1. Field of the Invention
The present invention relates to media distribution and, in particular, to a distribution of media which allows a cost-free passing-on on a moderate scale, which, however, makes passing-on on a large scale at least difficult and in any case traceable.
2. Description of the Related Art
The digital signal representation for media contents has made it possible to copy media contents as often as wanted without a quality loss. This has resulted in an increase in unauthorized copying, i.e. “pirate copying”, compared to some years ago, resulting in financial losses for the proprietors of the rights of media contents. Compared to some years ago when analog signal representation was predominant and when the quality characteristic was a motivation, for example, to buy a record and not only to own a pirate copy, the possibility of digital media reproduction has resulted in an ever-increasing financial loss of the proprietors of rights.
As a response to this situation, there are different concepts, of which one is known under the keyword “SDMI”, and companies such as, for example, Intertrust, trying by means of cryptographic methods to prevent the access for unauthorized operators. This, however, means increased cost on the one hand and a clipping of up-to-now usual ownerships of the operators on the other hand. Such usual ownerships of the operators have always been to distribute a certain small number of private copies to friends or family.
Prior art cryptographic methods suffer from the following disadvantages. Firstly, a complex logistic distribution of the access keys must be put up with. In addition, prior art formats additionally require a separate decoding key which must be provided separately from the media contents by an alternative way, such as, for example, by mail, telephone, etc. If this separate decoding key is no longer available, if, for example, a system change has taken place or a usage contract has expired, the music collection, for example, in this protected format will become useless. Such a format is not safe for the future and quickly becomes obsolete. Furthermore, private copies for friends, such as, for example, recording a CD to an audio cassette or recording a CD to an audio cassette to be able to play it, for example, in a car, are not possible since existing rights are either only tied to apparatus or persons and thus cannot be applied or extended to other apparatus or persons.
In addition, such systems have always provided a stimulus to crack the cryptographic protection concept because any access except for the authorized access is prevented.
Furthermore, such cryptographic protection concepts have often relied on cryptographic safeguarding. In cracked methods, the contents has then been completely free and without a remark to anyone in the (illegal) distribution chain. Thus, such an offence could not been proven.
Systems trying to limit the financial damage for the proprietors of the media contents, for example in audio work of music industry, are referred to as “DRM systems” (DRM=Digital Rights Management) among experts. Such systems are to prevent unauthorized copying and to make possible detailed accounting preferably via “E-Commerce” methods. Such systems, however, still have not yet become established and the acceptance on the side of the operator is still questionable since, as has been explained, existing ownerships of the operators will be limited.
It is common to all those methods that they prevent access to the contents for unauthorized persons and that authorized persons usually have to pay. This payment can, by means of appended rules, be adjusted very precisely to the actual usage, which is at least fairer than general payments for the apparatus or data carrier. Such rules which, for example, state that, for example, seven copies of the original are allowed, but that a copy of the copy is not allowed, etc., are, however, complex and, due to this complexity, are also doubtful as to acceptance by the operator.
Current systems are, for example, described in “Secure Delivery of Compressed Audio by Compatible Bitstream Scrambling”, C. Neubauer and J. Herre, Preprint 5100, 108th AES Convention, Paris, February 2000. In addition, reference is made to Jack Lacy, Niels Rump, Talal Shamoon, Panos Kudumakis, “MPEG-4 Intellectual Property Management & Protection (IPMP) Overview & Applications”, 17th AES Conference, Florence, September 1999, or to Niels Rump, Philip R. Wiser, “AESSC SC-06-04 Activities on Digital Music Distribution”, 17th AES Conference, Florence, September 1999.
As has already been explained, all the disadvantages mentioned above result in the acceptance by the operator being low so that well-known systems may not be accepted on the market. This might be due to the fact that, up to now, they have solely been adjusted to the interest of the music industry and not so much to “ownership” of existing operators, which, according to the letters of the law, may be illegal but, when being infringed on, might automatically result in a defeat of such a system.
It is the object of the present invention to provide a rights management concept having a better chance of being accepted on the market.
In accordance with a first aspect, the present invention provides a device for generating encrypted data representing media information, having: means for providing an operator identification by means of which an operator of the device can be identified; means for encrypting the media information with an encrypting key to generate encrypted media information; and means for adding additional information to the encrypted media information to generate the encrypted data, the additional information including the encrypting key in plain text or the encrypting key in an encrypted form and a key in plain text for decrypting the encrypting key, wherein the encrypting key in plain text or the key in plain text represents the operator identification or is derived from the operator identification such that the operator can be identified unambiguously with the help of the encrypting key in plain text or the key in plain text.
In accordance with a second aspect, the present invention provides a method for generating encrypted data representing media information, having the following steps: providing the operator identification by means of which an operator of the device can be identified; encrypting the media information with an encrypting key to generate encrypted media information; and adding additional information to the encrypted media information to generate the encrypted data, the additional information including the encrypting key in plain text or the encrypting key in an encrypted form and a key in plain text for decrypting the encrypting key, wherein the encrypting key in plain text or the key in plain text represents the operator identification or is derived from the operator identification such that the operator can be identified unambiguously with the help of the encrypting key in plain text of the key in plain text.
In accordance with a third aspect, the present invention provides a device for decrypting encrypted data representing media information, the encrypted data having encrypted media information and additional information, wherein the additional information include the encrypting key in plain text or the encrypting key in an encrypted form and a key in plain text for decrypting the encrypting key, wherein the encrypting key in plain text or the key in plain text represents the operator identification or is derived from the operator identification such that the operator can be identified unambiguously with the help of the encrypting key in plain text of the key in plain text, having: means for extracting the encrypting key in plain text of the key in plain text as the decrypting key from the encrypted data; means for decrypting the encrypted media information using the decrypting key to obtain decrypted media information; and means for playing the media information, wherein the device is further configured to prevent an output of the decrypted media information as digital data.
In accordance with a fourth aspect, the present invention provides a method for decrypting encrypted data representing media information, the encrypted data having encrypted media information and additional information, the additional information including the encrypting key in plain text or the encrypting key in an encrypted form and a key in plain text for decrypting the encrypting key, wherein the encrypting key in plain text or the key in plain text represents the operator identification or is derived from the operator identification such that the operator can be identified unambiguously with the help of the encrypting key in plain text of the key in plain text, the method having the following steps: extracting the encrypting key in plain text or the key in plain text as the decrypting key from the encrypted data; decrypting the encrypted media information using the decrypting key to obtain decrypted media information; playing the media information; and preventing an output of the decrypted media information as digital data.
In accordance with a fifth aspect, the present invention provides a device for generating re-signed data from encrypted data already signed, representing media information, the encrypted data having encrypted media information and additional information, wherein the additional information includes the encrypting key in plain text or the encrypting key in an encrypted form and a key in plain text for decrypting the encrypting key, wherein the encrypting key in plain text or the key in plain text represents the operator identification or is derived from the operator identification such that the operator can be identified unambiguously with the help of the encrypting key in plain text or the key in plain text, having; means for providing a re-signing operator identification of an operator of the device for generating the re-signed data; means for extracting the encrypting key in plain text or the key in plain text as decrypting information from the encrypted data; means for decrypting the media information using the decrypting information to obtain decrypted media information; means for encrypting again the decrypted media information using a new encrypting key corresponding to the re-signing operator identification or being derived therefrom in order to obtain media information encrypted again; and means for adding the re-signing operator identification to the media information encrypted again in order to obtain the re-signed data.
In accordance with a sixth aspect, the present invention provides a method for generating re-signed data from encrypted data already signed, representing media information, the encrypted data having encrypted media information and additional information, wherein the additional information includes the encrypting key in plain text or the encrypting key in an encrypted form and a key in plain text for decrypting the encrypting key, wherein the encrypting key in plain text or the key in plain text represents the operator identification or is derived from the operator identification such that the operator can be identified unambiguously with the help of the encrypting key in plain text or the key in plain text, having the following steps: providing a re-signing operator identification of an operator of the device for generating re-signed data; extracting the encrypting key in plain text of the key in plain text as decrypting information from the encrypted data; decrypting the media information using the decrypting information to obtain decrypted media information; encrypting again the decrypted media information using a new encrypting key corresponding to the re-signing operator identification or being derived from same in order to obtain again encrypted media information; and adding the re-signing operator identification to the media information encrypted again in order to obtain the re-signed data.
In accordance with a seventh aspect, the present invention provides a computer program having a program code for performing one of the above-mentioned methods when the computer program runs on a computer.
The present invention is based on the finding that only a rights management concept will be accepted on the market, which not only considers the interest of the music industry but also the already existing ownerships or interests of the operators which in the end will be responsible for the acceptance on the market. Put differently, the inventive concept for media distribution provides a trade-off between the interest of media providers and media consumers.
The present invention, as will be illustrated subsequently referring to different aspects, is based on the idea that contents, once bought, in principle is made available for anybody. An identification of the first buyer, however, or of the person passing on the media contents is contained in the data passed on. In this way, a prosecution of the offender and a punishment of the offense are possible in the case of abuse when, for example, an immensely large number of copies is made, because the offender can be identified by means of the copies distributed in masses.
Encrypted data produced according to the invention is particularly characterized in that it is encrypted, but that it contains decrypting information and that it additionally contains identification information of the person having generated the encrypted data. The encrypted data thus includes, apart from the encrypted media information, additional information designed such that both an identification of the generator of the encrypted data and a decryption of the encrypted media information with the help of the additional information can be performed.
Put differently, this means that the publisher of media contents has to sign the contents digitally before publishing it.
An essential aspect of the inventive concept is the fact that it is based on encryption, i.e. the media contents or media information is encrypted. An elimination of the encryption is an illegal act under the relevant law of the United States known as the “Milleniums Act”. In this context, it is pointed out that copying unencrypted files, such as, for example, MP3 files, is not an offense according to the law of the United States, but the unauthorized elimination of an encryption is an offense.
In a preferred embodiment of the present invention, the identification information on the one hand and the decryption information on the other hand, which are both part of the encrypted data, are dependent on each other. This ensures that a removal of the identification information from the encrypted data has the result that the encrypted data can no longer be decrypted. In a preferred embodiment of the present invention, an asymmetrical encrypting method is employed here. In particular, an operator has a pair associated to him consisting of a public key and a private key. The private key is used by an operator to encrypt a symmetrical key for decrypting the media information to obtain an encrypted symmetrical key. The operator then adds this encrypted symmetrical key and its public key to the encrypted media information. In this case, the added public key is the operator identification, since the operator can be identified unambiguously with the help of this public key. A recipient of the encrypted data will then extract the public key from the encrypted data, decrypt the added encrypted symmetrical key with this public key and then decrypt and finally play the encrypted media information using the decrypted symmetrical key. If the public key of the generator of the encrypted data is removed without permission, a decryption of the symmetrical key and finally a decryption of the encrypted media information will no longer be possible. Thus, the operator identification information (signature) is responsible for the encrypted data to be useful or not.
It is to be mentioned that a free distribution of the media information to a limited extent, i.e. among friends or acquaintances or for different players of the operator itself, is free. Thus, the usual ownerships of the operators who will probably not accept such ownerships to be cut, are taken into consideration. In the end, this could be the decisive factor for the inventive concept to become accepted on the market. On the other hand, the interests of the proprietors of the rights of the media information are considered in that they have to put up with a limited cost-free reproduction—like in the times of analog audio representation—but that they have the possibility to trace and punish gross misuse, such as, for example, providing the media information on a large scale, for example via the Internet. The tracing is made possible by the fact that the encrypted data to be decryptable contains the identification of the person having performed the distribution on a large—unauthorized—scale.
In a preferred embodiment of the present invention, it is also preferred, so to speak as a second line of defense, to add a watermark which is also to make possible an operator identification apart from the plain text operator identifications to the media information. If the attacker should succeed in tampering with or removing the operator identification and nevertheless provide an intact data stream, its identification is still possible with the help of the watermark. In particular in the case in which an attacker succeeds in generating plain text data from the encrypted data, which, however, is made difficult by technological precautions, an identification can still be found out by means of the watermark. If he should succeed in generating plain text data without his watermark to be added to the media information, a watermark of the person having provided the offender with the encrypted data will be contained in the media information. Thus, at least this identity can be obtained. There is at least a chance to find out the actual offender who, due to the fact that he has removed an encryption, has acted illegally and has thus committed an offense, as has been explained above.
The inventive concept is thus characterized in that it contains the media information in an encrypted form and in that the key for decoding and playing is contained in the encrypted data, wherein, however, there is no legal possibility to write a file with plain text data. Additionally, the encrypted data contains the operator identity as a digital certificate or a user signature in a protected way. Preferably, this signature is issued and registered by a certifying authority, so that an operator identification can also be used in court in the case of a punishment. In addition, it is preferred as a second line of defense to inscribe the operator identity into the media data as a watermark.
The inventive concept is of advantage for the operators or consumers of media information in that a transparent system is provided, which is simple to use and allows free copying for private usage (such as, for example, for friends), i.e. to a limited extent. Simple operators who, up to now, have been in a state of semi-legality and who do not have illegal interests are thus—with a corresponding situation of the laws or regulations of the media providers—raised to a legal state. Additionally, it is preferred to compress the media information before encrypting it for a data rate compression. When MPEG-4 is employed as a compression method, the operator will even obtain a better audio quality and a higher compression than with, for example, MP3 and is thus motivated to switch from the MP3 format which can be copied freely in every respect to MPEG-4 which, by means of the inventive concept, becomes an encrypted method. No disadvantages arise for the normal operator who still wants to copy freely on a small scale, by the new concept, but do arise for illegal traders producing pirate copies on a large scale. This pirate copying is not prevented completely by the encrypted concept, the pirate copier, however, can be found out and punished with the help of the operator identification in the encrypted data.
In addition, the operator receives additional media tracks, in particular, as MPEG-4 is not only an audio compression method but can also be used for video, text, etc. All in all, it is thought that illegal copying can be reduced by virtue of the inventive concept so that, for example, the prices for music and video work will decrease due to the decreased illegal usage.
The inventive concept is also of advantage for the proprietors of the rights of media information in that this is not a deterioration compared to the times of analog music distribution, but provides legal grounds for putting a stop to the widespread pirate copying in the age of MP3.
Additionally, this system, for the media producers, provides entry to an age in which media contents is no longer distributed freely, but in an encrypted form. Additionally, the inventive concept is of advantage to the music industry in that it has the effect that the operators appreciate the value of the media information, already due to the fact that it is encrypted. In addition, the inventive concept will result in operators to deal with media contents in a more responsible way, since they have to expect, when passing on the media, that in the end their identity will be contained in a pirate copy distributed in masses, which might cause difficulties. The operator acceptance should, however, not suffer from this since passing-on on a limited scale will be raised from the state of semi-legality to a legal state.
The inventive concept additionally solves several problems of prior art DRM systems by adding the decoding key so that a complicated key management, which is expensive in logistics, is not required. In addition, the inventive concept is self-contained, which, put differently, means that the encrypted data, for all times, contains the information required for playing, which is how encrypted data generated according to the invention is save for the future. The encrypting methods used, such as, for example, RSA as an example of an asymmetrical encrypting method, and Rijndal as an example of a symmetrical encrypting method, are also public.
The inventive concept, as has been the case up to now, allows copying and playing within an area of responsibility of the operator at will, i.e. also passing on to friends in the private sector, i.e. to a limited extent.
Additionally, the inventive concept does not pose a stimulus for “cracking” for the normal operator, since the access is free anyway. The responsibility of the operator will limit the distribution in masses, but not so a cryptographic method.
Additionally, a watermark which so to speak as an optional additional line of defense identifies the signer is optionally contained in cracked media data.
In addition, the inventive concept is independent of the source encoding format used. Every compressing method existing up to now, such as, for example, MP3 etc., can be integrated, even though it is preferred to employ the new MPEG-4 method as the source encoding method to give operators an additional stimulus, since MPEG-4 contains higher data rate compressions and better audio/video qualities and further improved features. This stimulus for the operator to agree to the inventive concept, can be increased further by no longer making MPEG-4 encoders/decoders available for free, but being only available for free or at a low price in connection with the DRM system in order not to put the introduction on the market at risk. This means that in the best case there are no decoders and, in particular, hardware players playing the unencrypted format. This has the result that it is easier for a normal operator not having illegal intentions to download and use the new—encrypted and signed—format than to perform complicated attacks on the cryptographic protection or the signature.
Preferred embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
The plain text media information can, for example, be PCM data which an operator has read out or “ripped” from a CD or DVD in his possession. The media information can additionally be compressed source information, such as, for example, encoded PCM data, wherein a well-known encoding algorithm, such as, for example, MPEG-4, MP3, etc., can be used as the encoding algorithm.
It is also to be pointed out that any media information can be processed with the inventive concept, such as, for example, audio information, video information, text information, graphics, special music information, such as, for example, WAV files, MIDI files, music score files, etc.
Any encryption method, such as, for example, symmetrical encrypting methods (for example Rijndal) or asymmetrical encrypting methods (for example RSA), can be employed as the encrypting method executed by the means 12 for encrypting, wherein a combination of both these concepts is preferred for reasons of computing time. It is particularly preferred to encrypt a symmetrical key for actually encrypting the media information with a key of an asymmetrical encrypting concept and to use, as additional information, both the public key of the asymmetrical method and the symmetrical key encrypted with the corresponding private key. In this case, the added public key also provides the operator identification. In general, the additional information should be formed such that both an identification of the operator and a decryption of the encrypted media information by the additional information can be performed. In particular, it is preferred to select the additional information in such a way that at least a part of the additional information, such as, with the above example, the public key, at the same time represents the operator identification so that a manipulation of the operator identification renders useless the encrypted data at the output 18 of the device of
In the embodiment described so far, the device shown in
Subsequently, a preferred embodiment of a file format for the encrypted and signed data will be discussed. If the encrypted and signed data is present as a file, the file will contain a header having a format indication (40). This header may be followed by a certificate of the operator or a public key associated to this operator (42). The entry 42 into the file thus ensures the producer identification. The area 42 can be followed by an area 44 in which a symmetrical key encrypted by the public key of the area 42 is contained, which is used to decrypt encrypted media information in an area 46. The areas 42 and 44 thus represent the additional information formed such that both an identification of the operator (by the area 42) and a decryption of the encrypted media information (by the areas 42 and 44) can be performed.
An overview of the possibilities of the inventive concept, which in
In addition, in a preferred embodiment of the present invention, a data format having signed and additionally “hard”-encrypted data can be provided to the DRM system 50 shown in
In another embodiment, the inventive DRM system 50 may also be provided with a file having protected media information by a media provider 52, the media information typically not being signed by the media provider 52 which can, for example, be a proprietor of the rights of the media information or a licensed publisher. The media information transferred from the media provider 52 to the DRM system 50 is cryptographically protected media information. Thus, it is made possible for the DRM system to operate in a publish mode to support or perform a media distribution of the media provider 52. This is also referred to a super distribution.
On the output side, the inventive DRM system 50 is able to play (54a) data formats obtained via the input 51a to 51d, to generate (54b) a signed data format, to generate (54c) a local data format to set up a local archive or to generate (54d) signed and “hard”-encrypted data at an output, i.e. to write an AtoB format. The format indication, i.e. whether the format fed to the DRM system 50 is plain text data or compressed data (51a), whether it is signed and encrypted data (51b), whether there is local data (51c), whether there is an AtoB format (51d) or whether there is a publish format (51e), is contained in the header of
If inconsistencies are already discovered in the header 40 of
It is to be mentioned at this point that plain text data, in the sense of the present document, may be encoded or uncoded, while encrypted data is generated from the plain text data by a cryptographic algorithm.
Subsequently, referring to
The level-1 DRM system shown in
PCM data or MP3-encoded data can be fed as plain text or alternatively encoded input data, wherein in this case the alternative decoder is an MP3 decoder.
In
The encoded data is then fed to encrypting means 74 which encrypts the encoded data using a local key 76 and feeds it to a local archive output (54c). The locally encrypted data, however, does not include decrypting information. For decryption, the local archive data is thus fed to decrypting means 24 which, however, does not try to extract key information but switches to the local key 76 when a local format is recognized (40 of
The level-2 DRM system is intended for an operator who wants to look at the new system and, in particular, the new encoder/decoder (70/74), but who has not (yet) registered to generate (
Subsequently, the level-3 DRM system will be described referring to
Means 14 for providing a certified key is essential for the device shown in
The preferred functionality of embedding a watermark either on the PCM level or the bitstream level is also illustrated in
PCM watermark embedders are, for example, illustrated in the German patent DE 196 40 814 C1. A PCM watermark embedder, like a bitstream watermark embedder as well, is based on providing a payload, like in this case an operator ID or user ID, with a spread sequence to subsequently weight the spreaded payload signal such that, when combined with the audio data which are to be provided with a watermark, it is inaudible, i.e. below the psycho-acoustic masking threshold as far as energy is concerned. The—optional—watermark embedding can, as has been explained, take place either on a time level (block 80) or on a bitstream level (block 82), wherein only a partial unwrapping and not a complete decoding of the encoded data is required. If the watermark embedding is performed on the time level, the output signal of the decoder 64 will be fed to the PCM watermark embedder 80 via a transmission line 84. If, however, a bitstream watermarking is performed, the input signal to the decoder 64, i.e. the encoded source information at the output of the decrypting means 24, 36, will be fed into the bitstream watermark embedder via another transmission line 86. In this case, the bitstream watermark embedder 82 already provides the media information to be encrypted so that in the case of bitstream watermarking the encoder 70 is no longer required.
It is to be mentioned that the watermark will not be evaluated in normal usage. If, however, the protection mechanisms of the inventive concept are bypassed illegally and if the raw data is further processed, the impressed inaudible watermark or, in video data, the invisible watermark or, in text data, the watermark entered by steganographic methods, can be evaluated for forensic purposes to draw conclusions with regard to the illegal distributor.
Thus, it is preferred to embed the watermark itself, i.e. the payload information which either corresponds to the user ID or, when the user ID is too long or the direct transmission of the user identification is not desired for reasons of protecting the private sphere, is for example derived from the user ID by means of a hash processing, with a key referred to as “random key” in
This has the advantage that the watermark is protected better. This in turn has the advantage that several watermarks of subsequent operators can be entered when the spread sequences derived from the random keys are orthogonal to each other. This concept corresponds to the well-known CDMA method in which several communication channels are contained in a frequency channel, which each occupy the same frequency band but which can, however, be separated with the help of a correlator in a watermark extractor. Furthermore, a modification of the watermark increases the anonymity of the legal operator, but allows lifting and, if applicable, punishing the illegal operator from anonymity.
In particular, two methods for generating these watermark keys are preferred. In the first method for generating these watermark keys, another random key having a variable length is used, which can be adopted to the decoding times with further technology progress. This ensures that when testing all possible keys for extracting a watermark for forensic purposes a certain amount of work has to be done, and thus the watermark ID is practically safe and anonymous since it can only be read with considerable expenditure since nobody knows the key. The decoding for forensic purposes thus takes place by trying all possible keys. This is not problematic since, when decoding for forensic purposes, there is sufficient time since usually the number of illegal distributors will be adjusted to the respective current computer technology.
The alternative method for generating watermark keys is the existence of a set of different keys derived from the operator ID in a well-known manner and the fact that one of these possible watermark keys is used in the watermark encryption. Thus, the proof of identification can only be performed for an operator to be checked with moderate expenditure.
It can be seen from
As has already been illustrated referring to the embodiment shown in
Subsequently, an extension of the inventive DRM system to a so-called distribution format will be illustrated referring to
An asymmetrical encrypting method can also be used here with advantage. The operator of the device shown in
In order to generate a signed data format from the protected media information provided by the provider, the output data of the decrypting means is processed as usual. The level-4 DRM system shown in
The DRM system shown in
Another embodiment of the inventive concept, which, for reasons of simplicity, will be referred to as level-5 DRM system will be illustrated subsequently referring to
It is to be pointed out that for encrypting and decrypting in the means 102 and 100, respectively, an asymmetrical encrypting method need not be employed. This is, however, preferred for reasons of economy. Furthermore, the device shown in
In this respect, the AtoB format is a way of passing on signed data to persons who are not 100 percent trustworthy. These recipients cannot pass on the contents in the sense of conventional restrictive DRM systems. An exception of playing back to a file is when, for purposes of distribution, it has been signed for B and sent to B. When the signer and the recipient are identical, the signed format can be written as a file. As has already been discussed, a private key is required on each player for playing the AtoB format. This private key must be fed to the decrypting means 100. In order to prevent bypassing the AtoB format, it is preferred to embody the area of the DRM system (104) illustrated in dark colors in
For transmitting the private key to a recipient, this key is encrypted and transmitted to corresponding players of the recipient so that the AtoB format can be converted into a signed format for playing, which can then be played —without a possibility for storage. A protected method (SAC=secure authenticated channel) is also preferred for this transmission.
In principal, only one private key should be present on each apparatus, since several private keys make possible playing contents belonging to several private persons. On the other hand, the private operator should be interchangeable, which is obtained by loading a new key and erasing the old one. The complexity of changing for which an artificial time limit of one hour or one day may be imposed when updating, is thought to be sufficient to prevent gross misuse. Personalizing the second apparatus, however, is simple.
With regard to members of a shopping club, it is preferred to install one or several additional club keys having a validity with limited time, such as, for example, one year, on the private apparatus so that contents obtained from the club can be played in the AtoB format. There are many keys for this in the apparatus but not in the media part itself because the keys would then be available to anyone. These many keys are required to keep playable a collected library of personalized files.
Depending on the circumstances, the inventive method illustrated in
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10220925.1-13 | May 2002 | DE | national |
This application is a continuation of copending International Application No. PCT/EP03/04735, filed May 6, 2003, which designated the United States and was not published in English, and is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP03/04735 | May 2003 | US |
Child | 10985479 | Nov 2004 | US |