S. Design Pat. No. D414,527. The shroud or casing may be provided with appropriate vents


42


for cooling, if needed. The card receiver or initial loading region, indicated generally at


26


, is at the top, rear of the apparatus


20


, and a deck, card or hand receiving platform


36


is at the front of the apparatus


20


. The platform


36


has a surface


35


for supporting a deck, card or hand. The surface


35


allows ready access by a dealer or player to the deck, card or hand handled, shuffled or discharged by the apparatus


20


. Surface


35


, in one example of the present invention, lies at an angle with respect to the base


41


of the apparatus


20


. That angle is preferably approximately 5° with respect to the horizontal, but may also conveniently be at an angle of from 0 to up to ±60 with respect to the base


41


, to provide convenience and ergonomic considerations to the dealer. Controls and/or display features


44


are generally located toward the rear or dealer-facing end of the machine


20


.

FIG. 2

provides a perspective view of the rear of the apparatus


20


and more clearly shows the display


44


A and control inputs


44


, including power input module/switch and a communication port.

FIG. 3

depicts the apparatus


20


with the shroud


40


removed, as it might be for servicing or programming, whereby the internal components may be visualized. The apparatus is shown as including a generally horizontal frame floor


50


and internal frame supports for mounting and supporting operational components, such as upright


52


. A control (input and display) module


56


is cantilevered at the rear of the apparatus


20


, and is operably connected to the operational portions of the apparatus


20


by suitable wiring


58


. The inputs and display portion


44


,


44


A of the module


56


are fitted to corresponding openings in the shroud


40


, with associated circuitry and programming inputs located securely within the shroud


40


when it is in place as shown in

FIGS. 1 and 2

.




Card Receiver




The card loading region


26


includes a card receiving well


60


. The well


60


is defined by upright, generally parallel card guiding side walls


62


(although one or both walls may be sloped inwardly to guide the cards into position within the well) and a rear wall


64


. The card loading region includes a floor surface


66


which, in one example of the present invention, is preferably pitched or angled downwardly toward the front of the apparatus


20


. Preferably, the floor surface is pitched from horizontal at angle ranging from approximately 5 to 20 degrees, with a pitch of about 7 degrees being preferred. A removable, generally rectangular weight or block


68


is generally freely movably received in the well


60


for free forward and rearward movement along the floor surface


66


. Under the influence of gravity, the block


68


will tend to move toward the forward end of the well


60


. The block


68


has an angled, card-contacting front face


70


for contacting the face (i.e., the bottom of the bottommost card) of he last card in a group of cards placed into the well, and urges cards (i.e., the top card of a group of cards) forward into contact with the card transporting mechanism


30


. The card-contacting face


70


of the block


68


is at an angle complimentary to the floor surface


66


of the well


60


, for example, an angle of between approximately 10 and 80 degrees, and this angle and the weight of the block keep the cards urged forwardly against the transport mechanism


30


. In one embodiment, card contacting face


70


is rough and has a high coefficient of friction. The selected angle of the floor


66


and the weight of the block


68


allow for the free floating rearward movement of the cards and the block


68


to compensate for the forces generated as the transport mechanism


30


contacts the front card to move it. In another embodiment, a spring is provided to maintain tension against block


68


. As shown in

FIG. 4

, the well


60


includes a card present sensor


74


to sense the presence or absence of cards in the well


60


. Preferably, the block


68


is mounted on a set of rollers


69


which allows the block to glide more easily along floor surface


66


and/or the floor surface


66


and floor contacting bottom of the block


68


may be formed of or coated with suitable low friction materials.




Card Receiving Compartments




A first preferred assembly or stack of card receiving compartments


28


is depicted in

FIGS. 9 and 10

, and for purposes of this disclosure this stack of card receiving compartments is also referred to as a rack assembly or rack. The rack assembly


28


is housed in an elevator and rack assembly housing


78


generally adjacent to the well


60


, but horizontally spaced therefrom (see FIG.


4


). An elevator motor


80


is provided to position the rack assembly


28


vertically under control of a microprocessor, which microprocessor is generally part of the module


32


. The motor


80


is linked to the rack assembly


28


by a timing belt


82


. Referring now to

FIG. 10

, the rack assembly


28


includes a bottom plate


92


, a left hand rack


94


carrying a plurality of half shelves


96


, a right hand rack


98


including a plurality of half shelves


100


and a top plate


102


. Together the right and left hand racks


94


,


98


and their respective half shelves


96


,


100


form the individual plate-like shelf pieces


104


for forming the top and bottom walls of individual compartments


106


.




Preferably, the rack assembly


28


has nine compartments


106


. Seven of the nine compartments


106


are for forming player hands, one compartment


106


forms dealer hands and the last compartment


106


is for accepting unused or discard cards. It should be understood that the device the present invention is not limited to rack assembly with seven compartments


106


. For example, although it is possible to achieve a random distribution of cards delivered to eight compartments with a fifty-two card deck or group of cards, if the number of cards per initial unshuffled group is greater than


52


, more compartments than nine may be provided to achieve sufficient randomness in eight formed hands. Also, additional compartments may be provided to form hands for a gaming table having more than seven player positions. For example, some card rooms and casinos offer stud poker games to up to twelve people at a single table. The apparatus may then have thirteen compartments, as traditional poker does not permit the house to play, with one compartment dedicated to collect unused cards.




In each example of the present invention, at least one stack of unused cards is formed which may not be sufficiently randomized for use in a card game. These unused cards should be returned to the card receiver for distribution in the next cycle.




The rack assembly


28


is operably mounted to the apparatus


20


by a left side rack plate


107


and a linear guide


108


. The rack assembly


28


is attached to the guide


108


by means of a guide plate


110


. The belt


82


is driven by the motor


80


and engages a pulley


112


for driving the rack assembly


28


up and down. A hall effect switch assembly


114


is provided to sense the location of the rack assembly


28


. The rack assembly


28


may include a card present sensor


116


mounted to an underside of plate


78


(see

FIG. 4

) and which is electrically linked to the microprocessor.





FIG. 9

depicts a rack assembly


28


having nine individual compartments


106


including a comparatively larger central compartment


120


for receiving discard or unused cards.

FIG. 7

provides a top plan view of one of the shelf members


104


and shows that each includes a pair of rear tabs


124


. The tabs


124


align a leading edge of the card with the opening of the compartment so that the cards are moved from the transporting mechanism


30


into the rack assembly


28


without jamming.





FIG. 11

depicts an alternative embodiment of plate-like shelf members


104


comprising a single-piece plate member


104


′. An appropriate number of the single-piece plates, corresponding to the desired number of compartments


106


are connected between the side walls of the rack assembly


28


. The plate


104


′ depicted in

FIG. 11

includes a curved or arcuate edge portion


126


on the rear edge


128


for removing cards or clearing jammed cards, and also includes the two bilateral tabs


124


, also a feature of the shelf members


104


of the rack assembly


28


depicted in FIG.


7


. The tabs


124


act as card guides and permit the plate-like shelf members


104


forming the compartments


106


to be positioned effectively as closely as possible to the card transporting mechanism


30


to ensure that cards are delivered into the selected compartment


106


(or


120


) even though they may be warped or bowed.




Referring back to

FIG. 5

, an advantage of the plates


104


(and/or the half plates


96


,


100


) forming the compartments


106


is depicted. Each plate


104


includes a beveled or angled underside rearmost surface


130


in the space between the shelves or plates


104


, i.e., in each compartment


106


,


120


. The distance between the forward edge


132


of the bevel and the forward edge


134


of a shelf


104


preferably is less than the width of a typical card. As shown in

FIG. 5A

, the leading edge


136


of a card being driven into a compartment


106


,


120


hits the beveled surface


130


and is driven onto the top of the stack of cards supported by next shelf member


104


. As shown in

FIG. 5B

, when the cards are fully inserted, a traveling edge


133


of each card is positioned between edge


132


and edge


135


. To facilitate forming a bevel


130


at a suitable angle


135


and of a suitable size, a preferred thickness


137


for the plate-like shelf members is approximately {fraction (3/32)} of an inch, but this thickness and/or the bevel angle can be changed or varied to accommodate different sizes of cards, such as poker and bridge cards. Preferably, the bevel angle


135


is between 10 degrees and 45 degrees, and most preferably between approximately 15 degrees and 20 degrees. Whatever bevel angle and thickness is selected, it is preferred that cards should come to rest with their trailing edge


133


rearward of the forward rearward edge


132


of the bevel


130


(see FIG.


5


).




Referring now to the

FIGS. 13 and 14

, the front portion of the rack assembly


28


includes a solenoid or motor operated gate


144


and a door (card stop)


142


for controlling the unloading of the cards into the second receiver


36


. Although a separate, vertically movable gate


144


and card door stop


142


are depicted, the function, stopping the forward movement of the cards, could be accomplished either by a lateral moving gate or card stop alone (not shown) or by other means. In

FIG. 13

, the gate


144


is shown in its raised position and

FIG. 14

depicts it in its lowered open position. The position of the gate


144


and stop


142


is related by the microprocessor to the rack assembly


28


position.




Card Moving Mechanism




Referring now to

FIGS. 4

,


5


and


6


, a preferred card transporting or moving mechanism


30


is positioned between the card receiving well


60


and the compartments


106


,


120


of the rack assembly


28


and includes a card pickup roller assembly


149


. The card pick-up roller assembly


149


includes a pick-up roller


150


and is located generally at the forward portion of the well


60


. The pick-up roller


150


is supported by a bearing mounted axle


152


extending generally transversely across the well


60


whereby the card contacting surface of the roller


150


is in close proximity to the forward portion of the floor surface


66


. The roller


150


is driven by a pick up motor


154


operably coupled to the axle


152


by a suitable continuous connector


156


such as a belt or chain. In operation, the front card in the well


60


is urged against the roller


150


by block


68


that when the roller


150


is activated, the frictional surface draws the front card downwardly and forwardly.




Referring now to

FIGS. 4 and 5

, the preferred card moving mechanism


30


also includes a pinch roller card accelerator or speed-up system


160


located adjacent to the front of the well


60


between the well


60


and the rack assembly


28


and forwardly of the pick-up roller


150


. The speed-up system


160


comprises a pair of axle supported, closely adjacent speed-up rollers, one above the other, including a lower roller


162


and an upper roller


164


. The upper idling roller


164


is urged toward the lower roller


162


by a spring assembly


166


. Alternatively, it may be weighted or drawn toward the lower roller by a resilient member (not shown). The lower roller


162


is driven by a speed-up motor


167


operably linked to the lower driven roller


162


by a suitable connector


168


such as a belt or a chain. The mounting bracket


170


for the speed-up rollers also supports a rearward card-in sensor


174


and a forward card-out sensor


176


.

FIG. 5

is a largely representational view depicting the relationship between the card receiving well


60


and the card transporting mechanism


30


, and also shows a card “C” being picked up by the pick-up roller


150


moving in rotational direction


151


and being moved into the pinch roller system


160


for acceleration into a compartment


104


of the rack assembly


28


.




In a preferred embodiment, the pick-up roller


150


is not continuously driven, but rather indexes and includes a one-way clutch mechanism. After initially picking up a card and advancing it into the pinch roller system


160


, the motor


154


operably coupled to the pick-up roller


150


stops driving the roller, and the roller


150


free-wheels as the card is accelerated through the pinch roller system


160


. The speed-up pinch roller system


160


is preferably continuous in operation once a hand-forming cycle starts and, when a card is sensed by the adjacent card out sensor


176


, the pick-up roller


150


stops and free-wheels while the card is accelerated through the pinch roller system


160


. When the trailing edge of the card is sensed by the card out sensor


176


, the rack assembly


28


moves to the next position for the next card and the pick-up roller


150


is re-activated.




Additional components and details of the transport mechanism


30


are depicted in

FIG. 6

, an exploded assembly view thereof. In

FIG. 6

the inclined floor surface


66


of the well


60


is visible, as are the axle mounted pickup and pinch roller system


150


,


160


, respectively, and their relative positions.




Referring to

FIGS. 4 and 5

, the transport assembly


30


includes a pair of generally rigid stopping plates including an upper stop plate and a lower stop plate,


180


,


182


, respectively. The plates


180


,


182


are positioned between the rack assembly


28


and the speed-up system


160


immediately forward of and above and below the pinch rollers


162


,


164


. The stop plates


180


,


182


stop the cards from rebounding or bouncing rearwardly, back toward the pinch rollers, as they are driven against and contact the gate


144


and/or the stop


142


at the front of the rack assembly


28


.




Processing/Control Unit





FIG. 16

is a block diagram depicting an electrical control system which may be used in one embodiment of the present invention. The control system includes a controller


360


, a bus


362


, and a motor controller


364


. Also represented in

FIG. 16

are inputs


366


, outputs


368


, and a motor system


370


. The controller


360


sends signals to both the motor controller


364


and the outputs


368


while monitoring the inputs


366


. The motor controller


364


interprets signals received over the bus


362


from the controller


360


. The motor system


370


is driven by the motor controller


364


in response to the commands from the controller


360


. The controller


360


controls the state of the outputs


368


and the state of the motor controller


364


by sending appropriate signals over the bus


362


.




In a preferred embodiment of the present invention, the motor system


370


comprises motors that are used for operating components of the card handling apparatus


20


. Motors operate the pick-up roller, the pinch, speed-up rollers, the pusher and the elevator. The gate and stop may be operated by a motor, as well. In such an embodiment, the motor controller


364


would normally comprise one or two controllers and driver devices for each of the motor used. However, other configurations are possible.




The outputs


368


include, for example, alarm, start, and reset indicators and inputs and may also include signals that can be used to drive a display device (e.g., a LED display—not shown). Such a display device can be used to implement a timer, a card counter, or a cycle counter. Generally, an appropriate display device can be configured and used to display any information worthy of display.




The inputs


366


are information from the limit switches and sensors described above. The controller


360


receives the inputs


366


over the bus


362


.




Although the controller


360


can be any digital controller or microprocessor-based system, in a preferred embodiment, the controller


360


comprises a processing unit


380


and a peripheral device


382


as shown in FIG.


17


. The processing unit


380


in a preferred embodiment may be an 8-bit single-chip microcomputer such as an 80C52 manufactured by the Intel Corporation of Santa Clara, Calif. The peripheral device


382


may be a field programmable micro controller peripheral device that includes programmable logic devices, EPROMs, and input-output ports. As shown in

FIG. 17

, peripheral device


382


serves as an interface between the processing unit


380


and the bus


362


.




The series of instructions are stored in the controller


360


as shown in

FIG. 17

as program logic


384


. In a preferred embodiment, the program logic


384


is RAM or ROM hardware in the peripheral device


382


. (Since the processing unit


380


may have some memory capacity, it is possible that some or all of the instructions may be stored in the processing unit


380


.) As one skilled in the art will recognize, various implementations of the program logic


384


are possible. The program logic


384


could be either hardware, software, or a combination of both. Hardware implementations might involve hardwired code or instructions stored in a ROM or RAM device. Software implementations would involve instructions stored on a magnetic, optical, or other media that can be accessed by the processing unit


380


. Under certain conditions, it is possible that a significant amount of electrostatic charge may build up in the card handler


20


. Significant electrostatic discharge could affect the operation of the handler


20


. It is preferable to isolate some of the circuitry of the control system from the rest of the machine. In a preferred embodiment of the present invention, a number of optically-coupled isolators are used to act as a barrier to electrostatic discharge.




As shown in

FIG. 18

, a first group of circuitry


390


can be electrically isolated from a second group of circuitry


392


by using optically-coupled logic gates that have light-emitting diodes to optically (rather than electrically) transmit a digital signal, and photo detectors to receive the optically transmitted data. An illustration of electrical isolation through the use of optically-coupled logic gates is shown in

FIG. 19

, which shows a portion of

FIG. 18

in greater detail. Four Hewlett-Packard HCPL-2630 optocouplers (labeled


394


,


396


,


398


and


400


) are used to provide an 8-bit isolated data path to the output devices


368


. Each bit of data is represented by both an LED


402


and a photo detector


404


. The LEDs emit light when energized and the photo detectors detect the presence or absence of the light. Data may thus transmitted without an electrical connection.




Second Card Moving Mechanism




Referring to

FIGS. 4 and 8

, the apparatus


20


includes a second card moving mechanism


34


comprising a reciprocating card compartment unloading pusher


190


. The pusher


190


includes a substantially rigid pusher arm


192


in the form of a rack having a plurality of linearly arranged apertures


194


along its length. The arm


192


operably engages the teeth of a pinion gear


196


driven by an unloading motor


198


, which is in turn controlled by the microprocessor


360


. At its leading or card contacting end, the pusher arm


192


includes a blunt, enlarged card-contacting end portion


200


. The end portion


200


is greater in height than the space between the shelf members


104


forming the compartments


106


to make sure that all the cards (i.e., the hand) contained in a selected compartment are contacted and pushed out as it is operated, even when the cards are bowed or warped. The second card moving mechanism


34


is operated intermittently (upon demand or automatically) to empty full compartments


106


at or near the end of a cycle.




Second Card/Hand Receiver




When actuated, the second card moving mechanism


190


empties a compartment


106


,


120


by pushing the group of cards therein into a card receiving platform


36


. The card receiving platform


36


is shown in

FIGS. 1

,


4


,


14


and


16


, among others.




Referring to

FIG. 15

, the second card or hand receiving platform


36


includes a shoe plate


204


and a solenoid assembly


206


, including a solenoid plate


208


, carried by a rear plate


210


, which is also the front plate of the rack assembly


28


. In an alternate embodiment, a motor drives the gate. The shoe plate


204


also carries an optical sensing switch


212


for sensing the presence or absence of a hand of cards and for triggering the microprocessor to drop the gate


144


and actuate the pusher


190


of the second transport assembly


34


to unload another hand of cards from a compartment


106


,


120


when the hand receiver


36


is empty. In a first preferred embodiment, the player hands are unloaded sequentially. After the dealer receives his hand, he or she presses a button which instructs any remaining hands and the discard pile to unload. According to a second preferred embodiment, the microprocessor is programmed to randomly select and unload all player hands, then the dealer hand, and last the discard pile.





FIG. 14

is a largely representational view depicting the apparatus


20


and the relationship of its components including the card receiver


26


for receiving a group of cards for being formed into hands, including the well


60


and block


68


, the rack assembly


28


and its single stack of card-receiving compartments


106


,


120


, the card moving or transporting mechanism


30


between and linking the card receiver


26


and the rack assembly


28


, the second card mover


190


for emptying the compartments


106


,


120


, and the second receiver


36


for receiving hands of cards.




Alternative Embodiments





FIG. 20

represents an alternative embodiment of the present invention wherein the card handler


200


includes an initial staging area


230


for receiving a vertically stacked deck or group of unshuffled cards. Preferably beneath the stack is a card extractor


232


which picks up a single card and moves it toward a grouping device


234


. The picked up card moves through a card separator


236


, which is provided in case more than one card is picked up and then through a card accelerator


238


. The grouping device


234


includes a plurality of compartments


240


defined, in part, by a plurality of generally horizontally disposed, parallel shelf members


242


. In one embodiment there are two more compartments than player positions at the table at which the device is being used. In one preferred embodiment the grouping device


234


includes nine compartments (labeled


1


-


9


), seven of which correspond to the player positions, one which corresponds to the dealer's position and the last for discards. The grouping device is supported by a generally vertically movable elevator


244


, the height of which is controlled by a stepper motor


246


, linked by means of a belt drive


248


to the elevator


244


. A microprocessor


250


randomly selects the location of the stepper motor and instructs the stepper motor to move the elevator


244


to that position. The microprocessor


250


is programmed to deliver a predetermined number of cards to each compartment


240


. After the predetermined number of cards is delivered to a compartment


240


, no additional cards will be delivered to that compartment.




Each time a group of unshuffled cards are handled by this embodiment of the present invention, the order in which the cards are delivered to the compartments


240


is different due to the use of a random number generator to determine which compartment receives each card in the group. Making hands of cards in this particular fashion serves to randomize the cards to an extent sufficient to eliminate the need to shuffle the entire deck prior to forming hands. A feature of the embodiment of the present invention depicted in

FIG. 20

is a card pusher or rake


260


A. The rake


260


A may be either an arm with a head which pushes horizontally from the trailing edge of a card or group of cards, or a roller and belt arrangement


260


B which propels a card or group of cards by providing frictional contact between one or more rollers and a lower surface of a card or the bottom-most card. The purpose of the rake


260


A is to move the cards toward an open end of the elevator. In this embodiment of the invention, the compartments are staggered so that if the card rake


260


A only pushes the dealt cards a portion of the way out the dealer can still lift out each hand of cards and deliver the hand to a player. The rake


260


A can also be set to push a hand of cards completely out of a compartment whereby the cards fall onto a platform


262


. The hand delivered to platform


262


may be then removed and handed to the player. A sensor may be provided adjacent to the platform


262


whereby an empty platform is sensed so that the rake


260


A pushes or propels another hand of cards onto the platform


262


.




In another embodiment the microprocessor


250


is programmed so that the card rake


260


A moves the cards to a point accessible to the dealer and then, upon optional activation of a dealer control input, pushes the cards out of the compartment


240


onto the receiver


262


.




In a preferred embodiment of the device depicted in

FIG. 20

, although the microprocessor


250


can be programmed to deliver a different number of cards to the dealer compartment than to the player compartments, it is contemplated that the microprocessor will cause the apparatus to deliver the same number of cards to each compartment. The dealer, however, may discard cards until he or she arrives at the desired number of dealer cards for the particular game being played. For example, for the poker game known as the LET IT RIDE® game, the players and dealer initially receive a three-card hand. The dealer then discards or burns one of his cards and plays with the remaining two cards.




With continued reference to

FIG. 20

, nine card compartments or slots are depicted. The card extractor/separator combination delivers a selected number of player cards into each of the compartments labeled


1


-


7


. Preferably, the same number of dealer's cards may be delivered into compartment


8


. Alternatively, the microprocessor


250


can be programmed so that slot


8


will receive more than or fewer than the same number of cards as the players' compartments


1


-


7


. In the embodiment depicted in

FIG. 20

, card-receiving compartment


9


, which may be larger than the others, receives all extra cards from a deck. Preferably, the MPU instructs the device


200


to form only the maximum number of player hands plus a dealer hand. The number of cards delivered to each position may depend upon the game and the number of cards required.




Operation/Use




With reference to

FIGS. 21 and 22

, and Appendix C, which depict an operational program flow of the method and apparatus of the present invention, in use, cards are loaded into the well


60


by sliding or moving the block


68


generally rearwardly. The group of cards to be formed into hands is placed into the well


60


generally sideways, with the plane of the cards generally vertical, on one of the long side edges of the cards. The block


68


is released or replaced to urge the cards into an angular position generally corresponding to the angle of the angled card contacting face of the block


68


, and into contact with the pick-up roller


150


.




According to the present invention, the group of cards to be formed into hands is a single deck of standard playing cards. Depending upon the game, the group of cards can contain one or more wild cards, can be a standard deck with one or more cards removed, can comprise a special deck such as a Canasta or Spanish 21® deck, for example, can include more than one deck, or can be a partial deck not previously recognized by those skilled in the art as a special deck. The present invention contemplates utilizing any group of cards suitable for playing a card game. For example, one use of the device of the present invention is to form hands for a card game which requires the use of a standard deck of cards with all cards having a face value of 2-5 removed. The card handling device of the present invention is well-suited for card games which deliver a fixed number of cards to each player. For example, the LET IT RIDE® stud poker game requires that the dealer deliver three cards to each player, and three cards to the dealer. For this application, the microprocessor is set so that only three card hands are formed.




When the power is turned on, the apparatus


20


homes (see FIG.


21


and Appendix B). The start input in actuated and the process cycle begins. As the cards are picked-up, i.e., after the separation of a card from the remainder of the group of cards in the well


60


is started, a card is accelerated by the speed-up system


160


and spit or moved past the plates


180


,


182


into a selected compartment


106


,


120


. Substantially simultaneously, movement of subsequent cards is underway. The rack assembly


28


position relative to the position of the transport mechanism


30


is monitored, selected and timed by the microprocessor whereby a selected number of cards is delivered randomly to selected compartments until the selected number of compartments


106


each contain a randomized hand of a selected number of cards. The remainder of the cards are delivered to the discard compartment


120


. Because the order in which the cards are delivered is completely random the device may or may not deliver all cards in the initial group of cards to all compartments before the first player hand is pushed out of its compartment.




When all the cards have been delivered to the compartments, upon demand or automatically, the pusher


190


unloads one randomly selected hand at a time from a compartment


106


into the second card receiving platform


36


. The pusher


190


may be triggered by the dealer or by the hand present sensor


212


associated with the second receiver


36


. When the last hand is picked up and delivered to players and/or dealer, the larger discard compartment


120


automatically unloads. It should be appreciated that each cycle or operational sequence of the machine


20


goes through an entire group or deck of cards placed in the well


60


each time, even if only two players, i.e., two hands, are used.





FIG. 23

also shows a clearly optional method of controlling the entry of cards into the rack


3


of card-receiving compartments


13


. A card delivery system


15


is shown wherein two nip rollers


17


accept individual cards


19


from a stack of cards


16


and direct the individual cards


19


into a single card-receiving compartment


13


. As shown in a lower portion of

FIG. 23

, a single card


9


is directed into one of the card-receiving compartments so that the individual card


9


strikes one of the acute angle surfaces


21


of the separator


23


. The single card


9


is shown with a double bend


11


caused by the forces from the single card


9


striking the acute angle surface


21


and then the top


11


of cards


7


already positioned within the card-receiving compartment. The card delivery system


15


and/or the rack


3


may move vertically (and/or angularly, as explained later) to position individual cards (e.g.,


9


) at a desired elevation and/or angle in front of individual card-receiving compartments


13


. The specific distance or angle that the card delivery system


15


and/or rack


3


moves are controlled (when acute angle surfaces


21


of the separators


23


are available) to position the individual card


9


so that it deflects against a specific acute angle surface


21


.




An alternative method of assisting in the guidance of an individual card


9


against an acute angle surface


21


is the system shown that is enabled by bars


2


and


4


. The bars


2


and


4


operate so that as they move relative to each other, the separators


23


may swivel around pins


6


causing the separators


23


to shift, changing the effective angle of the deflecting acute angle surfaces


21


with respect to individual cards


9


. This is not as preferred as the mechanism by which the rack and/or the card delivery system


15


move relatively vertically to each other.





FIG. 24

shows a blown-up view of a set of three separators


23


. These separators are shown with acute angles (less than 90° with respect to horizontal or the plane of the separator


23


top surfaces


29


) on both sides of the separators. An upward deflecting surface


27


and downward deflecting surface


25


is shown on each separator


23


. In one section of

FIG. 24

, a single card


9




a


is shown impacting an upward deflecting surface


27


, deflecting (and bending) individual card


9




a


in a two way bend


11




a,


the second section of the bend caused by the impact/weight of the cards


7


already within the compartment


13




a.


In a separate area of

FIG. 24

, a second individual card


9




b


is shown in compartment


13




b,


striking downward deflecting acute angle surface


25


, with a double bend


11




b


caused by deflection off the surface


25


and then deflection off the approximately horizontal support surface


29


(or if cards are present, the upper surface of the top card) of the separator


23


. The surface


29


does not have to be horizontal, but is shown in this manner for convenience. The card delivery system (not shown) moves relative to the separators (by moving the card delivery system and/or the rack (not shown in entirety) to position individual cards (e.g.,


9




a


and


9




b


) with respect to the appropriate surfaces (e.g.,


25


and


27


).




The capability of addressing cards into compartments at either the top or bottom of the compartment (and consequently at the top or bottom of other cards within the compartment) enables an effective doubling of potential positions where each card may be inserted into compartments. This offers the designer of the device options on providing available alternative insert positions without adding additional card-receiving compartments. More options available for placement of cards in the compartments further provides randomness to the system without increasing the overall size of the device or increasing the number of compartments.




In this embodiment of the invention, the original rack has been replaced with rack


3


consisting of ten equally sized compartments. Cards are delivered in a random fashion to each rack. If the random number generator selects a compartment that is full, another rack is randomly selected.




In this embodiment, each stack of cards is randomly removed and stacked in tray


36


, forming a randomly arranged deck of cards. Although ten compartments is a preferred number of compartments for shuffling a fifty-two card deck, other numbers of compartments can be used to accomplish random or near random shuffling. If more than one deck is shuffled at a time, more compartments could be added, if needed.




Although a description of preferred embodiments has been presented, various changes including those mentioned above could be made without deviating from the spirit of the present invention. It is desired, therefore, that reference be made to the appended claims rather than to the foregoing description to indicate the scope of the invention.












APPENDIX A











Switches and Sensors (Inputs)













Item




Name




Description

















212




SCPS




Shoe Card Present Sensor




Omron * EE-SPY 302






116




RCPS




Rack Card Present Sensor




Optek * OP598A OP506A







RHS




Rack Home Switch




Microswitch * SS14A







RPS




Rack Position Sensor




Omron * EE-SPZ401Y.01







UHS




Unloader Home Switch




Microswitch * SS14A







DPS




Door Present Switch




Microswitch * SS14A







PCPS




Platform Card Present




Omron * EE-SPY401








Sensor






170




CIS




Card In Sensor




Optek * OP506A






176




COS




Card Out Sensor




Optek * OP598A







GUS




Gate Up Switch




Microswitch * SS14A






44




GDS




Gate Up Switch




Microswitch SS14-A







SS




Start Switch




EAO * 84-8512.5640 84-









1101.0 84-7111.500






154




POM




Pick-off Motor




Superior * M041-47103






166




SUM




Speed-up Motor




Superior * M041-47103






80




RM




Rack Motor




Oriental * C7009-9012K






198




UM




Unloader Motor




Superior * M041-47103







FM




Fan Motor




Mechatronics * F6025L24B






143




GS




Gate Solenoid




Shindengen * F10308H









w/return spring







GM




Gate Motor




NMB 14PM-MZ-02







SSV




Scroll Switch-Vertical




EAO * 18-187.035









18-982.8 18-920.1







SSH




Scroll Switch-Horizontal




EAO * 18-187.035









18-982.8 18-920.1







AL




Alarm Light




Dialight * 557-1505-203

















Display




Noritake * CU20025ECPB - UIJ







Power Supply




Shindengen * ZB241R8







Linear Guide




THK * RSR12ZMUU + 145M







Comm. Port




Digi * HR021 - ND







Power Switch




Digi * SW 323 - ND







Power Entry




Bergquist * LT - 101 - 3P



















APPENDIX B









Homing/Power-up

























i.




Unloader Home




UHS Made







Return unloader to home position. If it times out







(jams), turn the alarm light on/off.







Display “UNLOADER NOT HOME”







“UHS FAULT”.






ii.




Door Present




DPS Made







Check door present switch (DPS). If it's not made,







display “Door Open” “DPS Fault” and turn the







alarm light on/off.






iii.




Card Out Sensor (COS) Clear




COS Made







If card out sensor is blocked:







A. Check if Rack Card Present Sensor (RCPS)







is blocked. If it is, drive card back (reverse both







Pick-off Motor (POM) and Speed-up Motor (SUM))







until COS is clear. Keep the card in the pinch.







Align rack and load card into one of the shelves.







Then go through the rack empty sequence (3 below).







B. If Rack Card Present Sensor (RCPS) is clear,







drive card back towards the input shoe.







Turn both the Speed Up Motor (SUM) and the







Pick Off Motor on (reverse) until Card Out Sensor







is clear plus time delay to drive the card







out of the pinch.






iv.




Gate Up




GUS Made







Move rack up until the rack position sensor







sees the top rack (RPS on). Gate up switch







should be made (GUS). If not, display







“GATE NOT UP” “GUS FAULT” and turn







the alarm light on/off.






v.




Rack Empty and Home




RCPS







Check Rack Card Present Sensor (RCPS).




Made







If blocked, see emptying the racks. Return




RHS Made







back home when done.







INTERLOCK: Do not move rack if card out sensor







is blocked (see 2 to clear) or when door is not







present.







Emptying the racks: Go through the card







unload sequence. Move rack down to home position.







Energize solenoid. Move rack through the







unload positions and unload all the cards.






vi.




Input Shoe Empty




SCPS Clear







If Shoe/Card Present Sensor (SCPS) is blocked,







display “remove card from shoe” or “SCPS fault”







and turn the alarm light on/off.






vii.




Platform Empty




PCPS Clear







If Platform Card Present Sensor (PCPS) is blocked,







display “remove card from platform” or







“PCPS Fault” and turn alarm light on/off.






viii.




Card in Sensor (CIS) Clear.




CIS Made







If Card In Sensor (CIS) is blocked,







display “remove card from shoe” or







“CIS fault” and turn the alarm light on/off.














Start Position

















Unloader Home




UHS Made







Rack Home




RHS Made







Rack Empty




RCPS Made







Door In Place




DPS Made







Card In Sensor Clear




CIS Made







Card Out Sensor Clear




COS Made







Gate Up




GUS Made







Platform Empty




PCPS Clear







Input Shoe Empty




SCPS Clear







Start Button Light On






















APPENDIX C









Recovery Routine
























Problem:




Card Jam-COS blocked too long.






Recovery:




1. Stop rack movement.







2. Reverse both pick-off and speed-up motors until







“COS” is unblocked. Stop motors.







3. If “COS” is unblocked, move rack home and back to







the rack where the cards should be inserted.







4. Try again with a lower insertion point (higher rack)







and slower insertion speed. If card goes in, continue







insertion. If card jams, repeat with the preset positions,







auto adjust to the new position. If jams become too







frequent, display “check cards”, replace cards. If it doesn't,







repeat 1 and 2.







5. If “COS” is unblocked, move rack up to the







top position and display “Card Jam” and turn







alarm light on/off.







6. If “COS” is not unblocked after 2 or 4, display







“card jam” and turn . . . (do not move rack to up position).






Problem:




Unloader jams on the way out.






Recovery:




Move unloader back home. Reposition rack with a small







offset up or down and try again, lower speed if necessary.







If unloader jams, keep repeating at the preset location, set a







new value based on the offset which works (auto adjust).













Claims
  • 1. An apparatus for handling cards comprising:a shuffling chamber having a plurality of card-receiving compartments, each card-receiving compartment is in a fixed relationship to adjacent card-receiving compartments, each compartment is able to receive more than one card within an opening of the card-receiving compartment, a card moving mechanism is positioned for moving at least one card at a time into a card-receiving compartment, a mechanism that moves the card moving mechanism and the shuffling chamber relative to each other so that cards moved by the card moving mechanism are aligned for delivery into a card receiving compartment, and a microprocessor for controlling card movement; wherein a separator is between each adjacent card-receiving compartment, and there is an acute edge of the separator that a card moved into card-receiving compartments contacts on a deflecting surface before that card is fully inserted into a card-receiving compartment.
  • 2. The apparatus of claim 1 wherein the card moving mechanism moves only one card at a time into a card-receiving compartment.
  • 3. The apparatus of claim 2 wherein all cards received within the card-receiving compartments are associated into a shuffled deck.
  • 4. The apparatus of claim 2 wherein the separator has two card contacting surfaces on the acute edge, an upward deflecting surface and a downward deflecting surface.
  • 5. The apparatus of claim 4 wherein a card being moved into a card-receiving compartment may contact either the upward deflecting surface or a downward deflecting surface of the acute edge of the separator.
  • 6. The apparatus of claim 5 wherein the microprocessor controls positioning of cards being inserted into card-receiving surfaces so that a card will strike only one of the upward deflecting surface and the downward deflecting surface of the acute edge of the separator.
  • 7. The apparatus of claim 6 wherein the card moving mechanism is movable with respect to a stationary rack of card-receiving compartments.
  • 8. The apparatus of claim 2 wherein both the card moving mechanism and the plurality of card-receiving compartments are movable in a vertical direction.
  • 9. The apparatus of claim 2 wherein the plurality of card-receiving compartments is movable.
  • 10. The apparatus of claim 1 wherein each card-receiving compartment comprises a set of cards selected from the group consisting of players' hands, dealer's hands, discards, and excess cards.
  • 11. The apparatus of claim 3 wherein both the card moving mechanism and the plurality of card-receiving compartments are movable in a vertical direction.
  • 12. The apparatus of claim 3 wherein the plurality of card-receiving compartments is movable.
  • 13. The apparatus of claim 1 wherein all cards received within the card-receiving compartments are associated into a shuffled deck.
  • 14. The apparatus of claim 1 wherein the separator has two card contacting surfaces, one on a first face of the acute edge and the other on another face of the acute edge, an upward deflecting surface and a downward deflecting surface.
  • 15. The apparatus of claim 14 wherein a card being moved into a card-receiving compartment may contact either the upward deflecting surface or a downward deflecting surface of the acute edge of the separator.
  • 16. The apparatus of claim 15 wherein the microprocessor controls positioning of cards being inserted into card-receiving surfaces so that a card will strike only one of the upward deflecting surface and the downward deflecting surface of the separator.
  • 17. The apparatus of claim 16 wherein the card moving mechanism is movable with respect to a stationary rack of card-receiving compartments.
  • 18. The apparatus of claim 1 wherein the card moving mechanism comprises at least one roller and the at least one roller is movable with respect to a stationary rack of card-receiving compartments.
  • 19. The apparatus of claim 1 wherein both the card moving mechanism and the plurality of card-receiving compartments are movable in a vertical direction.
  • 20. The apparatus of claim 1 wherein the plurality of card-receiving compartments is movable.
  • 21. An apparatus for handling cards comprising:a shuffling chamber having a plurality of card-receiving compartments, each card-receiving compartment is in a fixed relationship to adjacent card-receiving compartments, each compartment is able to receive more than one card within an opening of the card-receiving compartment, a card moving mechanism is positioned for moving at least one card at a time into a card-receiving compartment, a mechanism that moves the card moving mechanism and the shuffling chamber relative to each other so that cards moved by the card moving mechanism are aligned for delivery into a card receiving compartment, and a microprocessor for controlling card movement wherein a separator is between each adjacent card-receiving compartment, and there is an edge of the separator that a card moved into card-receiving compartments contacts before that card is fully inserted into a card-receiving compartment and wherein separators are able to alter the card's angle relative to a direction of card movement when cards are inserted into card-receiving compartments.
  • 22. An apparatus for handling cards comprising:a shuffling chamber having a plurality of card-receiving compartments, each card-receiving compartment is in a fixed relationship to adjacent card-receiving compartments, each compartment is able to receive more than one card within an opening of the card-receiving compartment, a card moving mechanism is positioned for moving at least one card at a time into a card-receiving compartment, a mechanism that moves the card moving mechanism and the shuffling chamber relative to each other so that cards moved by the card moving mechanism are aligned for delivery into a card receiving compartment, and a microprocessor for controlling card movement wherein the card moving mechanism moves only one card at a time into a card-receiving compartment wherein a separator is between each adjacent card-receiving compartment, and there is an edge of the separator that a card moved into card-receiving compartments contacts before that card is fully inserted into a card-receiving compartment and wherein separators are able to alter the card's angle relative to a direction of card movement when cards are inserted into card-receiving compartments.
  • 23. An apparatus for handling cards comprising:a shuffling chamber having a plurality of card-receiving compartments, each card-receiving compartment is in a fixed relationship to adjacent card-receiving compartments, each compartment is able to receive more than one card within an opening of the card-receiving compartment, a card moving mechanism is positioned for moving at least one card at a time into a card-receiving compartment, a mechanism that moves the card moving mechanism and the shuffling chamber relative to each other so that cards moved by the card moving mechanism are aligned for delivery into a card receiving compartment, and a microprocessor for controlling card movement; wherein a separator is between each adjacent card-receiving compartment, and there is an acute edge of the separator that a card moved into card-receiving compartments contacts on a deflecting surface before that card is fully inserted into a card-receiving compartment; wherein the card moving mechanism is movable with respect to a stationary rack of card-receiving compartments.
  • 24. An apparatus for handling cards comprising:a shuffling chamber having a plurality of card-receiving compartments, each card-receiving compartment is in a fixed relationship to adjacent card-receiving compartments, each compartment is able to receive more than one card within an opening of the card-receiving compartment, a card moving mechanism is positioned for moving at least one card at a time into a card-receiving compartment, a mechanism that moves the card moving mechanism and the shuffling chamber relative to each other so that cards moved by the card moving mechanism are aligned for delivery into a card receiving compartment, and a microprocessor for controlling card movement; wherein a separator is between each adjacent card-receiving compartment, and there is an acute edge of the separator that a card moved into card-receiving compartments contacts on a deflecting surface before that card is fully inserted into a card-receiving compartment wherein at least one roller and the at least one roller wherein the card moving mechanism is movable with respect to a stationary rack of card-receiving compartments and wherein the card moving mechanism moves only one card at a time into a card-receiving compartment.
  • 25. A method for randomly mixing cards for a game comprising:a. providing at least one deck of playing cards; b. providing an apparatus having an initial loading region for receiving the at least one deck of cards, and having a number of distinct storage areas; c. removing cards one-at-a-time from the at least one deck of cards; d. randomly inserting each card removed one-at-a-time into one of said number of distinct storage areas, each storage area defining a distinct subset of cards, at least one subset comprising a card hand for a player, another subset comprising a card hand for a dealer excess cards which are not used in the play of the game; and e. at least one of the storage areas receives at least two randomly inserted cards one-at-a-time to form a random, distinct subset of at least two cards.
  • 26. The method of claim 25 wherein cards in random, distinct subsets are removed from at least one of the distinct storage areas.
  • 27. The method of claim 26 wherein the cards removed from at least one of the distinct storage areas defines a subset of cards that is delivered to a dealer as a hand.
  • 28. The method of claim 25 wherein distinct subsets of cards are removed from at least one distinct storage area and are delivered into a receiving area.
  • 29. The method of claim 28 wherein each distinct subset of cards is removed from the storage area and delivered to a position on a gaming table that is distinct from a position where another removed subset is delivered.
  • 30. The method of claim 29 wherein at least two received subsets each become hands of cards for use in a game of cards.
  • 31. The method of claim 28 wherein all removed subsets are delivered to the storage area without removal of previous subsets being removed from the receiving area.
RELATED APPLICATIONS

This Application is a continuation-in-part of U.S. patent application Ser. No. 09/060,627, filed on Apr. 15, 1998, now U.S. Pat. No. 6,149,154 titled. DEVICE AND METHOD FOR FORMING HANDS OF RANDOMLY ARRANGED CARDS.

US Referenced Citations (49)
Number Name Date Kind
793489 Williams Jun 1905 A
2001220 Smith May 1935 A
2001918 Nevius May 1935 A
2016030 Woodruff et al. Oct 1935 A
2043343 Warner Jun 1936 A
2778644 Stephenson Jan 1957 A
2937739 Levy May 1960 A
2950005 MacDonald Aug 1960 A
3312473 Friedman Apr 1967 A
3690670 Cassady et al. Sep 1972 A
3897954 Erickson et al. Aug 1975 A
4232861 Maul Nov 1980 A
4361393 Noto Nov 1982 A
4368972 Naramore Jan 1983 A
4385827 Naramore May 1983 A
4497488 Plevyak et al. Feb 1985 A
4513969 Samsel, Jr. Apr 1985 A
4515367 Howard May 1985 A
4566782 Britt et al. Jan 1986 A
4586712 Lorber et al. May 1986 A
4659082 Greenberg Apr 1987 A
4667959 Pfeiffer et al. May 1987 A
4741524 Bromage May 1988 A
4750743 Nicoletti Jun 1988 A
4770421 Hoffman Sep 1988 A
4807884 Breeding Feb 1989 A
4822050 Normand et al. Apr 1989 A
4832342 Pleyvak et al. May 1989 A
4900009 Kitahara et al. Feb 1990 A
4969648 Hollinger et al. Nov 1990 A
5000453 Stevens et al. Mar 1991 A
5121921 Friedman et al. Jun 1992 A
5240140 Huen Aug 1993 A
5275411 Breeding Jan 1994 A
5288081 Breeding Feb 1994 A
5303921 Breeding Apr 1994 A
5356145 Verschoor Oct 1994 A
5382024 Blaha Jan 1995 A
5382025 Sklansky et al. Jan 1995 A
5390910 Mandel et al. Feb 1995 A
5431399 Kelley Jul 1995 A
5437462 Breeding Aug 1995 A
5584483 Sines et al. Dec 1996 A
5676372 Sines et al. Oct 1997 A
5683085 Johnson Nov 1997 A
5690324 Otomo et al. Nov 1997 A
5695189 Breeding et al. Dec 1997 A
5989122 Roblejo Nov 1999 A
6068258 Breeding et al. May 2000 A
Foreign Referenced Citations (1)
Number Date Country
9840136 Sep 1998 WO
Non-Patent Literature Citations (1)
Entry
Encyclopedia of Games by John Scarne, 1973, “Super Contract Bridge”, p. 153.
Continuation in Parts (1)
Number Date Country
Parent 09/060627 Apr 1998 US
Child 09/688597 US