The present invention relates to a device and process for generating micro bubbles in a liquid using hydrodynamic cavitation.
Because micro bubbles have a greater surface area than larger bubbles, micro bubbles can be used in a variety of applications. For example, micro bubbles can be used in mineral recovery applications utilizing the floatation method where particles of minerals can be fixed to floating micro bubbles to bring them to the surface. Other applications include using micro bubbles as carriers of oxidizing agents to treat contaminated groundwater or using micro bubbles in the treatment of waste water.
In the accompanying drawings which are incorporated in and constitute a part of the specification, embodiments of a device and method are illustrated which, together with the detailed description given below, serve to describe example embodiments of the device and method. It will be appreciated that the illustrated boundaries of elements (e.g., boxes or groups of boxes) in the figures represent one example of the boundaries. Also, it will be appreciated that one element may be designed as multiple elements or that multiple elements may be designed as one element. Furthermore, an element shown as an internal component of another element may be implemented as an external component and vice versa.
Like elements are indicated throughout the specification and drawings with the same reference numerals, respectively. Moreover, the drawings are not drawn to scale and the proportions of certain parts have been exaggerated for convenience of illustration.
Illustrated in
With further reference to
In one embodiment, the second baffle 45 is positioned within the flow-through channel downstream from the first baffle 40. For example, the first and second baffles 40, 45 can be positioned substantially along the centerline CL of the flow-through channel 25 such that the first baffle 40 is substantially coaxial with the second baffle 45.
To vary the degree and character of the cavitation fields generated downstream from the first and second baffles 40, 45, the first and second baffles 40, 45 can be embodied in a variety of different shapes and configurations. For example, the first and second baffles 40, 45 can be conically shaped where the first and second baffles 40, 45 each include a conically-shaped surface 50a, 50b, respectively, that extends into a cylindrically-shaped surface 55a, 55b, respectively. The first and second baffles 40, 45 can be oriented such that the conically-shaped portions 50a, 50b, respectively, confront the fluid flow. It will be appreciated that the first and second baffles 40, 45 can be embodied in other shapes and configurations such as the ones disclosed in U.S. Pat. No. 5,969,207, issued on Oct. 19, 1999, which is hereby incorporated by reference in its entirety herein. Of course, it will be appreciated that the first baffle 40 can be embodied in one shape and configuration, while the second baffle 45 can be embodied in a different shape and configuration.
To retain the first baffle 40 within the flow-through channel 25, the first baffle 40 can be connected to a plate 60 via a shaft 65. It will be appreciated that the plate 60 can be embodied as a disk when the flow-through channel 25 has a circular cross-section, or the plate 60 can be embodied in a variety of shapes and configurations that can match the cross-section of the flow-through channel 25. The plate 60 can be mounted to the inside surface 20 of the wall 15 with screws or any other attachment means. The plate 60 can include a plurality of orifices 70 configured to permit liquid to pass therethrough. It will be appreciated that that a crosshead, post, propeller or any other fixture that produces a minor loss of liquid pressure can be used instead of the plate 60 having orifices 70. To retain the second baffle 45 within the flow-through channel 25, the second baffle 45 can be connected to the first baffle 40 via a stem or shaft 75 or any other attachment means.
In one embodiment, the first and second baffles 40, 45 can be configured to be removable and replaceable by baffles embodied in a variety of different shapes and configurations. It will be appreciated that the first and second baffles 40, 45 can be removably mounted to the stems 65, 75, respectively, in any acceptable fashion. For example, each baffle 40, 45 can threadly engage each stem 65, 75, respectively.
In one embodiment, the first baffle 40 can be configured to generate a first hydrodynamic cavitation field 80 downstream from the first baffle 40 via a first local constriction 85 of liquid flow. For example, the first local constriction 85 of liquid flow can be an area defined between the inner surface 20 of the wall 15 and the cylindrically-shaped surface 55a of the first baffle 40. Also, the second baffle 45 can be configured to generate a second hydrodynamic cavitation field 90 downstream from the second baffle 45 via a second local constriction 95 of liquid flow. For example, the second local constriction 95 can be an area defined between the inner surface 20 of the wall 15 and the cylindrically-shaped surface 55b of the second baffle 45. Thus, if the flow-through channel 25 has a circular cross-section, the first and second local constrictions 85, 95 of liquid flow can be characterized as first and second annular orifices, respectively. It will be appreciated that if the cross-section of the flow-through channel 25 is any geometric shape other than circular, then each local constriction of flow may not be annular in shape. Likewise, if a baffle is not circular in cross-section, then each corresponding local constriction of flow may not be annular in shape.
In one embodiment, the size of each local constriction 85, 95 is sufficient to increase the velocity of the fluid flow to a minimum velocity necessary to achieve hydrodynamic cavitation (hereafter the “minimum cavitation velocity”), which is dictated by the physical properties of the fluid being processed (e.g., viscosity, temperature, etc.). For example, the size of each local constriction 85, 95, or any local constriction of fluid flow discussed herein, can be dimensioned in such a manner so that the cross-section area of each local constriction of fluid flow would be at most about 0.6 times the diameter or major diameter of the cross-section of the flow-through channel. The minimum cavitation velocity of a fluid is about 12 m/sec. On average, and for most hydrodynamic fluids, the minimum cavitation velocity is about 18 m/sec.
With further reference to
In operation of the device 10 illustrated in
While passing through the first local constriction 85, the velocity of the liquid increases to the minimum cavitation velocity for the particular fluid being processed. The increased velocity of the liquid forms the first hydrodynamic cavitation field 80 downstream from the first baffle 40, thereby generating cavitation bubbles that grow when mixed with the gas to form gas micro bubbles. Upon reaching an elevated static pressure zone, the gas micro bubbles can be partially or completely collapsed (or squeezed) thereby dissolving the gas into the liquid to form a gas-saturated liquid.
Once the gas micro bubbles are generated after the first stage of hydrodynamic cavitation, the gas-saturated liquid continues to move towards the second baffle 45. While passing through the second local constriction 95, the velocity of the gas-saturated liquid increases to a minimum cavitation velocity of the liquid. The increased velocity of the gas-saturated liquid, forms the second hydrodynamic cavitation field 90 downstream from the second baffle 45 thereby generating cavitation bubbles. Upon reaching an elevated static pressure zone, a vacuum is created in the second hydrodynamic cavitation field 90 to extract the dissolved gas from the gas-saturated liquid, thereby generating micro bubbles. These micro bubbles are smaller in size and more uniform than the micro bubbles produced after the first stage of hydrodynamic cavitation. The liquid and micro bubbles then exits the flow-through channel 25 via the outlet 35.
Illustrated in
With further reference to
Each plate 240, 250 can be mounted to the wall 215 with screws or any other attachment means to retain each plate 240, 250 in the flow-through channel 225. In another embodiment, the first and second plates 240, 250 can include multiple orifices disposed therein to produce multiple local constrictions of fluid flow. It will be appreciated that each plate can be embodied as a disk when the flow-through channel 225 has a circular cross-section, or each plate can be embodied in a variety of shapes and configurations that can match the cross-section of the flow-through channel 225.
In one embodiment, the second plate 250 is positioned within the flow-through channel downstream from the first plate 240. For example, the first and second plates 240, 250 can be positioned substantially along the centerline CL of the flow-through channel 225 such that the orifice 245 in the first plate 240 is substantially coaxial with the orifice in the second plate 250.
To vary the degree and character of the cavitation fields generated downstream from the first and second plates 240, 250, the orifices 245, 255 can be embodied in a variety of different shapes and configurations. The shape and configuration of each orifice 245, 255 can significantly affect the character of the cavitation flow and, correspondingly, the quality of crystallization. In one embodiment, the orifices 245, 255 can have a circular cross-section. It will be appreciated that each orifice 245, 255 can be configured in the shape of a Venturi tube, nozzle, orifice of any desired shape, or slot. Further, it will be appreciated that the orifices 245, 255 can be embodied in other shapes and configurations such as the ones disclosed in U.S. Pat. No. 5,969,207, which is hereby incorporated by reference in its entirety herein. Of course, it will be appreciated that the orifice 245 disposed in the first plate 240 can be embodied in one shape and configuration, while the orifice 255 disposed in the second plate 250 can be embodied in a different shape and configuration.
In one embodiment, the orifice 245 disposed in the first plate 240 can be configured to generate a first hydrodynamic cavitation field 260 downstream from the orifice 245. Likewise, the orifice 255 disposed in the second plate 250 can be configured to generate a second hydrodynamic cavitation field 265 downstream from the orifice 255.
With further reference to
In operation of the device 200 illustrated in
While passing through the orifice 245 disposed in the first plate 240, the velocity of the liquid increases to a minimum cavitation velocity for the particular liquid being processed. The increased velocity of the liquid forms the first hydrodynamic cavitation field 260 downstream from the first plate 240, thereby generating cavitation bubbles that grow when mixed with the gas to form gas micro bubbles. Upon reaching an elevated static pressure zone, the gas micro bubbles can be partially or completely collapsed (or squeezed), thereby dissolving the gas into the liquid to form a gas-structured liquid.
Once the gas micro bubbles are generated after the first stage of hydrodynamic cavitation, the gas-saturated liquid continue to move towards the second plate 250. While passing through the orifice 255 disposed in the second plate 250, the velocity of the gas-saturated liquid increases to the minimum cavitation velocity of the liquid. The increased velocity of the gas-saturated liquid forms the second hydrodynamic cavitation field 265 downstream from the second plate 250, thereby generating cavitation bubbles. Upon reaching an elevated static pressure zone, a vacuum is created in the second hydrodynamic cavitation field 265 to extract the dissolved gas from the gas-saturated liquid thereby generating micro bubbles. These micro bubbles are smaller in size and more uniform than the micro bubbles produced after the first stage of hydrodynamic cavitation. The liquid and micro bubbles then exits the flow-through channel 225 via the outlet 235.
Illustrated in
With further reference to
In one embodiment, the plate 345 is positioned within the flow-through channel downstream from the baffle 340. For example, the baffle 340 and the plate 345 can be positioned substantially along the centerline CL of the flow-through channel 325 such that the baffle 340 is substantially coaxial with the orifice 350 disposed in the plate 345.
To retain the baffle 340 within the flow-through channel 325, the baffle 340 can be connected to a plate 355 via a stem or shaft 360. It will be appreciated that the plate 355 can be embodied as a disk when the flow-through channel 325 has a circular cross-section, or the plate 355 can be embodied in a variety of shapes and configurations that can match the cross-section of the flow-through channel 325. The plate 355 can be mounted to the inside surface 320 of the wall 315 with screws or any other attachment means. The plate 355 can include a plurality of orifices 365 configured to permit liquid to pass therethrough. To retain the plate 345 within the flow-through channel 325, the plate 345 can be connected to the wall 315 with screws or any other attachment means.
In one embodiment, the baffle 340 can be configured to generate a first hydrodynamic cavitation field 370 downstream from the baffle 340 via a first local constriction 375 of liquid flow. For example, the first local constriction 375 of liquid flow can be an area defined between the inner surface 320 of the wall 315 and an outside surface of the baffle 340. Also, the orifice 350 disposed in the plate 345 can be configured to generate a second hydrodynamic cavitation field 380 downstream from the orifice 350.
With further reference to
In operation of the device 300 illustrated in
While passing through the first local constriction 375, the velocity of the liquid increases to a minimum cavitation velocity for the particular liquid being processed. The increased velocity of the liquid forms the first hydrodynamic cavitation field 370 downstream from the baffle 340, thereby generating cavitation bubbles that grow when mixed with the gas to form gas micro bubbles. Upon reaching an elevated static pressure zone, the gas micro bubbles can be partially or completely collapsed (or squeezed), thereby dissolving the gas into the liquid to form a gas-saturated liquid.
Once the gas micro bubbles are generated after the first stage of hydrodynamic cavitation, the gas-saturated liquid continues to move towards the plate 350. While passing through the orifice 350 disposed in the plate 345, the velocity of the gas-saturated liquid increases to the minimum cavitation velocity of the liquid. The increased velocity of the gas-saturated liquid forms the second hydrodynamic cavitation field 380 downstream from the plate 345, thereby generating cavitation bubbles. Upon reaching an elevated static pressure zone, a vacuum is created in the second hydrodynamic cavitation field 380 to extract the dissolved gas from the gas-saturated liquid, thereby generating micro bubbles. The micro bubbles are smaller in size and more uniform than the micro bubbles produced after the first stage of hydrodynamic cavitation. The liquid and micro bubbles then exit the flow-through channel 325 via the outlet 335.
Illustrated in
With further reference to
In one embodiment, the plate 440 is positioned within the flow-through channel upstream from the baffle 450. For example, the plate 440 and the baffle 450 can be positioned substantially along the centerline CL of the flow-through channel 425 such that the baffle 450 is substantially coaxial with the orifice 445 disposed in the plate 440.
To retain the plate 440 within the flow-through channel 425, the plate 440 can be connected to the wall 415 with screws or any other attachment means. To retain the baffle 450 within the flow-through channel 425, the baffle 450 can be connected to a plate 455 via a stem or shaft 460. It will be appreciated that the plate 455 can be embodied as a disk when the flow-through channel 425 has a circular cross-section, or the plate 455 can be embodied in a variety of shapes and configurations that can match the cross-section of the flow-through channel 425. The plate 455 can be mounted to the inside surface 420 of the wall 415 with screws or any other attachment means. The plate 455 can include a plurality of orifices 465 configured to permit liquid to pass therethrough.
In one embodiment, the orifice 445 disposed in the plate 450 can be configured to generate a first hydrodynamic cavitation field 470 downstream from the orifice 245. Also, the baffle 450 can be configured to generate a second hydrodynamic cavitation field 475 downstream from the baffle 450 via a local constriction 480 of liquid flow. For example, the local constriction 475 of liquid flow can be an area defined between the inner surface 420 of the wall 415 and an outside surface of the baffle 450.
With further reference to
In operation of the device 400 illustrated in
While passing through the orifice 445 disposed in the plate 440, the velocity of the liquid increases to a minimum cavitation velocity for the particular liquid being processed. The increased velocity of the liquid forms the first hydrodynamic cavitation field 470 downstream from the plate 440, thereby generating cavitation bubbles that grow when mixed with the gas to form gas micro bubbles. Upon reaching an elevated static pressure zone, the gas micro bubbles can be partially or completely collapsed (or squeezed), thereby dissolving the gas into the liquid to form a gas-saturated liquid.
Once the gas micro bubbles are generated after the first stage of hydrodynamic cavitation, the gas-saturated liquid continues to move towards the baffle 450. While passing through the local constriction 480 of flow, the velocity of the gas-saturated liquid increases to the minimum cavitation velocity of the liquid. The increased velocity of the gas-saturated liquid forms the second hydrodynamic cavitation field 475 downstream from the baffle 450, thereby generating cavitation bubbles. Upon reaching an elevated static pressure zone, a vacuum is created in the second hydrodynamic cavitation field 475 to extract the dissolved gas from the gas-saturated liquid thereby generating micro bubbles. These micro bubbles are smaller in size and more uniform than the micro bubbles produced after the first stage of hydrodynamic cavitation. The liquid and micro bubbles then exit the flow-through channel 425 via the outlet 435.
Illustrated in
With further reference to
In one embodiment, the first baffle 545 is positioned within the flow-through channel 525 downstream from the first baffle 540. For example, the first and second baffles 540, 545 can be positioned substantially along the centerline CL of the flow-through channel 525 such that the first baffle 540 is substantially coaxial with the second baffle 545.
To vary the degree and character of the cavitation fields generated downstream from the first and second baffles 540, 545, the first and second baffles 540, 545 can be embodied in a variety of different shapes and configurations. It will be appreciated that the first and second baffles 540, 545 can be embodied in other shapes and configurations such as the ones disclosed in U.S. Pat. No. 5,969,207, issued on Oct. 19, 1999, which is hereby incorporated by reference in its entirety herein. Of course, it will be appreciated that the first baffle 540 can be embodied in one shape and configuration, while the second baffle 545 can be embodied in a different shape and configuration.
To retain the first baffle 540 within the flow-through channel 525, the first baffle 540 can be connected to a plate 550 via a stem or shaft 555. The plate 550 can be mounted to the inside surface 520 of the wall 515 with screws or any other attachment means. The plate 550 can include at least one orifice 560 configured to permit liquid to pass therethrough. To retain the second baffle 545 within the flow-through channel 525, the second baffle 545 can be connected to the first baffle 540 via a stem or shaft 565 or any other attachment means.
In one embodiment, the first baffle 540 can be configured to generate a first hydrodynamic cavitation field 570 downstream from the first baffle 540 via a first local constriction 575 of liquid flow. For example, the first local constriction 575 of liquid flow can be an area defined between the inner surface 520 of the wall 515 and an outside surface of the first baffle 540. Also, the second baffle 545 can be configured to generate a second hydrodynamic cavitation field 580 downstream from the second baffle 545 via a second local constriction 585 of liquid flow. For example, the second local constriction 585 can be an area defined between the inner surface 520 of the wall 515 and an outside surface of the second baffle 545. As discussed above, the size of the local constrictions 575, 585 of flow are sufficient to increase the velocity of the fluid flow to a minimum cavitation velocity for the fluid being processed.
With further reference to
In operation of the device 500 illustrated in
While passing through the first local constriction 575, the velocity of the liquid increases to a minimum cavitation velocity for the particular liquid being processed. The increased velocity of the liquid forms the first hydrodynamic cavitation field 580 downstream from the first baffle 540, thereby generating cavitation bubbles that grow when mixed with the gas to form gas micro bubbles. Upon reaching an elevated static pressure zone, the bubbles can be partially or completely collapsed (or squeezed), thereby dissolving the gas into the liquid to form a gas-saturated liquid.
Once the gas micro bubbles are generated after the first stage of hydrodynamic cavitation, the gas-saturated liquid continues to move towards the second baffle 545. While passing through the second local constriction 585, the velocity of the gas-saturated liquid increases to the minimum cavitation velocity of the liquid. The increased velocity of the gas-saturated liquid forms the second hydrodynamic cavitation field 580 downstream from the second baffle 545, thereby generating cavitation bubbles. Upon reaching an elevated static pressure zone, a vacuum is created in the second hydrodynamic cavitation field 580 to extract the dissolved gas from the gas-saturated liquid, thereby generating micro bubbles. The micro bubbles are smaller in size and more uniform than the micro bubbles produced after the first stage of hydrodynamic cavitation. The liquid and micro bubbles then exit the flow-through channel 525 via the outlet 535.
The following examples are given for the purpose of illustrating the present invention and should not be construed as limitations on the scope or spirit of the instant invention.
The following example of a method of generating micro bubbles in liquid was carried out in a device substantially similar to the device 200 as shown in
The following example of a method of generating micro bubbles in liquid was carried out in a device substantially similar to the device 200 as shown in
The method above was repeated in the device 200, except that the gas flow rate was changed. The results are illustrated in Chart 1 below.
The following example of a method of generating micro bubbles in liquid was carried out in a device substantially similar to the device 200 as shown in
The following example of a method of generating micro bubbles in liquid was carried out in a device substantially similar to the device 200 as shown in
The method above was repeated in the device 200, except that the gas flow rate was changed. The results are illustrated in Chart 2 below.
The following example of a method of generating micro bubbles in liquid was carried out in a device substantially similar to the device 200 as shown in
The following example of a method of generating micro bubbles in liquid was carried out in a device substantially similar to the device 200 as shown in
The method above was repeated in the device 200, except that the gas flow rate was changed. The results are illustrated in Chart 3 below.
Although the invention has been described with reference to the preferred embodiments, it will be apparent to one skilled in the art that variations and modifications are contemplated within the spirit and scope of the invention. The drawings and description of the preferred embodiments are made by way of example rather than to limit the scope of the invention, and it is intended to cover within the spirit and scope of the invention all such changes and modifications.
This application is a continuation-in-part application of U.S. Ser. No. 10/461,698 filed on Jun. 13, 2003.
Number | Date | Country | |
---|---|---|---|
Parent | 10461698 | Jun 2003 | US |
Child | 11243772 | Oct 2005 | US |