The invention relates generally to the field of archery, specifically to arrow nocks and crossbow bolt ends, and still more specifically, to illuminated arrow flocks and bolt ends.
Various forms of lighted nocks, or crossbow bolt ends (as the functionally equivalent device is known when utilizing a crossbow) are known in the art, but all suffer from certain drawbacks. Although arrow flocks and crossbow bolt ends are distinguished in their general shape, both are collectively referred to herein as a “nock” for convenience of description.
A lighted arrow nock allows an archer to he able to more easily see the arrow in flight, see the point of arrow impact, and recover the arrow after a shot. Being able to observe the arrow in flight and see the point of impact helps the archer to diagnose problems with shooting form or bow setup and make appropriate adjustments. Perhaps more importantly, a lighted arrow nock allows an archer to more easily recover the arrow.
Bow hunters can especially benefit from using an arrow with a lighted nock device. Recovering an arrow that was shot at an animal is critical in the ethical harvest of animals, and a lighted nock device allows a how hunter to recover the arrow and animal more easily. Upon recovering the arrow, the bow hunter can diagnose many things about the shot by inspecting the arrow. The presence of blood or other debris on the arrow, or lack thereof, gives many clues as to if the arrow impacted the animal in a desired vital area or not, or ii the arrow even hit the animal at all.
Some previous lighted nock designs have utilized a chemical light source or have been composed of luminescence material, such as U.S. Pat. No. 4,856,792, issued Aug. 15, 1989 to Philip M. Hardison; U.S. Pat. No. 6,364,499, issued Apr. 2, 2002 to Thomas M. Jones; and U.S. Pat. No. 7,211,011 issued May 1, 2007 to Warren Sutherland. To activate the chemical light source, a vial or container must be broken to allow the mixing of chemicals to produce a light emitting chemical reaction. The nock or vial cannot be turned off and must be disposed of because it had to be broken to allow the chemicals to mix. The largest drawback to these designs is the amount of light emitted from these chemical sources is not bright enough to be effective. Additionally, these designs add weight and cost to the arrow but do not provide enough light to see the arrow in flight or to see the point of arrow impact. The Hardison and Sutherland devices require the vial to be broken before the bow is shot, either before the nock is assembled to the arrow or when the nock is placed onto the bowstring. A bow hunter needs to hunt prepared to release an arrow at an animal with little notice. To be prepared for a quick shot, the hunter should break these vials every time they hunt, but often bow hunters never get an opportunity to shoot while hunting so these broken vials go to waste. If the hunter tries to conserve the nock or vial by waiting to break the vial until they see an animal they want to shoot, then they risk alerting the animal with too much noise or movement or taking too much time installing it and thus losing the shot opportunity. Whichever method the hunter tried to activate, because they must he activated prior to the shot, it is possible for the animal to see the light coming from the device and spot the hunter before the hunter can draw and shoot the how and arrow. The Jones device allows for breaking of the vial during the shot and not prior to the shot, but still suffers from not being able to be turned off when desired and the amount of light is not generally sufficient to see the arrow in flight, the point of arrow impact, or to assist in recovering the arrow.
Some lighted nock designs have embedded battery powered lamps or light emitting diodes (LEDs). For example, U.S. Pat. No. 6,123,631, issued on Sep. 26, 2000 to Jeffery Allen Ginder, utilizes a battery-powered light emitting diode (LED). This lighted nock device is always turned on unless it is nocked on the bowstring or unless a special cap is attached to the nock to turn off the LED. The switch used in the Ginder device is a non-latching switch that is always in the closed or “on” position and either the bowstring or the special cap opens the switch to turn oft the LED. The cap can easily become lost and quickly drain the battery rendering the nock useless. The cap is extra weight to carry on the arrows in your quiver and extra hassle to worry about. When removing the cap, the switch will close and turn on the LED before it is ever mounted on the bow where the bowstring opens the switch and turns off the LED again. This may be acceptable for target archers, but for how hunters this is not desirable as an animal could be alerted by the light coming from the device and spot the hunter. If a bow hunter needed to make a quick second shot he would have to remove the cap from his second arrow before being able to install the second arrow which would waste time. After the arrow is shot and the arrow strikes an animal or the ground, the LED could easily be turned off if animal tissue, leaves, or any other debris becomes lodged in the flock, thus opening the switch.
U.S. Pat. No. 6,390,642, issued on May 21, 2002 to Robert Wayne Simonton, also utilizes a battery powered LED and has a switch that is responsive to a magnetic field. This design requires a separate magnet to be attached to the bow which not only adds cost and weight, but the magnet can also be lost in the field rendering the lighted nock device useless. The system also requires a printed circuit board to house the electronics to sense the magnetic field and switch the LED on or off. The circuit must remain on which can drain the battery when not in use. The required electronics add unnecessary weight to the arrow and drive up the cost of the device.
U.S. Pat. No. 6,736,742, issued on May 18, 2004 to Curtis Lee Price and Ivan Eric Price, also uses a battery powered LED, but its switching mechanism requires critical contact with the arrow shaft to activate the LED which can lead to a lack of reliability. The nock of the Price device has two metal contact points that are forced into the rear of the arrow shaft during the release of the bow. The arrow shaft requires special preparation to ensure that metal contacts touch the shaft correctly, which is often done improperly or completely overlooked by archers resulting in unreliable activation. The Price device also requires the arrow to be electrically conductive and thus will not work with fiberglass, wood, or other nonconductive arrow materials. The largest drawback to the Price design is that often the lighted nock will turn off upon impact due to vibrations from the impact causing the metal contacts to lose contact with the rear of the arrow. Because the nock must slide in and out to turn on and off, respectively, the nock and the arrow wear on each other and become loose over time, compounding the problem of the device turning off inadvertently during impact. As the metal contacts are repeatedly forced into the arrow shaft, the arrow shaft is gouged by the metal contacts, creating a problem for the critical electrical contact between the metal contacts and the arrow shaft.
U.S. Pat. No. 7,021,784, issued Apr. 4, 2006 to Joseph L. DiCarlo, is another lighted nock device which uses battery powered LEDs. This device also requires the nock to slide hack and forth in the arrow against a special backstop, which must be installed in the arrow before the lighted nock device can be used. The archer must glue the backstop into the rear of his arrow at a precise depth or the LED will not activate correctly. The backstop and the glue add unnecessary weight to the arrow. Because the nock must slide in and out of the arrow to be turned on and to be turned off, respectively, the nock and the arrow wear on each other and become loose over time.
What is needed is an illuminated arrow nock that will turn on upon release of a bowstring, is more dependable, and does not require any extra parts, assembly, or preparation work by the archer.
In contrast to the above-described conventional approaches, embodiments of the invention are directed to an illuminated nock assembly that helps an archer see an arrow during flight, see the point of arrow impact, and recover the arrow. Furthermore, the present invention allows for a more robust and reliable nock that saves weight and reduces cost relative to prior art lighted nock designs.
Embodiments of the present invention are equally applicable to arrow nocks used with conventional longbows and recurve and compound bows, as well as to bolt ends used with crossbows and crossbow bolts.
One embodiment of the invention is directed to a nock device comprising: a nock body adapted to receive a bowstring in a first portion thereof and a second portion thereof when the bowstring is released, and a light source assembly comprising a power source, a light source (such as an LED), and a switch, wherein at least a portion of the light source assembly protrudes from the nock body and contacts the bowstring when the bowstring moves into the second portion on release of the bowstring.
In another aspect, a method for illuminating a nock is disclosed, the method comprising: providing nock body adapted to receive a bowstring in a first portion thereof and a second portion thereof when the bowstring is released, and a light source assembly comprising a power source, a light source (such as an LED), and a switch; drawing the bowstring; and releasing the bowstring to force the switch to a closed position, thereby illuminating the nock,
The foregoing and other objects, features and advantages of the invention will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
While the invention is subject to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and the accompanying detailed description. It should be understood, however, that the drawings and detailed description are not intended to limit the invention to the particular embodiments. This disclosure is instead intended to cover all modifications, equivalents, and alternatives falling within the scope of the present invention as defined by the appended claims.
One or more embodiments of the invention arc described below. It should be noted that these and any other embodiments are exemplary and are intended to be illustrative of the invention rather than limiting.
The invention relates to the field of archery and the problem of being able to see an arrow in flight, being able to see the point of arrow impact, and most importantly, finding an arrow after the shot. More specifically, this invention relates to an illuminated arrow nock assembly that helps an archer see an arrow during flight, see the point of arrow impact, and recover an arrow with an improved design which is not only more dependable but also saves weight and reduces cost.
In some exemplary embodiments, power source 50 is a tubular dry cell battery, such as (but not limited to) a common alkaline, zinc-air, lithium ion, or other small cell currently known or in use today.
In some embodiments, nook body 20, first portion or attachment portion 30, second portion or activation portion 32, and arrow attachment portion 40 are formed of a monolithic piece of rigid material, such as (but not limited to) plastic, polycarbonate, compounds thereof and the like, all of which are well known in the art for their suitability for arrow nock material. Alternatively, nock body 20 may be formed from one or more pieces of rigid material and then joined together via conventional means. Such forming and/or joining may he accomplished through any methods known in the art for producing plastic materials. Accordingly, the method of making the nock body is not further discussed herein.
The principles of this improved lighted nook are equally applicable to all forms of transparent or translucent materials. In addition, opaque materials may also be used when slots, holes, or other apertures are provided to allow the light to escape. Accordingly, the present invention is not limited to any type of material or fabrication method for producing the device.
In some embodiments, the light source assembly may form an integrated package. Various other sources of these components, and alternate arrangements are possible. Although separate power source, light source, and switch are described, those skilled in the art will realize that integrated assemblies of some or all of these components may also he used. Accordingly, the concepts, apparatus, and techniques described herein are not limited to any particular packaging of these components.
In an alternate embodiment, the light source assembly can be reversed or arranged in a different order so that a component other than the switch makes contact with the bowstring upon release. For example, but not by way of limitation, a portion of the LED could protrude into the second portion, thus resulting in the motion of the bowstring forcing the LED to close the switch. Furthermore, all or parts of the light source assembly may be located anywhere within the arrow shaft or the nock body, as long as the movement of the released bowstring causes the switch to close.
Although the functionality of light source 72 may, in some exemplary embodiments, be provided by a light emitting diode (LED), those skilled in the art will realize that light sources other than LEDs may also he used. Accordingly, the concepts, systems, and techniques described herein are not limited to any particular type of light source.
In the embodiment illustrated in
In an alternate embodiment of the lighted nock device shown in
In yet another alternate embodiment of the lighted nock device shown in
In other embodiments, the lighted nock device may comprise a mechanically-maintained type of switch, also known as a latching, push button, or push on-push off switch, where the switch is depressed into the nock to turn on the light source and depressed again to turn off the light source. These mechanically-maintained type switches operate similarly to a ballpoint pen click action or a push on/off cabinet latch. The switch may be depressed by the force of the bowstring making contact with the switch alter the bowstring is released. With this type switch, the light source remains on until the switch is depressed again to move the switch hack to the open position. In these embodiments, the switch may be depressed by making contact with a bowstring or any other device or tool that fits in the bowstring-receiving slot. In such an embodiment, a reset aperture is not required to turn the light source off. In a further alternate embodiment, the lighted nock device may comprise an electronically-maintained (or electronic) switch as an alternative to a mechanically-maintained/mechanical switch. In such a device, the bowstring would make contact with a momentary type switch configured to send a signal to an electrical circuit configured to receive the input and to toggle the light source on and off. The electronic switch may further comprise a piezoelectric element that generates an electrical impulse that is sent to the electronic circuit configured to receive the input to toggle the light source on and off. In such an embodiment, a reset aperture is not required to turn the light source off.
In such embodiments, in order to turn off the lighted nock device, the archer may push switch 170 again with any slender tool which fits inside the slot 125 so the switch contacts open and the light source is turned off, The archer may now reuse the lighted nock device 110, In such an embodiment, a reset aperture is not required in nock body 120 to turn the light source off.
In an alternate embodiment of the lighted nock device illustrated in
A method for using the lighted nock device, according to one embodiment of the present invention, is illustrated in the flowchart of
Alternatively, a lighted nock device may be used as illustrated in the flowchart of
In some embodiments, the lighted nock device may he configured for use on a crossbow. Arrows used on crossbows are known as bolts and nocks used on bolts arc known as bolt ends. Such “bolt end nocks” (as that term is used herein) generally differ from standard arrow nocks in that, rather than having a deep slot (as for example, slot 25 of
In one exemplary embodiment, the switch may comprise a slide switch disposed to slide toward bolt attachment portion when the crossbow bowstring is released, thereby closing the electrical circuit between the light source and the power source. One of ordinary skill in the art will appreciate that other types of switches, as noted above and without limitation, are equally useable in this application. Accordingly, embodiments of the invention adapted to use in a bolt end are not limited as to the type of switch employed.
In some embodiments of the lighted bolt end nock shown in
In yet another alternate embodiment of the lighted bolt end nock shown in
In an alternate embodiment of the lighted bolt end device illustrated in
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The benefits and advantages that may be provided by the present invention have been described above with regard to specific embodiments. These benefits and advantages, and any elements or limitations that may cause them to occur or to become more pronounced are not to be construed as critical, required, or essential features of any or all of the claims. As used herein, the terms “comprises.” “comprising,” or any other variations thereof, are intended to he interpreted as non-exclusively including the elements or limitations which follow those terms. Accordingly, a system, method, or other embodiment that comprises a set of elements is not limited to only those elements, and may include other elements not expressly listed or inherent to the claimed embodiment.
While the present invention has been described with reference to particular embodiments, it should be understood that the embodiments arc illustrative and that the scope of the invention is not limited to these embodiments. Many variations, modifications, additions, and improvements to the embodiments described above are possible. It is contemplated that these variations, modifications, additions, and improvements fall within the scope of the invention as detailed within the following claims.
This application is a continuation application of co-pending U.S. patent application Ser. No. 13/101,137, filed May 4, 2011, which claims priority to U.S. Provisional Patent Application No. 61/406,999, filed on Oct. 26, 2010. U.S. patent application Ser. No. 13/101,137 and U.S. Provisional Patent Application No. 61/406,999 are both incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61406999 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13101137 | May 2011 | US |
Child | 14147043 | US |