The present disclosure relates to devices and methods for use in forming resins or plastic materials.
It has been suggested to provide heating features in tools for forming plastic materials. The heating may be provided by inductive heating, i.e. by means of a coil that is provided with a high-frequency AC pulse. This may be used in injection moulding as well as in embossing/pressing of a plastic blank. The coil generates an oscillating magnetic field that, by inducing eddy currents, heats the mould or tool in the vicinity of the surface that will face the plastic material to be reshaped.
Cooling may also be provided by means of a fluid such as water, which flows in the vicinity of the tool or mould surface.
Different ways to achieve such heating have been disclosed. In US-2009/0068306-A a structure is shown having a coil carrier part which provides a magnetic field. The coil carrier functions as a soft ferrite and includes mutually electrically insulated magnetic granules, such as in PERMEDYN MF1. Closer to the mould or tool surface there is a top part for instance in the form of an austenitic steel which is not particularly ferromagnetic, and has a resistivity that is suitable, e.g. about 7*10−7 Ωm, to develop heat from eddy currents induced by the coil. On the other side of the coil carrier as seen from the top part there is a back plate, for instance made of copper, that has a considerably lower resistivity than the top part. The back plate short-circuits the induced eddy currents on the backside of the coil. On top of the top part there is a stamper that includes the pattern to be replicated on the resin or blank in the mould or tool. This stack of materials has cooling ducts close to the top part.
In US-2009/0239023-A a further developed structure is shown where the above-described stack of materials is provided with one additional layer that separates the coil carrier part from the top part. This intermediate layer may consist of a ceramic material which is more or less magnetically and electrically passive, but has high mechanical resistance. The cooling ducts may be placed in this intermediate layer. The high mechanical resistance of the intermediate layer implies that the top part can be thin and thus have a lower specific heat. Thereby, the cycles can be shorter as the top part can quickly be cooled and heated. Moreover, as the cooling ducts can be moved out of contact with the top part, higher temperatures can be used without boiling the water in the ducts.
One problem associated with the known art is how to further improve the efficiency of a process involving such tools, and to do this in a cost-efficient manner.
One object of the present disclosure is therefore to obtain a tool that has an improved efficiency.
This object is achieved by means of a tool as defined in claim 1. More specifically, a tool such as an injection moulding tool or an embossing/pressing tool comprising a heating device includes a stack of layers for heating an active tool surface. The stack comprises: a coil carrier layer including at least one wound coil for generating an oscillating magnetic field, an electrically conductive top layer, being adjacent to the active tool surface, and a backing layer, being positioned beneath the coil carrier layer as seen from the top layer, the backing layer being electrically connected to the top layer at the edges where windings of the coil turns, and having a lower resisitivity than the top layer. An electrically conductive intermediate layer is located between the coil carrier layer and the top layer, and the intermediate layer has a lower resistivity than the top layer. A corresponding production method is also considered.
In such a stack, the intermediate layer can convey energy to the top layer in a very efficient way, and can at the same time take up considerable mechanical loads if pressing/embossing takes place.
A thermal resistance layer may be placed between the intermediate layer and the top layer. Such a layer, e.g. made of glass, slows down the removal of heat from the top layer to some extent, thereby increasing the peak top layer temperature during a production cycle.
The intermediate layer may be provided with cooling ducts for conveying a cooling medium. This can shorten the production cycle. The top layer resistivity may be in the range between 1*10−7-1*10−6 Ωm, and the intermediate layer may have a resistivity in the range between 1-3*10−8 Ωm.
The object is further achieved by means of a tool for embossing/pressing a blank at an active surface, where the tool has an electrically conductive top layer that is heated with currents induced by a coil, placed beneath the top layer as seen from the active surface. A backing layer is placed beneath the coil as seen from the active surface, the backing layer having a lower resistivity than the top layer and being connected to the top layer at least at the opposing edges where the windings of the coil turn. A conduction frame is provided, having a lower resistivity than the top layer and surrounding the active surface, such that the top layer, at least in the vicinity of some of its edges, rests on the conduction frame. A corresponding production method is also considered.
This provides good contact between the backing layer and the top layer to improve heating of the top layer, while at the same time allowing the top layer to float on top of the conduction frame.
The top layer may, at an edge where the windings of the coil turn, rest on the conduction frame at a distance from the edge of the top layer, such that this edge of the top layer is heated to a lesser extent than inner parts of the top layer when a current is lead from the backing layer and into the top layer. This may be advantageous for instance when producing a lightguide plate, where molten edges could otherwise introduce optical deficiencies that decrease the process yield.
A clamping device may be placed beneath the conduction frame as seen from the active surface. The clamping device may be moveable in relation to the layer on which it rests, such that the conduction frame may be clamped against the top layer during a phase when a current is led to the top layer from the backing layer. This improves electric conduction between the conduction frame and the top layer.
The clamping device may be devised as a frame with two compressed sealing rings, one surrounding the other and both surrounding the active surface of the tool, such that a closed spaced is formed between the sealing rings, and means, such as a conduit, to force a fluid into said closed space in order to increase the pressure therein, thereby raising the sealing rings to obtain the clamping motion.
The top layer may be divided into an upper top layer and a lower top layer, where the upper top layer comprises a metal with uniform resistivity which is higher than the resistivity of the backing layer, and the lower top layer has a pattern with varying resistivity, such that the heat generated at the active surface varies over the active surface. This allows an intentional variation of the heat development over the active surface.
The object is also achieved with a tool for embossing/pressing a blank with an active surface of the tool, where the tool has a stack of layers including a top layer at the active surface, and the top layer being heated during embossing/pressing. A cavity is defined between two layers in the stack beneath the top layer as seen from the active surface, and the cavity extends beneath a greater part of the active surface and is at least partly filled with a fluid. This equalises the pressure applied over the active surface of the tool, as the pressure will be uniform throughout the cavity. A corresponding production method is also considered.
It is possible, already in a state where the active surface does not touch a blank, to raise the pressure in the cavity such that it is higher than the atmospheric pressure, so that the top layer bulges to some extent. This serves to evacuate any air pockets from where the active surface of the tool interfaces with a blank.
The present disclosure relates to devices and methods for use in forming resins or plastic materials. The following description will mainly describe a system for embossing plastic blanks but, as the skilled person realizes, many technical solutions described herein may be equally applicable to injection moulding and other processes.
Injection moulding, schematically illustrated in
The coil carrier layer 21 includes the wound coil 19 and is made of a material with high relative magnetic permeability, e.g. 300 at room temperature, and very high electric resisitivity, e.g. 2.5*10−3 Ωm. Thus, it is a material that is prone to conduct magnetic fields but that does not convey electric currents to any greater extent. This means that the coil carrier layer 21 will convey and shape the magnetic field, generated therein by the coil 19, to other layers, while not inducing any substantial eddy currents in the coil carrier layer 21 itself. The coil 19 is placed in open grooves and provides an even distribution of the field over the surface of the coil carrier. PERMEDYN MF1 (trademark) is considered one suitable material for the coil carrier layer and involves granules of ferromagnetic material baked together by an electrically insulating resin. In general, the coil carrier thickness may typically be in the range 10-30 mm.
The electrically active intermediate layer 23 comprises a metal with very low resistivity, (typically 1-310−8 Ωm or less), such as copper or aluminum. This layer is denoted as active as the coil induces currents therein. However, as the resistivity is so low, those currents do not develop heat to any greater extent. The thickness of the layer may typically be 10-30 mm, the relative magnetic permeability may be close to 1 (non-ferromagnetic) and the thermal conductivity may typically be 100-400 W/m/K.
The top layer 25 may comprise a metal with higher resistivity than the active intermediate layer 23. Austenitic steel, 1-2 mm thick, is one suitable example. As the resistivity is higher, this is the layer where the heat will be developed from eddy currents, induced by the coil 19 and via the active intermediate layer 23.
The top layer part may be non-ferromagnetic, and the resistivity may typically be in the range from 1*10−7-1*10−6 Ωm. Thus, the top part is conductive, but considerably less conductive than the intermediate layer.
It may be suitable to divide the top layer into two sublayers. For instance, if a fine structure should be replicated by a stamper, this may suitably be made of Nickel which is treated with electroplating. As Nickel is ferromagnetic, the surface of the Nickel sublayer that faces the coils (rather than the active surface) will be heated, which is one reason why the layer may preferably be thin. Another reason is that it is time consuming to electroplate thick materials.
To have some thickness in the top part as a whole, a thin Nickel layer (e.g. 0.7 mm) may be placed on top of an austenitic non-ferromagnetic layer (e.g. 1.0 mm thick). This ensures even heat distribution. Yet another alternative would be a thick, 1-2 mm, Nickel layer, even if this may be expensive to produce.
A backing layer 27 (e.g. 2-15 mm thick) is provided on the other side of the coil carrier layer 21, as seen from the surface 31 that faces the resin or blank to be processed, and may be made of a similar material as the active intermediate layer 23. The backing layer 27 is electrically connected to the top layer 25 by means of a connection 33, which is very schematically indicated in
A thermal resistance layer 29 may be placed between the active intermediate layer 23, and the top layer 25. The thermal resistance layer 29 serves to obstruct the conveying of heat, from the top layer 25 to the active intermediate layer 23, to some extent, such that the top layer 25 may reach a higher peak temperature. Without this layer, a lower peak temperature would be reached in the top layer during a cycle, as more heat is then continuously removed from the top layer 25 and conveyed to the active intermediate layer 23.
The thickness of the thermal resistance layer may be e.g. in the range 1-5 mm depending on its heat conductive properties. This may be chosen in a trade-off between high top temperatures (thick) and short cycle times (thin). Electrically, the layer may be insulating and the thermal conductivity may typically be about 1 W/m/K. The relative magnetic permeability may be close to 1 (non-ferromagnetic). Glass is considered one suitable material.
The thermal resistance layer also makes the use of ferromagnetic top layers (e.g. Nickel) less problematic. Due to the skin effect in ferromagnetic materials, the side of the top layer that faces the coils will be primarily be heated. However, thanks to the thermal resistance layer, this thermal energy will be conveyed to the active surface rather than being conveyed to the active intermediate layer.
Below follows one example of layer materials and thicknesses thereof that can be used:
In a simulation, where AC power with the frequency of 25 kHz and with the power volume density of 1.5*108 W/m3 is applied, the temperature increase in the top layer after 10 seconds is 200° C. At the same time the temperature in the backing layer rises only ˜3° C., in the coil carrier ˜6° C., and in the intermediate layer ˜15° C.
The coil at the backside of the coil carrier will induce a current in the backing layer 27 similar to in the active intermediate layer. This current will have the same direction as, and will be superimposed with, the current 40. Due to its low resistivity, very little heat will develop in the backing layer 27.
The active intermediate layer 23 may be provided with cooling ducts (not shown) to allow cooling of the mould or tool. The ducts may convey a cooling medium such as water or oil. The flow can be continuous, or can be pulsed in order to provide cooling during only one phase of a production cycle.
With reference to
A stack of layers corresponding to the schematic outline of
In the illustrated case, the active intermediate layer 23, which is placed on the coil carrier 21, comprises two sublayers 39, 41, and includes cooling channels (not visible in
The second active intermediate sublayer 41 contains the cooling ducts, which are fed by a fluid splitter block 51, in steps symmetrically dividing a main flow into a number of equal sub-flows, one for each duct. On top of the second sublayer 41, the thermal resistance layer 29 is located and is followed by the top layer/stamper 25.
Below follows an example of materials and thicknesses that can be used in the tool halve shown in
Each tool halve may have seven coils, each with 22 winding turns that are synchronously fed, each coil with a 25 kW/25 kHz/10 second pulse during embossing.
The second active intermediate sublayer 41 contains the cooling ducts 53, which extend along the length of the tool's active area, i.e. where pressing and heating takes place. The cooling ducts 53 may, as in the illustrated case, be drilled as long holes through the entire length of the second sublayer 41. The holes may be plugged at the ends and may be provided with connecting holes that extend through the flat surface of the sublayer 41 in the vicinity to the edge where the hole is plugged. The connecting holes may be connected to the fluid splitter block.
One possible alternative to providing cooling ducts in the form of drilled holes 53 is to provide the second sublayer 41 as two sublayers, and to form the cooling ducts by machining grooves in the flat surface of one or both of these sublayers.
The stack of layers illustrated above provides excellent heating of the tool. The illustrated tool however involves a number of additional technical solutions that will now be discussed in greater detail.
Equalizing Pressure
Particularly when pressing/embossing a blank to provide a lightguide plate an equal pressing force and absence of shear forces provides good optical properties. The fluid filled cavity 47 shown in
The cavity 47 may extend beneath the greater part of the active surface. The fluid layer formed therein need not be thick, 4-5 mm may be one useful example. The fluid used could be water, but oil is another alternative. The fluid is confined within the cavity by a seal 79 that is compressed between the active intermediate sublayers 39, 41 and runs in a groove in either sublayer, the groove surrounding the cavity 47. The pressing of the tool raises the fluid pressure considerably. This pressure will be uniform throughout the cavity, ensuring an even pressure force over the active surface.
It is possible to apply a positive pressure in the cavity, e.g. 0.5-1 bar overpressure by pumping a limited amount of air into the cavity when it is filled with a liquid and closed. This will cause the second sublayer 41, as well as the layers on top of the latter, to bulge slightly. This provides the effect that, when pressure is applied between the tool halves and a blank, trapped pockets of air between the tool halve and the blank can be avoided. The mid portion of the active tool surface will press against the blank first, and will evacuate all air towards the edges as the pressing force increases. At final pressure (e.g. 2 MPa) when the embossing takes place, however, this bulging effect is negligible and does not affect the final result. Thanks to this positive pressure however, the risk of having pockets of air trapped between the tool halve and the blank can be more or less eliminated.
It is possible to provide a pressure sensor in contact with the fluid to provide a feedback signal indicating the applied pressure.
Improving Contact with Top Layer
Even though the top layer 25 may be very thin in many cases, and may expand and contract to some extent during heating and cooling, respectively, a reliable connection to the backing layer 27 should be provided at the edges where currents are to enter. This may be accomplished by a conduction frame 63, e.g. made of copper, that encloses the entire active surface of the tool halve. The top layer 25 rests in a floating manner on the conduction frame 63 at the edges of the top layer. This is also illustrated in
Thus, as indicated in
The galvanic contact between the top layer 25 and the conduction frame 63 may be further improved. The top layer may typically carry as much as 25000 Ampere as a maximum current from long edge to long edge, and even if this current is distributed over the entire length of the active surface, the current density is significant.
In order to provide excellent contact to the top layer 25 while allowing the same to float, a clamping device 77 is provided beneath the conduction frame 63.
Thus, when the blank is pressed between the two tool halves, it is possible to activate the clamping device 77 which then pushes the conduction frame 63 against the top layer 25, thereby providing excellent galvanic contact therebetween.
Even though currents with considerable amplitudes are primarily conveyed between the conduction frame and the top layer at the long edges, where the coils turn in this example, it may be preferred to provide the clamping effect between the top layer and the current around the entire perimeter of the top layer, i.e. also at the short edges. This may prevent undesired field anomalies e.g. at the top layer corners.
The clamping device may as indicated in
Blank Edge Thermal Profile
When producing a lightguide as mentioned above, the edges of the may require special attention. If the resin melts too much at the very edge, light may leak at the edge in an unintended way. Also the thickness of the blank at the edges may decrease. At the same time it is desired to apply pressure over the whole blank surface.
One way of dealing with this is to make sure that the blank is heated less at the edges. This provides a “cold frame” surrounding the inner part of the blank where the surface is melted by the applied heating. This may result in a lightguide with more uniform thickness where there are less optical defects at the edges that leak light.
This feature may be provided in different ways at the long and short edges of the tool halve.
Thereby, a relatively cooler frame of the blank can be achieved around the edges of the same.
The lower top layer in
The invention is not restricted to the above described embodiments and may be varied and altered in different ways within the scope of the appended claims. For instance, the coils may be wound from short edge to short edge, instead of as illustrated where the coil winding turns are located at the long edges of the active surface. Other materials having similar properties as the ones described above can be used. For instance, instead of austenitic steels in the top layer, e.g. Ferritic or Martensitic steels could be considered.
Copper alloys can in many cases be replaced by Aluminum alloys, etc.
This application is the National Stage entry under 35 U.S.C. § 371 of PCT Application No. PCT/SE2012/050617, filed Jun. 8, 2012, which claims the benefit of U.S. Provisional Patent Application No. 61/501,976, filed Jun. 28, 2011, the contents of which are herein incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2012/050617 | 6/8/2012 | WO | 00 | 8/29/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/002703 | 1/3/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4563145 | De | Jan 1986 | A |
5176839 | Kim | Jan 1993 | A |
5762972 | Byon | Jun 1998 | A |
5808281 | Matsen et al. | Sep 1998 | A |
5837183 | Inoue et al. | Nov 1998 | A |
5955120 | Deissler | Sep 1999 | A |
6599376 | Morikawa et al. | Jul 2003 | B2 |
7132632 | Huang | Nov 2006 | B2 |
7462029 | Hung et al. | Dec 2008 | B1 |
7981350 | Jäderberg et al. | Jul 2011 | B2 |
8235697 | Olin et al. | Aug 2012 | B2 |
8794950 | Feigenblum et al. | Aug 2014 | B2 |
20030215540 | Asai | Nov 2003 | A1 |
20030234470 | Haan et al. | Dec 2003 | A1 |
20040009260 | Gabriel | Jan 2004 | A1 |
20040041303 | Kim et al. | Mar 2004 | A1 |
20040188427 | Huang | Sep 2004 | A1 |
20050035115 | Anderson | Feb 2005 | A1 |
20050053691 | Gabriel | Mar 2005 | A1 |
20050156342 | Harper et al. | Jul 2005 | A1 |
20060081615 | Kataoka et al. | Apr 2006 | A1 |
20060113030 | Houzego et al. | Jun 2006 | A1 |
20080203088 | Kinouchi et al. | Aug 2008 | A1 |
20090068306 | Jaderberg et al. | Mar 2009 | A1 |
20090074905 | Matsen | Mar 2009 | A1 |
20090220723 | Jaderberg et al. | Sep 2009 | A1 |
20090239023 | Olin et al. | Sep 2009 | A1 |
20100000980 | Popescu | Jan 2010 | A1 |
20100052667 | Kohama et al. | Mar 2010 | A1 |
20110233826 | Guichard | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1478642 | Mar 2004 | CN |
1767938 | May 2006 | CN |
201287451 | Aug 2009 | CN |
102017790 | Apr 2011 | CN |
146191 | Jun 1985 | EP |
0505738 | Sep 1992 | EP |
1800829 | Jun 2007 | EP |
1925421 | May 2008 | EP |
57-167209 | Oct 1982 | JP |
62-113521 | May 1987 | JP |
63-67134 | Mar 1988 | JP |
63-78720 | Apr 1988 | JP |
2-182433 | Jul 1990 | JP |
H0596548 | Apr 1993 | JP |
6-8250 | Jan 1994 | JP |
7-284189 | Oct 1995 | JP |
8-132498 | May 1996 | JP |
3058809 | Jul 2000 | JP |
2002-079559 | Mar 2002 | JP |
2002-264191 | Sep 2002 | JP |
2005-335234 | Dec 2005 | JP |
2006-255900 | Sep 2006 | JP |
390428 | May 2000 | TW |
I221210 | Sep 2004 | TW |
M245045 | Oct 2004 | TW |
2007-34160 | Sep 2007 | TW |
WO 2006089883 | Aug 2006 | WO |
WO 2008061683 | May 2008 | WO |
WO 2008061683 | May 2008 | WO |
WO 2012133406 | Oct 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20140367886 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61501976 | Jun 2011 | US |