1. Field of the Invention
The present invention relates to a device and a method for active noise control and, more particularly, to a device and a method for integrating 3D sound effect processing and active noise control.
2. Description of Related Art
Nowadays, using an audio system to listen to music, to watch movie or to listen to the radio has become a popular entertainment of people. Earphones, home loudspeakers, car audios, and so on are commonly used in everyday life of people. In addition to the function of audio playback, an ordinary earphone also performs active noise control to the received noise from outside at the same time when the user listens to music so as to provide better sound effects. The control methods can be categorized into two types: passive and active. In the passive type noise control method, sound isolating material is used to block outside interference. Therefore, the earphone is deemed as bulky and performs badly in isolating low-frequency noise. Because the active control method does not suffer from the above limitation, earphones with built-in active noise control are more attractive solutions to consumers in the market.
Owing to recent advances of signal processing techniques, various kinds of active noise control systems have been continually proposed. Prior art generally requires one or a set of loudspeakers to generate a noise canceling signal. The noise canceling signal is calculated through the noise source and the error signal. For instance, Taiwan Pat. No. 562,382 disclosed a feedback active noise control earphone, which produces a sound wave signal having the same amplitude and the opposite phase with an environment noise to eliminate the environment noise. Besides, Taiwan Pat. No. 364,947 disclosed a noise control system, which gives out an interference sound wave to counteract noise and disturbances. Although the above methods can suppress noise interference, they cannot further improve and process the playback quality of sound source signals to provide the best hearing effects for users.
Accordingly, the present invention aims to propose a device and a method for effectively integrating active noise control and 3D sound effect processing to solve the above problems encountered in the prior art. Moreover, the proposed device and method can apply to various kinds of sound effect playback devices.
An object of the present invention is to provide a device and a method for integrating noise control and sound effect processing, in which an anti-noise is used to counteract the interference of external noise. Moreover, digital signal processing techniques are used to generate sensation of localization and spaciousness of the sound field so as to enhance the depth, breadth, and reverberation of sound, hence providing an immersive quality spatial sound for users.
Another object of the present invention is to provide a device and a method for integrating active noise control and sound effect processing, which adjust the control structure according to different scenarios to apply to various kinds of sound effect playback devices.
Yet another object of the present invention is to provide a device and a method for integrating active noise control and sound effect processing, which can accomplish the control instantaneously. The device and method performs 3D audio processing by means of digital signal processing, and replace digital circuits with analog circuits to realize active noise control so as to avoid any time delay between input signal and output signal, thereby accomplishing the effect instantaneously.
Yet another object of the present invention is to provide a device and a method for integrating noise control and sound effect processing, which can reduce the amounts of operations and stored coefficients, and also disclose a new embodiment of the head-related transfer function (HRTF). The HRTF is replaced with an interaural transfer function (ITF) representing the difference of head transfer functions between two ears to more clearly and more efficiently reproduce the sensation of localization of sound source.
Yet another object of the present invention is to provide an expression of the interaural transfer function (ITF) based on finite impulse response (FIR), which utilizes the Wiener filter to design the FIR filter for the ITF and ignores sound frequencies that human cannot hear so as to accomplish a low order and simplified filter design, hence enhancing the application level and performance.
The present invention can easily be built in sound effect card chips or sound effect systems provided by the Windows operation system.
To achieve the above objects, the present invention first performs 3D sound effect processing to an input audio signal to reproduce the sensation of localization and spaciousness of sound. Next, the processed audio signal is input to a noise control and a sound player to be played out. A sensor in the sound player is then used to detect an external noise at the same time when the audio signal is played. Subsequently, the external noise is fed back to the noise controller to cancel the received external noise. Users can thus hear the audio signal that has undergone sound effect processing and has no interference of external noise.
The various objects and advantages of the present invention will be more readily understood from the following detailed description when read in conjunction with the appended drawing, in which:
The present invention proposes a device and a method for integrating 3D sound effect processing and active noise control. In addition to using a digital signal processor to perform 3D spatial positioning of sound, the present invention also utilizes a sensor to receive an external noise at the same time when playing an audio signal. The external noise is fed back to a noise controller to generate an anti-noise signal for canceling out the external noise. The audio signal played by a loudspeaker is therefore one that has undergone sound effect processing and has no interference of external noise.
As shown in
The noise controller 20 is based on the quantitative feedback theory (QFT), and is designed for the specification of the sound player 30. The noise controller 20 quantizes the uncertainty and specification tolerance of the sound player 30 by means of feedback to achieve the expected noise control performance. The present invention can therefore design the noise controller 20 according to different scenarios to apply to various kinds of sound effect playback devices such as earphones and mobile phones.
Moreover, the present invention makes use of digital circuits for 3D audio processing, and utilizes a feedback control system formed by cascaded analog circuits to replace digital circuits so as to realize active noise control. Therefore, any time delay between input signal and output signal can be avoided to accomplish the effect of realtime control.
Although the present invention has been described with reference to the preferred embodiment thereof, it will be understood that the invention is not limited to the details thereof. Various substitutions and modifications have been suggested in the foregoing description, and other will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
94141885 | Nov 2005 | TW | national |