All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference
The devices and methods described herein relate generally to the treatment of hypertension.
Arterial hypertension, commonly referred to as “hypertension” or “high blood pressure”, is a medical condition in which the blood pressure is chronically elevated. Hypertension is associated with markedly elevated risk of heart attack, heart failure, arterial aneurysms, kidney failure and stroke. Causes of hypertension in a given individual may be one or more of many possibilities, which may include salt intake, obesity, occupation, alcohol intake, smoking, family size, stimulant intake, excessive noise exposure, and crowding, renin levels, insulin resistance, sleep apnea, genetic susceptibility, decreased kidney perfusion, catecholamine-secreting tumors of the adrenal glands, Adrenal hypertension with aldosterone-induced sodium retention, hypercalcemia, coarctation of the aorta, diet, medications, arterial stiffening that accompanies age. When the hypertension is secondary to another medical condition, it is generally prudent to treat that primary condition first. However, regardless as to whether the hypertension is primary or secondary, the blood pressure typically is subject to modification by several different approaches, including changing (typically via medications) fluid excretion, heart activity, and blood vessel contraction.
Medications for blood pressure control are frequently not effective, or present troublesome side effects when raised to a therapeutic dose. Depending on the class of medication, such side effects range from the inconvenient to the deadly, and may include constipation, edema, exercise intolerance, impotence, orthostasis, syncope and stroke.
Baroreceptors in the human body detect the pressure of blood flowing through them, and send messages to the central nervous system to increase or decrease total peripheral resistance and cardiac output, and thereby change blood pressure. There are baroreceptors in locations including the arch of the aorta, and the carotid sinuses of the left and right internal carotid arteries. Baroreceptors act to maintain mean arterial blood pressure to allow tissues to receive the right amount of blood. Neural signals from the baroreceptors are processed within the brain, in order to maintain physiological homeostasis. For example, the solitary nucleus and tract within the medulla and pons, receive signals from the carotid and aortic baroreceptors. In response to a perception of low blood pressure, the solitary nucleus sends out signals leading to hypertension, tachycardia and sympatho-excitation. In response to a perceived state of high blood pressure, the opposite physiological response is triggered.
Ultrasound is mechanical vibration at frequencies above the range of human hearing, or above 16 kHz. Most medical uses for ultrasound use frequencies in the range of 1 to 20 MHz. Low to medium intensity ultrasound products are widely used by physicians, nurses, physical therapists, masseurs and athletic trainers. The most common applications are probably warming stiff, swollen or painful joints or muscles in a manner similar to a hot compress, but with better penetration. Many ultrasound products have been commercially available for years, including consumer-grade massage machines. By design, the power on these devices is designed to be too low to warm or otherwise affect structures more than two centimeters or so below the surface. Also, these devices are not capable of tight focus at depth, nor are there means for accurately aiming such devices toward precise structural coordinates within the body. As ultrasound of sufficient strength can cause pain in peripheral nerves with each pulse, it is likely that mechanical perturbations caused by ultrasound can cause nerves to discharge. Similar effects may be produced by vibrations within the frequency range of human hearing (“sound”), and below the frequency range sensitivity of human hearing “sub-sound”.
Pulsed electrical currents are known to modify the function of nerves. At higher currents, this appears to be the result of direct nerve depolarization when the electrical gradient across a neural membrane is increased due to the passage of the electrical pulses. Examples of commercially available devices like this include the Activa deep brain stimulation system by Medtronic, Inc. Minneapolis, Minn. At lower currents, the firing thresholds of electrically excitable cells may be raised in response to steady sub-threshold stimulation. Examples of such devices include any of numerous commercially available transcutaneous electrical nerve stimulation (TENS) devices.
Static low-level direct electrical current has been shown to modify nerve function of both peripheral and central nerves. Unlike high current pulsatile forms of stimulation, the current does not directly drive action potentials. Instead, the flow of constant current between two distant poles modifies nerve function in ways that are not well understood, but which have been empirically documented. One example of such a technology is transcranial direct current stimulation (TDCS). It is hypothesized that membrane sensitivity and post-synaptic potentials are altered by the static presence of the electric field.
Pulsed magnetic fields are also known to modify nerve function in both peripheral and central nerves. Pulsed magnetic fields act chiefly by inducing electrical currents in conductive media through which the pulses pass. These transient induced electrical currents may serve to depolarize electrically excitable cells including neurons. Examples of pulsed magnetic fields that are known in the art include commercially available magnetic nerve stimulators such as the Magstim Rapid2 by Magstim Ltd, (Wales, UK).
Static magnetic fields may also modify nerve function, although the physiological mechanisms behind this approach are less clear. Static magnetic fields may influence the distribution of electrical charges on or within cellular membranes, as well as within areas of the electrically conductive cellular milieu. Protein folding and 3-configuration may also be influenced by static magnetic fields.
Baroreceptors are specialized nerve cells that serve to regulate blood pressure. They are found in the arch of the aorta, and in the carotid sinuses bilaterally, typically at and just distal to the carotid bifurcation. Baroreceptor cells are stretch-sensitive, and are increasingly activated as arteries expand under the force of blood pressure within that vessel. When blood pressure falls, for example, when a patient becomes dehydrated, baroreceptor-firing rate decreases. Signals from the carotid baroreceptors are sent through the glossopharyngeal nerve, and are relayed to the medulla, where they trigger reflexes that serve to lower blood pressure, for example by decreasing heart rate.
Massage or deep pressure to the carotid baroreceptors is a long-known method of abruptly lowering blood pressure. In recent years, surgically implantable neurostimulation devices have been developed to lower blood pressure by delivering pulsed electrical currents to the carotid baroreceptors (CVRx, Inc., Minneapolis, Minn.).
It would be desirable to non-invasively activate carotid baroreceptors using non-invasively delivered, benign and inexpensive energy forms such as ultrasound, magnetic pulses or by electrical current, so as to lower systemic blood pressure in hypertensive individuals.
Described herein are methods and devices for treating hypertension by non-invasive techniques. In particular, described herein are devices and methods for treating hypertension by the application of non-invasively delivered energy to vascular baroreceptors (for example in the carotid sinuses of the neck). Delivery of this energy serves to lower blood pressure in hypertensive patients. For example, described herein are methods in which energy sources described in various embodiments include the use of sound, ultrasound, direct (DC) electrical current, pulsed electrical current, pulsed magnetic fields, and static magnetic fields. Delivery of the pulses is preferably accomplished through though patch-like transducers that are affixed to the skin, for example the upper anterior neck.
The present invention is useful for enabling practical application of non-invasive stimulation of the arterial baroreceptors for the modification of blood pressure. In the context of this invention, the terms “sound”, “subsound” and “ultrasound” are used interchangeably. Additionally, the subsonic frequencies are subsumed under the term “sound”. While the present invention is not necessarily limited to such applications, various aspects of the invention may be appreciated through a discussion of various examples using this context. Various embodiments of the present invention are directed toward the use of ultra sound to produce carotid baroreceptor stimulation in a living subject. Sound waves are used to stimulate a first portion of neurons. Sound waves may also be used to generate electrical currents via specially designed devices. Such a device, if implanted surgically in proximity to a group of neurons that one wishes to affect, will serve to electrically stimulate those neurons when in receipt of sound waves. Additionally, magnetic coil stimulators may be surgically implanted adjacent to the carotid sinus, with the closer proximity of coil to baroreceptor serving to permit baroreceptor stimulation at lower power outputs from the stimulating device. While specific embodiments and applications thereof involve sound waves are described as being in the ultrasound frequency range, they need not be so limited. Aspects of the present invention employ frequencies outside of the ultrasound frequency range, including sonic and sub-sonic frequencies. In accordance with one embodiment, the present invention is directed to a method for modifying neural transmission patterns between neural structures. The method involves producing and directing sound waves toward a first targeted neural structure, controlling characteristics of the sound waves at the first target neural structure with respect to characteristics of sound waves. The present invention also regards use of low-level electrical current has been shown to modify nerve function. Unlike high current pulsatile forms of stimulation, the current does not directly drive action potentials. Instead, the flow of constant current between two distant poles modifies nerve function in ways that are not well understood, but which have been empirically documented. One example of such a technology is transcranial direct current stimulation (TDCS). Another suitable approach is pulsed electrical currents, for example that used in transcutaneous electrical nerve stimulation (TENS) units, which are commercially manufactured by numerous companies. It is hypothesized that membrane sensitivity and post-synaptic potentials are altered by the static presence of the electric field. Whether ultrasonic, magnetic or electrical stimulation is employed, the systems blood pressure is measured and the rate of stimulation applied is decreased or increased as appropriate to keep the systemic blood pressure in the desired range.
In
In
In
In
The various embodiments described above are provided by way of illustration only and should not be construed to limit the invention. Based on the above discussion and illustrations, those skilled in the art will readily recognize that various modifications and changes may be made to the present invention without strictly following the exemplary embodiments and applications illustrated and described herein. For instance, such changes may include variations in the duration and frequency of the stimulation between target areas.
“Device and Method for Treating Hypertension via Non-Invasive Neuromodulation” Partsch M J, Schneider, M. B. U.S. Patent application No. 60953191
DiLorenzo. U.S. Pat. No. 7,231,254. Jun. 12, 2007.
Kieval, Robert S., et al. U.S. Patent Application 20060293712, Dec. 28, 2006.
Prior Art Database. Citation IPCOM # 000156711D
U.S. Pat. No. 5,727,558
U.S. Pat. No. 6,050,953
U.S. Pat. No. 6,658,298
U.S. Pat. No. 6,393,324
U.S. Pat. No. 6,178,352
U.S. Patent Application No. 20040102818
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/953,191, filed on Jul. 31, 2007, titled “DEVICE AND METHOD FOR TREATING HYPERTENSION VIA NON-INVASIVE NEUROMODULATION”, and U.S. Provisional Patent Application Ser. No. 61/018,449, filed on Jan., 1, 2008 entitled “DEVICE AND METHOD FOR TREATING HYPERTENSION BY SONIC STIMULATION AND DIRECT ELECTRICAL CURRENT TO VASCULAR BARORECEPTORS.”
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/071664 | 7/30/2008 | WO | 00 | 6/17/2010 |
Number | Date | Country | |
---|---|---|---|
60953191 | Jul 2007 | US | |
61018449 | Jan 2008 | US |