Device and method for immobilizing patients for breast radiation therapy

Information

  • Patent Grant
  • 8210899
  • Patent Number
    8,210,899
  • Date Filed
    Tuesday, November 20, 2007
    16 years ago
  • Date Issued
    Tuesday, July 3, 2012
    12 years ago
Abstract
According to the improved systems and methods described herein, a patient may be immobilized so that one or both breasts are returned to a known position. Additionally, the improved systems and methods reduce respiratory movement of the breasts. Thus, the immobilization devices and techniques described herein provide accurate and reproducible breast positioning while simultaneously reducing respiratory motion.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to devices and methods of immobilizing patients for radiation therapy.


2. Description of the Related Art


Whole breast radiotherapy is a treatment that may follow local excision (lumpectomy) of invasive breast cancer. One rationale for adjuvant radiotherapy is to reduce the recurrence rate of the breast cancer by eliminating residual foci of cancer in the region of the primary tumor as well as presumed occult multicentric disease in remote areas of the breast. However, the majority of cancer recurrences in the same breast after breast radiation therapy are in the same quadrant as the initial tumor. In fact, some 80-90% of breast cancer recurrences after breast radiation therapy occur in the immediate vicinity of the lumpectomy scar. Accordingly, treatment directed more specifically at the region of the breast involved with cancer may be equally efficacious in minimizing breast recurrence.


SUMMARY OF THE INVENTION

Neither this summary nor the following detailed description purports to define the invention. The invention is defined by the claims.


In one embodiment, a method of forming a support structure for immobilizing a patient in a prone position for delivery of radiation to at least one breast of the patient comprises positioning a support brassier on the patient, the support brassier comprising a semi-rigid cup sized to engage a breast of the patient, positioning the patient in a prone position in a support structure so that the cup is proximate to, but not in contact with, a bottom surface of the support structure. The method further comprises placing a malleable substance around the cup so that the substance substantially occupies a space between the bottom surface of the support structure and the cup with the patient positioned in the support structure and hardening the malleable substance that is placed around the cup so that the malleable substance becomes a substantially rigid breast immobilization device comprising contours corresponding with the cup.


In one embodiment, a device for immobilizing a patient for delivery of radiation to a breast of the patient comprises a support structure for supporting a patient in a prone position and a breast immobilization device comprising contours that substantially define a negative relief image of a cup that is fitted over a breast of the patient, the breast immobilization device being positioned within the support structure so that the cup engages and is supported by the breast immobilization device.


In one embodiment, a method of immobilizing a patient for radiation therapy to the patient's chest comprises positioning a breast immobilization device within a support structure, the breast immobilization device comprising contours that are custom-fit to engage with at least one of a patient's breasts and positioning the patient in a prone position on the support structure so that the at least one breast engages with the contours of the support structure.


In one embodiment, a device for immobilizing a patient for delivery of radiation to a breast of the patient comprises means for supporting a patient in a prone position and means for immobilizing a breast of the patient during delivery of radiation to the breast, the immobilization means being supported by the supporting means, wherein the immobilization means is configured to reproducibly position the breast for each of a plurality of radiotherapy treatments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of one embodiment of a radiation therapy system.



FIG. 2A is an isometric drawing of an exemplary patient support structure.



FIG. 2B is an isometric drawing of a breast immobilization device in the support structure of FIG. 2A, where the breast immobilization device is configured for immobilizing a left breast of a patient for radiation treatment.



FIG. 3A illustrates an exemplary support brassier that comprises a cup for supporting a breast that will receive radiation treatment.



FIG. 3B is a side view of an exemplary cup that may be used to support a breast.



FIG. 4 is a flowchart illustrating an exemplary method of fabricating a breast immobilization device and using the immobilization device in repeatedly immobilizing a patient for radiation therapy.



FIG. 5 is a flowchart illustrating an exemplary method of fabricating a breast immobilization device.



FIG. 6 is a flowchart illustrating an exemplary method of immobilizing a breast for radiation therapy.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the invention will now be described with reference to the accompanying Figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.



FIG. 1 is a side view of one embodiment of a radiation therapy system 100. The exemplary radiation therapy system 100 is designed to deliver therapeutic radiation doses to a target region within a patient 108, such as a cancer patient 108, for treatment of malignant or other conditions from one or more angles or orientations with respect to the patient 108.


In one embodiment, the radiation therapy system 100 is designed to deliver therapeutic doses of proton beams to a target area within the patient. Additional details on the structure and operation of such a proton radiation system can be found in U.S. Pat. No. 4,870,287, titled MULTI-STATION PROTON BEAM THERAPY SYSTEM, which is incorporated herein in its entirety by reference. In other embodiments, the system 100 is designed to deliver any other clinically suitable form of radiation known in the art, such as, for example, x-rays, gamma rays, hadrons, neutrons, etc.


In certain embodiments, the radiation therapy system 100 may include a patient treatment station and a gantry 102 which includes a generally hemispherical or frustoconical support frame for attachment and support of other components of the radiation therapy system 100. Additional details on the structure and operation of the gantry 102 can be found in U.S. Pat. Nos. 4,917,344 and 5,039,057, both titled ROLLER-SUPPORTED, MODULAR, ISOCENTRIC GENTRY AND METHOD OF ASSEMBLY, which are each incorporated by reference in their entireties.


The exemplary system 100 also comprises a nozzle 110 which is attached and supported by the gantry 102 such that the nozzle 110 may revolve relatively precisely about a gantry isocenter 120. The system 100 comprises a radiation source 106 delivering a therapeutic beam, such as a beam of accelerated protons, which pass through and are shaped by an aperture positioned on a distal end of the nozzle 110. An exemplary beam path is represented by numeral 146. In one embodiment, the aperture may be adjusted according to a patient's particular prescription of therapeutic radiation therapy. In other embodiments, alternative gantry configuration may be used in order to direct a radiation beam towards the patient 108.


In the embodiment of FIG. 1, the system 100 also comprises one or more imagers 112 which, in this embodiment, are retractable with respect to the gantry 102 between an extended position and a retracted position. In the illustration of FIG. 1, the imager 112 is shown in the extended position. In one embodiment, the imager 112 comprises a solid-state amorphous silicon x-ray imager which can develop image information such as from incident x-ray radiation that has passed through a patient's body. The system 100 may also comprises an x-ray source configured to emit appropriate x-ray radiation which passes through interposed patient tissue so as to generate a radiographic image of the interposed materials via the imager 112. The retractable aspect of the imager 112 provides the advantage of withdrawing the imager screen from the beam path of the radiation source 106 when the imager 112 is not needed thereby providing additional clearance within the gantry 102 enclosure as well as placing the imager 112 out of the path of potentially harmful emissions from the radiation source 102 thereby reducing the need for shielding to be provided to the imager 112. In this embodiment, the imagers and radiation sources 130 are arranged orthogonally to provide radiographic images of the patient from two directions.


The exemplary system 100 also comprises a patient positioner 114 and a patient support structure 130, also referred to as a pod 130, attached to the patient positioner 114. In one embodiment, the patient positioner 114 is adapted to, upon receipt of appropriate movement commands, position the patient support structure 130 in multiple translational and rotational axes and may be capable of positioning the patient support structure 130 in three orthogonal translational axes (e.g., longitudinal, vertical, and lateral) as well as three orthogonal rotational axes (e.g., pitch, roll, and yaw) so as to provide a full six degrees freedom of motion to placement of the patient support structure 130. In the illustration of FIG. 1, a patient is positioned in a supine (face-up) position on the support structure 130.


In certain embodiments, such as will be described in further detail below, an immobilization device may be positioned in the support structure 130 and shaped to interface with the contours of a specific patient's body. Thus, in the embodiment of FIG. 1, an immobilization device may be inserted between the support structure 130 and the patient 108. In one embodiment, the immobilization device comprises one or more beanbags or foam bead cushions, such as the VAC-LOK™ foam bead cushions manufactured by Med-Tec, Inc. In another embodiment, the immobilization device comprises a two-part expandable foam, such as one or more foam products manufactured by Med-Tec, Inc, quick setting polymeric foam, or other suitable immobilization substances. In other embodiments, the immobilization device comprises pillows, cushions, and/or bean-bags, for example. The use of an immobilization device that is formed to engage the contours of a patients body may advantageously reduce the patient's movement, allowing the radiation treatment plan to reduce an amount of tissue surrounding a target area that is irradiated.


While the following description periodically refers to the patient positioning system 100, the improved devices and methods described herein are usable with various other patient positioning systems. For example, the devices and methods described herein are usable with other automatic, semi-automatic, manual controlled with direct interface to the positioner controller, or fully manual (e.g., releasing a brake and moving each device axis with a hand crank), positioning systems. Thus, the systems and methods discussed herein are suitable for use with any other radiotherapy treatment devices and facilities.


The radiation system 100 may be used to deliver radiation treatment to any portion of a patient, including a patient's breast or breasts. While the system 100 may be used to provide whole breast radiation to the patient, systems and methods that provide partial breast radiotherapy, thereby reducing the negative effects of radiation on the entire breast, may provide effective adjuvant radiotherapy to a cancer (or other treatment) region in a patient's breast, while minimizing recurrence of cancer in the treated breast. More particularly, by confining treatment to a limited volume of breast tissue adjacent to the treatment region of the breast, such as a lumpectomy cavity, the amount of normal tissue exposed to radiotherapy can be reduced, potentially reducing acute and chronic toxicity. In addition, the smaller target volumes may allow use of hypofractionated treatment schedules, which decrease the time and inconvenience of breast conservation therapy, possibly minimizing scheduling problems with systemic chemotherapy, and potentially improving outcome by reducing delay to local therapy. Partial-breast radiation therapy may include post-operative interstitial brachytherapy, intracavitary brachytherapy to lumpectomy cavity, and/or external beam radiotherapy with photons utilizing 3-D conformal techniques, for example, among other known or later developed techniques.


Proton therapy may possess characteristics that prove useful for performing partial breast irradiation. In comparison to three-dimensional conformal radiation therapy with x-rays, the inherently superior depth dose characteristics (Bragg peak) minimizes the integral dose delivered to surrounding normal tissues, particularly the lung, heart, chest wall and treatment breast. For example, the physical properties of proton beams allow precise beam stopping within tissue at any given depth and shape, which may allow a reduction in an integral dose delivered to normal tissues. Furthermore, this allows highly conformal doses to be delivered with a very uniform dose distribution, eliminating “hot spots” from within the treatment region. Additionally, proton therapy is non-invasive and does not require disruptions to the skin of the breast, which may lead to an improved cosmetic outcome. Accordingly, immobilization devices and methods described herein may be used in conjunction with proton therapy planning and delivery, as well as any other type of radiation planning and delivery devices.


As those of skill in the art will recognize, the level of immobilization of a patient and, more specifically, of a treatment region of the patient, is determined based at least partly on a size of the treatment region that is irradiated. For example, if a patient is completely immobilized so that there is no movement of the treatment region, irradiation may be targeted to only the treatment region without including any of the surrounding tissue in the treatment plan. Thus, an irradiation area in a partial breast treatment plan may be reduced through improved immobilization of the breast.


Depending on the patient, the breasts move from a little to a lot as the patient breaths. Accordingly, even if the treatment breast is immobilized, there is still a certain amount of movement of the breast due to movement of the patient's lungs caused by normal breathing. Accordingly, the treatment region of a breast may be further reduced if movement of the breasts can be reduced.


According to the improved systems and methods described herein, a patient may be immobilized so that a treatment breast is accurately returned to a known position for each radiotherapy treatment. Additionally, the improved systems and methods reduce respiratory movement of the breasts. Thus, the immobilization devices and techniques described herein provide accurate and reproducible breast positioning while simultaneously eliminating respiratory motion. By providing accurately repeatable breast positioning, as well as reduction in respiratory motion, the systems and methods described herein allow treatment of a reduced treatment region of the patient's breast.



FIG. 2A is an isometric drawing of an exemplary patient support structure 200 and FIG. 2B is an isometric drawing of a breast immobilization device 210 in the support structure 200, where the breast immobilization device 210 is configured for immobilizing a left breast of a patient for radiation treatment.


In the embodiment of FIGS. 2A and 2B the breast immobilization device 210 comprises two-part expandable foam that has been hardened around a portion of a patient in a prone (face-down) position. For example, the patient may be positioned in the support structure 200 with a slight gap between the breasts and a bottom surface 205 of the support structure 200. The two-part foam may then be poured, or otherwise placed, around the chest region of the patient and allowed to harden around the breasts so that the contours of the breasts are mirrored in negative relief in the hardened foam. Accordingly, the patient's breasts may be more fully supported by the contoured breast immobilization device 210 compared to only the support structure 200, for example. Additionally, because the immobilization device 210 is fitted with the patient in the prone position, respiratory movement of the treatment breast is minimized when compared to respiratory movement that is experienced when a patient is in the supine position. Thus, the breast immobilization device not only allows the patient to be reproducibly positioned within the support structure 200 using the custom-molded immobilization device 210, but the prone positioned patient exhibits less respiratory movement of the treatment breast.


In one embodiment, prior to forming the breast immobilization device 210, the patient's shoulders, abdomen, and/or pelvis are supported by pillows, beanbags, foam structures, such as foam bead vacuum cushions, and/or other support structures. In this embodiment, when the patient is properly positioned on the foam bead vacuum cushions, for example, an opening around the chest area is formed, which may be filled with two-part expandable foam, for example, in order to form the breast immobilization device 210. In one embodiment, the air may be removed from the vacuum cushions prior to placement of the two-part foam around the chest area, in order to provide a substantially rigid immobilization for the head, shoulder, abdomen, and/or pelvis areas, while leaving an open space between the breasts and the support surface 200. Thus, after formation of the immobilization device 210 around the patient's chest area, the support structure 200 is filled with one or more pillows, beanbags, or foam structures that support the legs, head, and arms of the patient while the chest area of the patient is supported by a breast immobilization device 210 comprising expandable foam, or like material. In one embodiment, the breast immobilization device 210 may be formed of one or more foam bead vacuum cushions or other materials that suitably conform to the contours of a patient's breast(s) and provide a rigid or semi-rigid support structure.



FIG. 3A illustrates an exemplary support brassier 300 that comprises a cup 310 for supporting a treatment breast of a radiotherapy patient. In one embodiment, the patient wears the support brassier 300 in order to further immobilize the treatment breast and/or repeatedly reposition the treatment breast in a substantially similar position. In one embodiment, the cup 310 is formed of rigid or semi-rigid material, such as plastic. In certain embodiments, the cup 310 may be replaced with other cups of various sizes in accordance with a breast size of the patient. For example, a series of cups may be interchangeably attached to the strap 330 so that cup sizes corresponding to varying breast sizes are available. In one embodiment, the cup 310 is configured to position the treatment breast in a reproducible shape. FIG. 3B is a side view of the exemplary cup 310.


In the embodiment of FIG. 3A, the support brassier 300 also comprises a compression material 320 that covers a breast that will not receive radiation treatment, which is referred to herein as the “contralateral breast.” Radiation treatment plans typically attempt to reduce radiation that is delivered to areas outside of the radiation treatment region, such as the contralateral breast that is not intended to receive radiation treatment. Thus, the compression material 320 advantageously compresses the contralateral breast and positions the compressed breast further from a path of the radiation beam that is delivered to the treatment breast that is positioned in the cup 310. In one embodiment, the compression material 320 comprises cloth that is sufficiently strong to significantly flatten the contralateral breast under the compression material 320 when the support brassier 300 is tightened around the patient. In certain embodiments, the support brassier 300 may comprise two support cups, such as cup 310, to support both breasts of a patient in reproducible positions. In other embodiments, the cup 310 may be removed from the brassier 300, such as in the illustration of FIG. 3B, and be coupled with the two-part foam so that the patient's treatment breast engages the cup only when two-part foam is adjacent the patient.


With reference again to FIG. 2B, the breast immobilization device 210 is shown with a breast contour 220 that corresponds with a shape of the cup 310. In this embodiment, the patient was fitted with a support brassier having a cup 310 over the left breast so that when the breast immobilization device 210 was formed, the shape of the cup 310 was mirrored in the immobilization device 210. As illustrated in FIG. 2B, at position 230 of the breast immobilization device 210 there is only a very shallow cavity in the immobilization device due to the compression material 320 that was placed over the patient's right breast. Thus, in the embodiment of FIG. 2B, the patient may be immobilized for radiation treatment to the left breast in a manner that is further described below.



FIG. 4 is a flowchart illustrating one embodiment of a method of fabricating a breast immobilization device and immobilizing a patient for partial breast radiation therapy. The exemplary method of FIG. 4 advantageously provides accurate and reproducible breast positioning while simultaneously reducing respiratory motion. The method of FIG. 4 may be used in conjunction with any type of radiation treatment, or other treatment to the breasts, such as full or partial breast radiation. Depending on the embodiment, the method of FIG. 4 may include fewer or additional blocks and the method may be performed in a different order.


Beginning in block 410, a support structure having contours customized for immobilization of a particular patient is fabricated, such as according to the method of FIG. 5, for example. The breast immobilization device, such as the immobilization device 210, may be fitted in a pod or other support structure that support other regions of the patient.


Continuing to block 420, a treatment plan is developed for delivering radiation therapy to the patient. The radiation may be any type available for treatment, such as x-ray or proton therapy, for example. The developed treatment plan may include full breast or partial breast treatments. In one embodiment, because the breast immobilization device 210 provides reproducible immobilization of the patient's breast, the efficiency of the radiation therapy may be increased. Accordingly, use of the breast immobilization device 210 in treatment planning may reduce the time required for the actual radiation delivery to a lumpectomy, or other treatment region. In addition, the improved immobilization of the patient's breast, and the reduction of movement normally caused by breathing that is realized by placing a patient in a prone position, allows the treatment plan to reduce a target area of the breast and reduce the amount of tissue peripheral to the treatment region that receives radiation.


In certain embodiments, three-dimensional multi-beam proton treatment plans are developed. In one embodiment, the treatment plan calls for three to four separate axial treatment beams that are utilized with various beam weightings. For example, a proton beam may be utilized for treatments with appropriate apertures, compensators and beam modulation. In one embodiment, beams are chosen to provide complete sparing of underlying cardiac and pulmonary tissue as well as avoiding the breast that is not targeted for treatment. Care may also be taken to provide adequate skin sparing.


Moving to block 430, the patient is immobilized for radiation treatment, such as according to the method of FIG. 6, for example. In one embodiment, the breast immobilization device fabricated in block 410, as well as a support structure in some embodiments, is used to reproducibly position the treatment breast in substantially the same position as when the treatment plan was developed. Because the breast immobilization device is solidified and formed to snugly engage the contours of the patients' breast (or the outer surface of a cup of the support brassiere), when the patient is positioned in the support structure the treatment breast is immobilized in substantially the same position as used when the breast immobilization device was fabricated. In embodiments where a support brassier is worn by the patient when the breast immobilization device is formed, the support brassier is again worn by the patient when the patient is immobilized for treatment.


Next, in block 440, radiation therapy, such as partial breast radiation therapy, is delivered to the patient. As noted above, any other type of radiation therapy may also be administered to the patient that is immobilized by the immobilization device.


Continuing to block 450, the administering physician, radiologist, or other personnel, determines if additional doses are to be delivered to the patient. In one embodiment, this determination is made primarily based on the predetermined treatment plan and may be made prior to fabrication of the immobilization device. For example, a radiation oncologist may prescribe a particular radiation dose on a periodic basis for a predetermined time period, such as every day for 2-6 weeks or once a week for several months. In some embodiments, the effects of the treatment are monitored and the treatment plan may be adjusted after certain radiotherapy treatments. If additional doses are to be applied, the method returns to block 430 where the patient is again immobilized and irradiation is applied to the immobilized breast (block 440). In one embodiment, the patient is fitted with the support brassiere, which may be reproducibly placed on the chest by utilizing applied skin marks. The patient may then be positioned in the breast immobilization device in a prone position on the support structure. In certain embodiments, orthogonal diagnostic quality x-rays are performed prior to each treatment and compared to digitally reconstructed radiographs to reproduce the body/breast position at the time of treatment planning CT scan. In certain embodiments, clips, such as titanium clips, which are placed at the periphery of the biopsy cavity or other anatomical locations may also be utilized for the alignment process.


Advantageously, the time period between sequential radiation treatments, and the associated immobilization of the patient, may vary significantly without affecting the reproducibility of immobilization that is obtained through using the breast immobilization device, and optionally the support brassier. For example, a patient treatment plan may call for daily, weekly, or monthly treatments. In any case, the patient is reproducibly immobilized using the breast immobilization device that is contoured to support the specific patient's breast in the prone position. As noted above, because the patient is placed in the prone position, the amount of breast movement caused by breathing may also be reduced, when compared to the amount of breast movement when in a supine position.


When no further treatment sessions are necessary, the method continues to block 450 where the treatment is complete.



FIG. 5 is a flowchart illustrating an exemplary method of fabricating a breast immobilization device, such as breast immobilization device 210. Depending on the embodiment, the method of FIG. 5 may include fewer or additional blocks and the blocks may be performed in a different order than is illustrated.


Beginning in block 510, the patient is fitted with a support brassier, such as the brassier illustrated in FIG. 3A and 3B. In one embodiment, the support brassier comprises a rigid or semi-rigid cup that engages the treatment breast. The support brassier is configured so that the breasts may be repeatedly repositioned within the cup at substantially the same position. In some embodiments, a support brassier is not used in forming the immobilization device. In such an embodiment, a cup may be placed and/or held on the breast as the two-part foam is being poured around the breast and released prior to complete hardening of the two-part foam. In this embodiment, the cup may be part of the immobilization structure. In other embodiments, the patients skin may directly contact the two-part foam as the immobilization device is being formed.


Moving to block 520, the patient is positioned in a support structure, such as support structure 200 (FIG. 1), with a slight gap between the breasts and a bottom 205 of the pod 200. In other embodiments, however, the breasts may minimally contact the pod 200. If the breasts are compressed excessively, such as by having a portion of the patient's weight supported by the breasts compressed against the bottom of the pod 200, the breasts will be positioned closer to the patient's internal organs, such as heart and lungs. Additionally, accurate repositioning of the patient in a position where the breasts are compressed may be more difficult as the position of a particular breast region tends to vary from one compression of the breast to another. Accordingly, in an advantageous embodiment, the breasts are positioned with a small gap, or minimally contacting, the pod 200.


Continuing to block 530, the patient's shoulders, abdomen, and/or pelvis are supported by pillows, beanbags, foam structures, such as foam bead vacuum cushions, and/or other support structures, while leaving an area around the breasts temporarily directly unsupported. In this embodiment, the air may be removed from the vacuum cushions prior to placement of the two-part foam around the chest area (block 540), in order to provide a substantially rigid immobilization for the head, shoulder, abdomen, and/or pelvis areas. Thus, in certain embodiments the pod 200 is at least partially filled with one or more pillows, beanbags, foam structures, or similar materials. In certain embodiments, blocks 520 and 530 are performed concurrently, as the positioning of support structures around the patient aid in positioning of the patient's treatment breast in the appropriate positioned with respect to the pod 200.


Continuing to block 540, a two-part foam is poured around the chest region of the patient and allowed to harden around the breasts so that the contours of the breasts, or of the support brassier if used, are mirrored in negative relief in the hardened foam. More particularly, the two-part foam is initially malleable so that it may be poured around the chest of the patient and substantially fills the air spaces around the breasts (or brassiere). In one embodiment, the two-part form undergoes chemical changes that cause the foam to solidify. Accordingly, because the two-part form is placed around the breasts prior to solidifying, the foam will become a hardened mold of the patient's breasts, or of the support brassiere, when solidified in order to form the breast immobilization device. This breast immobilization device allows the breast to remain in a hanging position, rather than being compressed against a bottom surface of the pod 200. In one embodiment, rather than using two-part foam, the breast immobilization device may be formed of one or more foam bead vacuum cushion, or other materials that suitably conform to the contours of a patient's breast (and/or support brassiere) and provide a rigid or semi-rigid support structure.



FIG. 6 is a flowchart illustrating an exemplary method of immobilizing a breast for radiotherapy. As noted above, using the patient-specific breast immobilization device, a patient may be accurately and reproducibly positioned for delivery of radiation therapy, while simultaneously positioning the patient in a prone position so as to reduce respiratory motion. Depending on the embodiment, the method of FIG. 6 may include fewer or additional blocks and the blocks may be performed in a different order than is illustrated.


Beginning at block 610, the support brassier that was used to fabricate the breast immobilization device is repositioned on the patient. In one embodiment, the support brassiere is reproducibly placed on the chest of the patient utilizing applied skin marks. In other embodiments, other markers, such as small tattoos, for example, may be used to position the support brassier in substantially the same position on the patient as when the breast immobilization device was fabricated.


Moving to block 620, the patient is positioned in a prone position within the pod containing the breast immobilization device. In one embodiment, the patient lays on the pod containing the breast immobilization device so that the treatment breast is placed in the corresponding countour in the immobilization device. With the patient positioned on the pod, the pod may be moved to the radiation delivery area, such as within a gantry for radiotherapy.


The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.

Claims
  • 1. A method of forming a support structure for immobilizing a patient in a prone position for delivery of radiation to at least one breast of the patient in a reproducible manner, the method comprising: positioning a support brassiere on the patient, the support brassiere comprising a semi-rigid cup that is sized to engage a breast of the patient and a strap that is configured to fasten the semi-rigid cup to the patient;positioning the patient, who is wearing the support brassiere, in a prone position generally within a full-body support structure so that the semi-rigid cup of the support brassiere is suspended above and proximate to, but not in contact with, an upward-facing surface of the full-body support structure;with the patient positioned generally within the full-body support structure, introducing a non-caustic malleable substance into the full-body support structure generally under the patient and under and around the cup so that the substance substantially occupies a space between the upward-facing surface of the full-body support structure and the semi-rigid cup; andhardening the non-caustic malleable substance while it substantially occupies the space under the patient and under and around the cup so that the non-caustic malleable substance becomes a substantially rigid breast immobilization device comprising: a top surface having a generally concave contour therein corresponding with an impression of the semi-rigid cup; anda bottom surface configured to engage with the up-ward facing surface of the full-body support structure;the substantially rigid breast immobilization device thereby configured to generally conform to and be supported by the full-body support structure, the substantially rigid breast immobilization device, in turn, configured to support and immobilize the semi-rigid cup, which in turn is configured to support and immobilize the at least one breast of the patient.
  • 2. The method of claim 1, wherein the non-caustic malleable substance comprises a two-part expandable foam, and hardening the non-caustic malleable substance comprises allowing the two parts of the foam to mix together.
  • 3. The method of claim 1, wherein the semi-rigid cup comprises one or more plastic materials.
  • 4. The method of claim 1, wherein the support brassiere comprises a compression material for compressing another breast of the patient.
  • 5. The method of claim 1, wherein the non-caustic malleable substance comprises polymeric foam.
  • 6. The method of claim 1, wherein the non-caustic malleable substance comprises a two-part foam.
  • 7. A device for immobilizing a patient for delivery of radiation to a breast of the patient, the device comprising: a full-body support structure configured to support a patient in a prone position wearing a brassiere comprising a cup and at least one strap, such that the breast to be treated is within the cup and suspended above the full-body support structure; anda breast immobilization device comprising a substance configured to substantially fill the space between the brassiere and the full-body support structure and to have contours that substantially define a negative relief image of the cup, the breast immobilization device configured to be positioned on and engage the fully-body support structure.
  • 8. The device of claim 7, wherein the cup comprises a portion of a support brassiere that is releasably secured to the patient.
  • 9. The device of claim 7, wherein the device is configured for positioning the patient for delivery of radiation through the full-body support structure, through the brassiere, and through the breast immobilization device to a target area within the breast.
  • 10. The device of claim 7, wherein the support structure comprises one or more of: a pod and a table, or a pod combined with a table.
  • 11. The device of claim 7, wherein the breast immobilization device is custom designed for engagement with the cup as it is oriented on the breast of the patient for treatment delivery.
  • 12. A method of reproducibly immobilizing a patient for radiation therapy to the patient's breast, the method comprising: providing a brassiere having a cup for engagement with the breast of the patient;a full-body patient support structure for supporting the patient during radiotherapy treatment, the full-body patient support structure comprising lateral sides configured to contain a breast immobilization device;positioning a breast immobilization device on the full-body patient support structure, between the lateral sides and generally around the cup, the breast immobilization device comprising contours that are custom-fit to engage with the cup on at least one of a patient's breasts; andpositioning the patient in a prone position on the breast immobilization device (which is on the full-body patient support structure), in a reproducible manner, so that the at least one breast engages with the contours of the breast immobilization device and the breast immobilization device engages with the full-body support structure.
  • 13. The method of claim 12, wherein the support structure comprises a semi-hemispherical structure.
  • 14. The method of claim 12, wherein the breast immobilization device comprises two-part foam positioned within the semi-hemispherical structure.
  • 15. The method of claim 12, wherein the support structure further comprises one or more of a pillow, beanbag, foam structure, and vacuum cushion that are positioned to support the patient's shoulders, abdomen, and/or pelvis.
  • 16. A system for immobilizing a patient for delivery of radiation to a breast of the patient, the device comprising: a patient table configured to support a patient in a prone position with a breast to be treated located above and extending downward toward the patient table; anda customized, contoured, upper-body immobilization device configured to be placed atop the patient table and to both support the upper body of the patient and to fit that particular patient's contours and thereby immobilize the breast of the patient with respect to the patient table during delivery of radiation to the breast, thereby allowing for reproducible positioning of the patient and the breast for each of a plurality of radiotherapy treatments.
  • 17. The system of claim 16, wherein the customized, contoured, upper-body immobilization device comprises substantially hardened two-part foam comprising a depression sized to receive and conform to the shape of the breast with the patient in a prone position.
  • 18. The system of claim 16, the device further comprising: a support brassiere comprising a cup for cupping the breast so that the breast is partially immobilized when the cup is positioned proximate the breast.
  • 19. The system of claim 18, wherein the customized, contoured, upper-body immobilization device comprises substantially hardened two-part foam comprising an aperture sized to substantially mirror a shape of the cup.
  • 20. The method of claim 12, further comprising forming the breast immobilization device before positioning the breast immobilization device on the full-body patient support structure, wherein forming the breast immobilization device comprises introducing a formable material between the full-body patient support structure and the patient while the patient is in a prone position and allowing the formable material to conform to a portion of the patient and a top surface of the full-body patient support structure.
  • 21. The method of claim 15, wherein the one or more of a pillow, beanbag, foam structure, and vacuum cushion comprise at least one of the lateral sides.
  • 22. The method of claim 12, wherein the lateral sides comprise at least one sidewall of the full-body patient support structure, wherein the at least one sidewall of the full-body patient support structure protrudes upwardly from an upwardly-facing surface of the full-body patient support structure.
  • 23. The method of claim 20, wherein the formable material comprises foam and the lateral sides are configured to help contain the foam as the breast immobilization device is formed.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit and priority to and is a U.S. National Phase of International Application No. PCT/US2007/085309, filed Nov. 20, 2007, designating the United States of America and published in the English language, which is an International Application of and claims the benefit of priority to U.S. Provisional Patent Application 60/866,814, filed Nov. 21, 2006. The disclosures of the above-referenced applications are hereby expressly incorporated by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2007/085309 11/20/2007 WO 00 5/19/2009
Publishing Document Publishing Date Country Kind
WO2008/064271 5/29/2008 WO A
US Referenced Citations (301)
Number Name Date Kind
2469084 Schenker May 1949 A
2580264 Wright et al. Dec 1951 A
2675564 Hughes Apr 1954 A
3145240 Proulx et al. Aug 1964 A
3397411 Guido Rossi Aug 1968 A
3449570 Kok Jun 1969 A
3545739 D'Avignon Dec 1970 A
3556455 Storm Jan 1971 A
3604931 Kastner et al. Sep 1971 A
3640787 Heller Feb 1972 A
3689949 Weinstein et al. Sep 1972 A
3745998 Rose Jul 1973 A
3762404 Sakita Oct 1973 A
3778049 Viamonte, Jr. Dec 1973 A
3783251 Pavkovich Jan 1974 A
3848132 Foderaro Nov 1974 A
3851644 Slagle Dec 1974 A
3852610 McIntyre Dec 1974 A
3885258 Regan May 1975 A
3893198 Blair Jul 1975 A
3897345 Foster Jul 1975 A
3897777 Morrison Aug 1975 A
3901588 Longhenry Aug 1975 A
3905054 Windsor et al. Sep 1975 A
3942012 Boux Mar 1976 A
3947686 Cooper et al. Mar 1976 A
3957262 McReynolds May 1976 A
3986697 Amor, Jr. et al. Oct 1976 A
4030719 Gabriele et al. Jun 1977 A
4034224 Heavens et al. Jul 1977 A
4064401 Marden Dec 1977 A
4069457 Martin et al. Jan 1978 A
4095114 Taumann Jun 1978 A
4112306 Nunan Sep 1978 A
4146793 Bergstrom et al. Mar 1979 A
4190772 Dinwiddie et al. Feb 1980 A
4206355 Boux Jun 1980 A
4230129 LeVeen Oct 1980 A
4250137 Riedler Feb 1981 A
4252594 Cooper Feb 1981 A
4256112 Kopf et al. Mar 1981 A
4262204 Mirabella Apr 1981 A
4269512 Nosler May 1981 A
4287425 Elliott, Jr. Sep 1981 A
4327046 Davis et al. Apr 1982 A
4347213 Rogers, Jr. Aug 1982 A
4378813 Lovelace et al. Apr 1983 A
4392239 Wilkens Jul 1983 A
4400820 O'Dell et al. Aug 1983 A
4401492 Pfrommer Aug 1983 A
4442352 Brahme Apr 1984 A
4450122 Gallina May 1984 A
4484571 Velazquez Nov 1984 A
4504050 Osborne Mar 1985 A
4552508 Reid Nov 1985 A
4578757 Stark Mar 1986 A
4591341 Andrews May 1986 A
4600551 Erb Jul 1986 A
4616814 Harwood-Nash et al. Oct 1986 A
4666304 Davies May 1987 A
4671284 Wilson et al. Jun 1987 A
4672212 Brahme Jun 1987 A
4682818 Morell Jul 1987 A
4688780 Hanz Aug 1987 A
4705955 Mileikowsky Nov 1987 A
4752064 Voss Jun 1988 A
4779858 Saussereau Oct 1988 A
4789930 Sones et al. Dec 1988 A
4796613 Heumann et al. Jan 1989 A
4812658 Koehler Mar 1989 A
4815448 Mills Mar 1989 A
4819257 Grasser et al. Apr 1989 A
4841965 Jacobs Jun 1989 A
4848340 Bille et al. Jul 1989 A
4870287 Cole et al. Sep 1989 A
4905267 Miller et al. Feb 1990 A
4917344 Prechter et al. Apr 1990 A
4926457 Poehner et al. May 1990 A
4979519 Chavarria et al. Dec 1990 A
5014290 Moore et al. May 1991 A
5017789 Young et al. May 1991 A
5037374 Carol Aug 1991 A
5039057 Prechter et al. Aug 1991 A
5039867 Nishihara et al. Aug 1991 A
5046708 Schaefer Sep 1991 A
5048071 Van Steenburg Sep 1991 A
5049147 Danon Sep 1991 A
5054049 Manabe Oct 1991 A
5079426 Antonuk et al. Jan 1992 A
5081665 Kostich Jan 1992 A
5090047 Angotti et al. Feb 1992 A
5094241 Allen Mar 1992 A
5107839 Houdek et al. Apr 1992 A
5117829 Miller et al. Jun 1992 A
5156166 Sebring Oct 1992 A
5168514 Horton, Jr. et al. Dec 1992 A
5207688 Carol May 1993 A
5240218 Dye Aug 1993 A
5242455 Skeens et al. Sep 1993 A
5269305 Corol Dec 1993 A
5274864 Morgan Jan 1994 A
5276927 Day Jan 1994 A
5278886 Kobiki et al. Jan 1994 A
5281232 Hamilton et al. Jan 1994 A
5287576 Fraser Feb 1994 A
5343048 Pastyr Aug 1994 A
5361765 Herlihy et al. Nov 1994 A
5370117 McLaurin, Jr. Dec 1994 A
5370118 Vij et al. Dec 1994 A
5380336 Misko et al. Jan 1995 A
5382914 Hamm et al. Jan 1995 A
5388580 Sullivan et al. Feb 1995 A
5402463 Umetani et al. Mar 1995 A
5427097 Depp Jun 1995 A
5446548 Gerig et al. Aug 1995 A
5454993 Kostich Oct 1995 A
5464411 Schulte Nov 1995 A
5485833 Dietz Jan 1996 A
5511549 Legg et al. Apr 1996 A
5531229 Dean et al. Jul 1996 A
5538494 Matsuda Jul 1996 A
5549616 Schulte Aug 1996 A
5566681 Manwaring et al. Oct 1996 A
5570409 Yamaguchi et al. Oct 1996 A
5588430 Bova et al. Dec 1996 A
5595191 Kirk Jan 1997 A
5596619 Carol Jan 1997 A
5602892 Llacer Feb 1997 A
5622187 Carol Apr 1997 A
5675851 Feathers Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5727554 Kalend et al. Mar 1998 A
5745545 Hughes Apr 1998 A
5751781 Brown et al. May 1998 A
5769779 Alderson Jun 1998 A
5771512 Kurakake et al. Jun 1998 A
5775337 Hauger et al. Jul 1998 A
5778047 Mansfield et al. Jul 1998 A
5782244 Kostich Jul 1998 A
5792147 Evans et al. Aug 1998 A
5797924 Schulte et al. Aug 1998 A
5800352 Ferre et al. Sep 1998 A
5806116 Oliver et al. Sep 1998 A
5820444 McGaughey Oct 1998 A
5820553 Hughes Oct 1998 A
5823192 Kalend et al. Oct 1998 A
5825845 Blair et al. Oct 1998 A
5832550 Hauger et al. Nov 1998 A
5847403 Hughes et al. Dec 1998 A
5848449 Hauger et al. Dec 1998 A
5851182 Sahadevan Dec 1998 A
5865832 Knopp et al. Feb 1999 A
5895926 Britton et al. Apr 1999 A
5911655 Brenneisen Jun 1999 A
5947981 Cosman Sep 1999 A
5983424 Näslund Nov 1999 A
6003174 Kantrowitz et al. Dec 1999 A
6023694 Kouchi et al. Feb 2000 A
6026392 Kouchi et al. Feb 2000 A
6085227 Edlund et al. Jul 2000 A
6104779 Shepherd et al. Aug 2000 A
6118848 Reiffel Sep 2000 A
6161237 Tang et al. Dec 2000 A
6178430 Cohen et al. Jan 2001 B1
6195578 Distler et al. Feb 2001 B1
6240161 Siochi May 2001 B1
6275564 Ein-Gal Aug 2001 B1
6279579 Riaziat et al. Aug 2001 B1
6282739 Livingston Sep 2001 B1
6308353 Van Steenburg Oct 2001 B1
6316776 Hiramoto et al. Nov 2001 B1
6325758 Carol et al. Dec 2001 B1
6345114 Mackie et al. Feb 2002 B1
6375355 Fortin Apr 2002 B1
6376846 Livingston Apr 2002 B2
6385286 Fitchard et al. May 2002 B1
6405072 Cosman Jun 2002 B1
6437513 Selzer et al. Aug 2002 B1
6445766 Whitham Sep 2002 B1
6446286 Karmalawy Sep 2002 B1
6452999 Maida Sep 2002 B1
6462490 Matsuda et al. Oct 2002 B1
6462553 Badura Oct 2002 B1
6466813 Shukla et al. Oct 2002 B1
6473490 Siochi Oct 2002 B1
6476403 Dolinskii et al. Nov 2002 B1
6565577 Cosman May 2003 B2
6577707 Siochi Jun 2003 B2
6597005 Badura et al. Jul 2003 B1
6598275 Kolody et al. Jul 2003 B1
6600164 Badura et al. Jul 2003 B1
6614038 Brand et al. Sep 2003 B1
6621889 Mostafavi Sep 2003 B1
6639234 Badura et al. Oct 2003 B1
6650930 Ding Nov 2003 B2
6662036 Cosman Dec 2003 B2
6670618 Hartmann et al. Dec 2003 B1
6677597 Haberer et al. Jan 2004 B1
6683318 Haberer et al. Jan 2004 B1
6690965 Riaziat et al. Feb 2004 B1
6693283 Eickhoff et al. Feb 2004 B2
6698045 Coppens et al. Mar 2004 B1
6704957 Rhodes Mar 2004 B2
6710362 Kraft et al. Mar 2004 B2
6725078 Bucholz et al. Apr 2004 B2
6730921 Kraft May 2004 B2
6731970 Schlossbauer et al. May 2004 B2
6736831 Hartmann et al. May 2004 B1
6745072 Badura et al. Jun 2004 B1
6754299 Patch Jun 2004 B2
6757355 Siochi Jun 2004 B1
6769806 Moyers Aug 2004 B2
6774383 Norimine et al. Aug 2004 B2
6777700 Yanagisawa et al. Aug 2004 B2
6780149 Schulte Aug 2004 B1
6792078 Kato et al. Sep 2004 B2
6795523 Steinberg Sep 2004 B2
6799068 Hartmann et al. Sep 2004 B1
6803591 Muramatsu et al. Oct 2004 B2
6804548 Takahashi et al. Oct 2004 B2
6809325 Dahl et al. Oct 2004 B2
6813788 Dinkler et al. Nov 2004 B2
6814694 Pedroni Nov 2004 B1
6839404 Clark et al. Jan 2005 B2
6855942 Bechthold et al. Feb 2005 B2
6859741 Haberer et al. Feb 2005 B2
6891177 Kraft et al. May 2005 B1
7011447 Moyers Mar 2006 B2
7076821 DeMooy Jul 2006 B2
7120223 Nafstadius Oct 2006 B2
7142634 Engler et al. Nov 2006 B2
7154108 Tadokoro et al. Dec 2006 B2
7154991 Earnst et al. Dec 2006 B2
7173265 Miller et al. Feb 2007 B2
7199382 Rigney et al. Apr 2007 B2
7280633 Cheng et al. Oct 2007 B2
7301162 Matsuda et al. Nov 2007 B2
7331713 Moyers Feb 2008 B2
7348579 Pedroni Mar 2008 B2
7372053 Yamashita et al. May 2008 B2
7398309 Baumann et al. Jul 2008 B2
7446328 Rigney et al. Nov 2008 B2
20020027969 Maida Mar 2002 A1
20020032378 Henderson et al. Mar 2002 A1
20020051513 Pugachev et al. May 2002 A1
20020065461 Cosman May 2002 A1
20020077545 Takahashi et al. Jun 2002 A1
20020095730 Al-Kassim et al. Jul 2002 A1
20020120986 Erbel et al. Sep 2002 A1
20020188194 Cosman Dec 2002 A1
20020193685 Mate et al. Dec 2002 A1
20030007601 Jaffray et al. Jan 2003 A1
20030031301 Longton et al. Feb 2003 A1
20030086527 Speiser et al. May 2003 A1
20030095625 Steinberg May 2003 A1
20030164459 Schardt et al. Sep 2003 A1
20030183779 Norimine et al. Oct 2003 A1
20040013414 Karger et al. Jan 2004 A1
20040028188 Amann et al. Feb 2004 A1
20040034438 Uematsu Feb 2004 A1
20040034932 Zacharopoulos et al. Feb 2004 A1
20040042583 Wackerle et al. Mar 2004 A1
20040082856 Marmarelis Apr 2004 A1
20040098445 Baumann et al. May 2004 A1
20040123388 Coppens et al. Jul 2004 A1
20040136495 Carlsson et al. Jul 2004 A1
20040155206 Marchand et al. Aug 2004 A1
20040158145 Ghelmansarai et al. Aug 2004 A1
20040174958 Moriyama et al. Sep 2004 A1
20040184579 Mihara et al. Sep 2004 A1
20040184583 Nagamine et al. Sep 2004 A1
20050116175 Haberer Jun 2005 A1
20050161618 Pedroni Jul 2005 A1
20050281374 Cheng et al. Dec 2005 A1
20060002511 Miller et al. Jan 2006 A1
20060017022 Rigney et al. Jan 2006 A1
20060183960 Sioshansi et al. Aug 2006 A1
20070039621 Moyers Feb 2007 A1
20070093100 Sommer Apr 2007 A1
20070158592 Hiramoto et al. Jul 2007 A1
20070164230 Rigney et al. Jul 2007 A1
20070262269 Trbojevic Nov 2007 A1
20080005643 Park et al. Jan 2008 A1
20080031414 Coppens Feb 2008 A1
20080042076 Miller et al. Feb 2008 A1
20080056434 Grozinger et al. Mar 2008 A1
20080187097 Cheng et al. Aug 2008 A1
20080189859 Sloan et al. Aug 2008 A1
20080191142 Pedroni Aug 2008 A1
20080192892 Dilmanian et al. Aug 2008 A1
20080292053 Marash et al. Nov 2008 A1
20080317216 Lifshitz et al. Dec 2008 A1
20090067577 Rigney et al. Mar 2009 A1
20090154645 Lifshitz et al. Jun 2009 A1
20090168960 Jongen et al. Jul 2009 A1
20090202045 Guertin et al. Aug 2009 A1
20090217456 Lempen et al. Sep 2009 A1
20090260636 Markstroem Oct 2009 A1
20090304153 Amelia et al. Dec 2009 A1
20090309046 Balakin Dec 2009 A1
20090314960 Balakin Dec 2009 A1
Foreign Referenced Citations (62)
Number Date Country
2513896 Oct 1975 DE
2833800 Dec 1979 DE
4418216 Nov 1995 DE
19612091 Mar 1997 DE
019136 Nov 1980 EP
247449 Dec 1987 EP
283082 Sep 1988 EP
465590 Jan 1992 EP
986070 Mar 2000 EP
986071 Mar 2000 EP
1064881 Jan 2001 EP
1454653 Sep 2004 EP
1584353 Oct 2005 EP
1709994 Oct 2006 EP
1792595 Jun 2007 EP
1795229 Jun 2007 EP
1900392 Mar 2008 EP
1935453 Jun 2008 EP
2701391 Aug 1994 FR
0870225 Jun 1961 GB
2068700 Aug 1981 GB
2213066 Aug 1989 GB
61194400 Aug 1986 JP
7309246 Oct 1974 NL
WO 8801848 Mar 1988 WO
WO 9011721 Oct 1990 WO
WO 9011723 Oct 1990 WO
WO 9508293 Mar 1995 WO
WO 9910137 Mar 1999 WO
WO 0016175 Mar 2000 WO
WO 0059575 Oct 2000 WO
WO 0100276 Jan 2001 WO
WO 0189625 Nov 2001 WO
WO 02063638 Feb 2002 WO
WO 03039212 May 2003 WO
WO 03053520 Jul 2003 WO
WO 03076016 Sep 2003 WO
WO 2004026401 Apr 2004 WO
WO 2004032781 Apr 2004 WO
WO 2004032781 Apr 2004 WO
WO 2005018734 Mar 2005 WO
WO 2005018735 Mar 2005 WO
WO 2005037167 Apr 2005 WO
WO 2005102453 Nov 2005 WO
WO 2006060886 Jun 2006 WO
WO 2006076545 Jul 2006 WO
WO 2006094533 Sep 2006 WO
WO 2007054140 May 2007 WO
WO 2007061426 May 2007 WO
WO 2007062788 Jun 2007 WO
WO 2007068066 Jun 2007 WO
WO 2007127970 Nov 2007 WO
WO 2008051358 May 2008 WO
WO 2008064271 May 2008 WO
WO 2008081480 Jul 2008 WO
WO 2008142695 Nov 2008 WO
WO 2009129847 Oct 2009 WO
WO 2009142544 Nov 2009 WO
WO 2009142545 Nov 2009 WO
WO 2009142546 Nov 2009 WO
WO 2009142548 Nov 2009 WO
WO 2009142549 Nov 2009 WO
Related Publications (1)
Number Date Country
20100067659 A1 Mar 2010 US
Provisional Applications (1)
Number Date Country
60866814 Nov 2006 US