A magnetic bead in the apparatus, described in detail with respect to
Also forming part of the apparatus, for use in moving the magnetic bead from well to well, and for use in agitating a bead within a well are three groups of electromagnets, seen best in
With continued reference to
The peaks separating adjacent wells in the substrate act as energy barriers which serve to confine a bead within a given well until acted on by external magnetic forces. In this case, the energy barriers are smoothly-contoured (sinusoidal-shaped) physical barriers formed in the substrate. In other embodiment, the energy barrier may be a liquid/gas interface which acts to confine a bead within a discrete liquid “well” until acted on by external magnetic fields. The energy barrier may include a combination of physical and liquid/gas interface forces that act to confine a bead to a well. Alternatively, or in addition, the energy barrier may be a electromagnetic field which has a bead-capturing component which remains “on” to confine a bead to a well (region) and which is switched off when the bead is to be transferred to an adjacent well.
In contrast to motion through a liquid, motion from a liquid well through air (pop-out) and back into a different liquid well (pop-in) requires higher magnetic forces because of energy barriers such as the liquid-air interface. Popping out of a well and popping back in can be accomplished, however, by driving sharp, high power pulses of current through a small electromagnet. The sharp, high magnetic force thus generated is sufficient to transfer even a small magnet across the liquid-gas interface. Although the electromagnet power is high during the pop-out pulse, the duration is short on the order of 100 ms, so very little energy is needed and heating is minimal.
In one preferred embodiment, the bead has a rolling magnet configuration that allows the magnet to roll along a selected axis as it is transferred from well to well. The magnet is typically cylindrical in shape, although not so limited, and is magnetized along its axis, as described further below with respect to
Although not shown here, one or more of the wells can be equipped with heating elements, e.g., resistive heating elements that can be activated to produce a desired level of heating in one or more of the wells. The heating element is under the control of the control unit. The lower pop-out and other electromagnets may themselves be used for heating in some embodiments provided the current driven through them for heating does not interfere with currents used for motion control of the magnet. This may be accomplished (depending on the heating needed) by driving a low level of current though the electromagnets when they are not being used for motion control, or by using a high frequency AC current through the electromagnets (when not used for motion control) that does not exert a net magnetic force on the magnet.
Formed in the side of substrate 22, as seen in
As shown in
Each of the electromagnetic electromagnets has a conventional construction, meaning a magnetic core wrapped with a conductor wire winding or an air-core electromagnet (not shown). More generally, the smaller electromagnets are constructed, in one embodiment, of approximately 215 turns of 36 Gauge (0.0050″ diameter) enamel-coated magnet wire with dimensions as follows: O.D.=0.3″; I.D.=0.05″; thickness=0.065″. The larger electromagnets are constructed of approximately 525 turns of 32 Gauge (0.008″ diameter) enamel-coated magnet wire with dimensions as follows: O.D.=0.70″; I.D.=0.4″; thickness=0.3″. The electromagnet dimensions described herein are examples of one embodiment and are not meant to be limiting. The technology can be easily adapted to other electromagnet dimensions.
Precise timing and switching of the currents passed from the control unit through each electromagnet is controlled in one embodiment through two 24-channel digital I/O boards interfaced to a laptop or like computer or processor (not shown). A magnet resides in the first well and, upon addition of a liquid sample and reagents to the remaining wells, can be transferred via a rolling mechanism between any adjacent wells. The electrical current passing through the electromagnets, as manipulated by the controller, forms a controlled magnetic field with a component aligned with the magnet's longitudinal axis that increases perpendicular to the magnet's longitudinal axis. The rolling mechanism is performed so as to prevent splashing of the solutions and minimize solution carryover between wells.
A magnetic bead can be manipulated within a fluid environment by pulsing power through the electromagnets in a sequenced fashion. By connecting the electromagnets to a power amplifier that is in turn connected to a computer or processor (together, the control unit), the electromagnets can be digitally pulsed on and off. In this embodiment during the “on” state, the electromagnet electromagnets received approximately 2.75 Volts and 350 milliamps of voltage and current, respectively.
Considering now the operation of the control unit in manipulating a bead, assume that a bead is placed in well 28 on the substrate (second from the left in the figures), which will serve as a sample well, and is allowed to react with reagents in this well under conditions in which the molecules carried on the surface of the bead interact with the selected reagent components. For example, if the molecules bound to the bead are enzymes, the bead may effect a desired enzymatic reaction of one of the well components. If the bound molecules are binding agents, e.g., an antibody, oligonucleotide, receptor, or small-molecule ligand, the complementary binding component(s) in the well may bind selectively to the bead surface. If the bead surface is coated with an inhibitory molecule, e.g., a drug or antisense compound, the presence of the bead may be effective to inhibit a target reaction or event in the sample well.
Following this reaction, the bead is now transferred to a second well, (target well) typically a washing well, where the bead may be washed, e.g., to remove non-specifically bound material, or further process the bead. To accomplish the movement of the magnetic object from one well to the next the wire electromagnets are pulsed from the control unit as follows. The approximate activation times, referenced from time zero are given beside each operation, for bead movement from well 28 to well 30.
1. Turn on lower pop-out electromagnet 48 under peak 38 between wells 28, 30 to draw the bead to the side of the peak between the two wells, time zero to 10 msec;
2. Turn on the overhead pop-out electromagnet 44 over well 30 to pull the object out of the sample well; time 10 msec to 20 msec;
3. Delay of 5 msec;
4. Turn on the lower pop-out electromagnet under peak 40 to pull the object toward the target well, time 25 msec to 35 msec;
5. Delay of 65 msec;
6. Turn off overhead electromagnet 40 over the target well to allow the object to fall into the target well, at time 100 msec to 110 msec;
7. Turn off the lower electromagnet under peak 38 to let the object roll down the peak hump into the target well, time 110 msec to 120 msec;
8. Delay of 5 msec; and
6. Turn off the lower electromagnet under peak 40 to pull the object to the center of the target well, time 125 msec to 135 msec.
The transfer of the object from the source to the target well takes approximately 0.135 seconds to complete.
There is an approximate 300 msec settling time delay at the start and end of the procedure, so the total time would be 0.3+0.135+0.3=0.735 seconds. The start and end delay may be reduced.
In addition to moving the magnetic object from one well to another well, the magnetic object may be manipulated within the well, particularly for purposes of agitating the bead in a well. In one embodiment, using two or more wire electromagnets a magnetic field can be generated for rotating, spinning or agitating a magnetic object inside a well. As more electromagnet electromagnets are added to the device the precision and control of object manipulation increases. A single wire electromagnet can be used, but smooth rotation may be compromised.
The pulsing sequence for spinning a magnetic object is as follows. Compass directions are given to indicate the orientation of the object (through a face of the object), with the North-South line parallel to the axis of the large electromagnet 42. The words “forward” and “backward” refer to the direction of the current in the electromagnet.
The amount of time that each electromagnet is on depends on the spin speed. The following is based on a non-delay command time of 5 msec per command. To turn on a electromagnet, set it to forward (5 msec), turn it on (5 msec), and wait for a delay (the spin speed) 10 msec for about 12 Hertz (using 0 msec for execution of commands).
1. Turn on overhead electromagnet forward (West), from time zero to 20 msec;
2. Turn on spin electromagnet forward (Southwest), from time 20 to time 40 msec;
3. Turn off overhead electromagnet (South), at time 40 msec to 55 msec;
4. Turn on overhead electromagnet backward (Southeast), from time 55 msec to time 75 msec;
5. Turn off spin electromagnet (East); at time 75 msec to 90 msec
6. Turn on spin electromagnet backward (Northeast), from time 90 msec to time 110 msec;
7. Turn off overhead electromagnet (North), at time 110 msec to 125 msec;
8. Turn on overhead electromagnet forward (Northwest), from time 125 msec to time 145 msec;
9. Turn off spin electromagnet (West), at time 140 msec to 155 msec;
To make the object spin more than one revolution, steps 2-9 are repeated. By varying the rate at which the electromagnets are pulsed, the object can be made to spin from fractions of a Hertz to about 30 Hertz. It is also possible to use an analog signal to run a sine wave current through each electromagnet wherein the sine waves for each electromagnet are 90 degrees out of phase. This non-pulsed approach allows the object to spin smoothly at rates below 5 Hertz. By adding more electromagnets with various orientations of the face of the electromagnets, the orientation and position of the magnetic object can be controlled with fine detail. Furthermore, in alternate embodiments, the electromagnets may be activated in such a sequence to produce a vibratory or agitated motion of the object rather than a spinning motion.
Sensors (not shown) for control and system monitoring may also be used in the system to enhance reliability, to flag a problem, or for more complex control of the magnetic beads 66 and 76. Optical sensors, such as LED or laser sensor devices, for sensing the presence or absence of a millimeter-size magnetic bead are known in the prior art and could be incorporated into the system described here. If the bead was not recorded by the optical sensor at the expected position (e.g. between two wells) at the expected time, an alarm might sound to notify an attendant. Conversely, if the sensor did register the magnetic bead correctly, the data might be recorded for system verification and record keeping purposes, particularly for systems performing complex chemical processes. Optical and other sensors are also known in the prior art which can measure not just presence or absence of the magnetic bead, but also more precise motion parameters such as accurate bead position or bead velocity. Such parameters may be used by the control unit to better control the magnetic bead, for example to minimize splashing from too high velocity, or to minimize power consumption in the electromagnetic electromagnets by not driving more power than is needed to achieve the desired motion.
Spherical bead 76 shown in
According to one aspect of the invention, coated magnetic beads of the type just described may be prepared using the apparatus of the invention. In this method, a magnetic core is placed in the first substrate well in an apparatus of the type described above. The well includes a liquid silica composition, which coats the submerged core. Once coated, the core is transferred to a second well by applying controlled-time currents, to an adjacent well. Following this transfer, the core may be agitated under conditions effective to produce a substantially even silica coating while the silica composition hardens on the core. Alternatively, or in addition, the bead may be moved back and forth, in and out of the silica containing well, until a desired coating thickness is achieved.
The embodiment just described may be employed, for example, where it is desired to analyze multiple analytes or classes of analytes, a single sample, or where it is desired to carry out multiple types of processing on a single sample. In the former case, a bead carrying one type of binding agent may be placed in the center well that contains a liquid sample with multiple analytes or other reagents to be tested or handled. The bead, after reacting with one of these components, is then moved successively from the center well, through an adjacent intermediate wash well, and to the associated processing well, then back to the intermediate wash well. This specifically removes one analyte from the sample and leaves it purified in the final processing or detection well. This bead movement may be repeated with each of the other beads until each has been moved through the sample and then out through their respective rinse and into their final processing/detection wells.
The control unit may be programmed to carry out a variety of assay or other reagent-handling protocols, depending on the nature of the operation desired and the format of the substrate. For example, in a simple purification procedure, the control unit will operate to move a bead placed in an initial sample well to an adjacent washing well, where the bead may be agitated, e.g., rotated, to remove non-specifically bound material, then move to an adjacent processing well where the bound material may be released from the bead, e.g., by heating or by the nature of the solution in the processing well. The bead may then be returned to the initial sample well for further processing.
For analyte detection of a known-sequence nucleic acid analyte, the processing well may contain amplification primers or the like to selectively amplify the known sequence, by repeated heating/cooling cycles carried out in the well. Alternatively, amplification primers may be supplied on the bead itself, where the bead is coated with oligonucleotides that bind both analytes of interest and primer sequences, or the primers may be introduced from another reagent bead that is moved into the processing well from another well. This latter embodiment illustrates a mode of operation of the device where the two or more beads carrying different reagents and/or analytes are brought into the same well, for exposing different combinations or reagents to one another in that well.
In addition to nucleic acid analysis, the apparatus and method are adaptable for detecting, measuring or utilizing a wide variety of analytes and other reagents, including antigens, enzymes, receptors, and small molecule drugs. In each case, the bead is designed either to bind to one of the reagents, for selective binding, or to interact with one of the reagents, so that the presence or absence of an event, preferably a detectable event, can be detected, measured, or utilized, e.g., in a subsequent reaction. The following nucleic acid analysis operations are representative or the versatility and options available from the system.
Here the substrate may include a plurality of parallel well sets, as in
With the lysis solution effectively removed from the bead, the bead and the bound transcripts are transported to an adjacent processing well containing an elution buffer that causes the analytes to be released from the object. This procedure has thus successfully isolated/purified transcripts from a cell lysis mixture. With the purification process complete, the bead is then returned to the sample well, leaving a purified solution of analytes in the processing well.
The device can thus quickly purify nucleic acids or other analytes from a variety of biological samples, including cancer biopsy specimens. The device requires no additional laboratory infrastructure, liquid dispensing, or operating expertise other than that necessary for obtaining a patient specimen. The device is capable of processing complex liquids (e.g., blood) or heterogeneous tissue samples and outputs purified NAs in solution. If required, both initial tissue homogenization and subsequent processing by RT-PCR can be easily integrated into the device. One embodiment of the device can be deployed as a simple, compact, integrated system for extracting and purifying NAs from a variety of sources within a POC context.
From the foregoing, it will be appreciated how various objects and features of the invention are met. The invention allows rapid, automated or semi-automated handling of liquid samples, for multi-step analyte reactions, chemical modifications or other multi-step reactions.
The invention allows for tailored reaction conditions, e.g., heating, within separate wells, and by bead agitation, rapid equilibration of reaction conditions, and other more complete washing of the bead carrier. The apparatus is easily adapted for multi-analyte assays or multiplexed assays using multiple-lane or radial well configurations of the type illustrated in
The bead size allows quantitative detection of even small amounts of analyte material, e.g., a given-sequence transcript. In particular, the overall size of the magnetic bead can be chosen such that the surface area of a single cylindrical magnet is nearly identical to that of 106 1 μm-diameter particles. It can be shown, for example, that a magnetic bead having a radius and thickness of 1 mm possesses about the same surface area as 106 1 μm-diameter particles. Thus, this single bead will yield the same DNA or RNA binding capacity as 106 paramagnetic particles (e.g., Dynal objects), which is roughly the number used in the common paramagnetic bead protocols. While the NdFeB-based magnets offer the highest magnetic energy density of currently available magnets, enhancing the devices ability to manipulate the magnet in three-dimensional space, other like magnetic material can be used.
Although the invention has been described with respect to specific embodiments, it will be appreciated that various changes and modification can be made without departing from the invention as claimed.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 60/346,219, filed 19 Oct. 2001, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60346219 | Oct 2001 | US |