The invention relates to a recovery apparatus and to a recovery method for recovering at least one watercraft by means of a chain, in particular for recovering a boat on board a mother ship.
JP S62-26189 A describes a recovery apparatus of a ship 1, which can recover a plurality of dinghies 2 one after another and can put them back into the water, cf.
JP 2007-038706 A describes a mother ship 1, which can recover a boat 3 with the aid of a ramp 2a, cf.
FIG. 1 of DE 10 2011 109 092 A1 shows a system 1 that is mounted on board a ship 8 and is capable of retrieving an underwater vehicle 2. By means of a rope 50, the underwater vehicle 2 is pulled onto a retrieval ramp 12 of the system 1. A wave compensation ramp 24 is mounted on this retrieval ramp 12 in such a way that the wave compensation ramp 24 can move up and down about a horizontal pivot axis S relative to the retrieval ramp 12. The front end 26 of the wave compensation ramp 24 is connected to the retrieval ramp 12 via a joint 28. Mounted close to its free end 34 are two floating bodies 36, 38, cf.
DE 39 38 188 A1 describes an apparatus and a method for hauling a boat 10 up into a stowage space 12 of a ship 11. A corresponding recovery apparatus 13 supports the boat 10 with the aid of a plurality of rollers 14. Two parallel roller chains 16 are driven by a drive 15 and move the boat 10 forward while it is being hauled up, cf.
The object of the invention is to provide a recovery apparatus having the features in the preamble of claim 1 and a recovery method having the features in the preamble of claim 22, which reduce the risk of a large quantity of water being able to penetrate into the recovery apparatus.
This object is achieved by a recovery apparatus having the features specified in claim 1 and by a recovery method having the features specified in claim 22. Advantageous developments can be gathered from the dependent claims, the following description and the drawings.
The recovery apparatus according to the solution is capable of pulling at least one watercraft out of the water and recovering same. The recovery apparatus according to the solution comprises
The recovery method according to the solution is carried out with the aid of such a recovery apparatus.
The frame is held by the carrying structure and can be moved back and forth relative to the carrying structure between a recovering position and at least one parked position. The frame is capable of carrying a watercraft to be recovered. The frame actuator is capable of moving the frame together with a watercraft carried by the frame relative to the carrying structure from the recovering position into the or a parked position and as a result of pulling the carried watercraft out of the water.
The or each chain of the recovery apparatus comprises in each case a sequence of drivers and is mechanically connected to the frame. The or each chain can be moved relative to the frame along a closed curve in each case. The chain drive is capable of moving the or each chain relative to the frame and as a result along the closed curve. A watercraft floating on the water can be connected temporarily to the or at least one chain of the recovery apparatus. At least one driver of the chain moved by the chain drive pulls the temporarily connected watercraft out of the water and onto the frame.
When the frame is in the recovering position, at least a part of the or each chain of the recovery apparatus is located under the water surface. A watercraft to be recovered is pulled out of the water by the movement of the frame out of the recovering position into the or a parked position and by the movement of the chain relative to the frame.
By virtue of the or at least one driven chain having drivers, the recovery apparatus is capable of pulling not only a driven watercraft but also a nondriven watercraft out of the water, after the watercraft has been temporarily connected to the or at least one chain. In the case of a driven watercraft, the drive of the watercraft does not need to contribute at all or only needs to contribute in a supporting manner to pulling the watercraft onto the frame. The movement of the watercraft out of the water in particular does not depend on whether a propeller or a waterjet propulsion or some other constituent of the drive of the watercraft is located beneath or above the water surface and therefore can or cannot contribute to the propulsion of the watercraft. In particular, the or at least one driven chain having drivers avoids the need to recover the watercraft in two steps, namely in a first step, in which the drive of the watercraft contributes to recovery or the floating watercraft is pushed or pulled, and a second step, in which the drive of the watercraft no longer reaches into the water and therefore can no longer move the watercraft or the watercraft is no longer pushed or pulled. It is possible, but, by virtue of the invention, not necessary, for the watercraft to be connected to a rope with the aid of a hook or an eye and for the watercraft to be pulled onto the carrying structure by way of this rope. Furthermore, the chain of the recovery apparatus according to the solution prevents a watercraft temporarily connected to the chain from slipping back into the water from the frame.
In order to use the invention, a watercraft to be recovered needs to be adapted only relatively little to the recovery apparatus according to the solution. It is sufficient to mount at least one protrusion, for example a hook or a nose or a toothed rail, on the hull of the watercraft to be recovered, in a position close to the bow or close to the stern. The or at least one driver of the recovery apparatus engages behind the or a protrusion on the hull of the watercraft. Or the or at least one protrusion on the watercraft engages between two drivers. In both configurations, the watercraft is connected temporarily and releasably to the or at least one chain. The driven chain pulls the temporarily connected watercraft having the protrusion out of the water by way of at least one driver.
In order that a floating watercraft to be recovered can pass onto the frame held by the carrying structure, it is necessary for at least a part of the frame and/or a part of the or a chain to be located beneath the water surface. The frame can be moved back and forth between the recovering position and the or a parked position. Therefore, the frame is configured as a slide. The frame carries the or each chain and thus a watercraft to be recovered that is temporarily connected to a driver of the or a chain. Because the frame is movable relative to the carrying structure, it is not necessary for the frame or the carrying structure to be located permanently in a position in which a watercraft floating on the water can pass into a position above the frame. The movable configuration of the frame makes it possible for the frame and/or the chain for recovering the watercraft to be moved into a recovering position partially beneath the water surface and then for the frame together with the chain and the watercraft to be pulled into the or a parked position, in which the frame, the or each chain and the watercraft are located entirely above the water surface. The frame is thus located partially beneath the water surface only when a watercraft needs to be recovered. The configuration in which the frame can be pulled entirely out of the water and is located in the or a parked position entirely above the water surface reduces the risk of a large amount of water penetrating into the recovery apparatus. This risk should be reduced in particular when the recovery apparatus belongs to a further watercraft that recovers the watercraft while the further watercraft is floating on the water. A large quantity of penetrated water can compromise the stability of the further watercraft.
By virtue of the invention, a watercraft to be recovered can be pulled out of the water by superposition of two movements oriented in the same direction:
It is possible to execute the two movements in a temporally overlapping manner. This superposition of two movements saves time compared with serial execution or a configuration with a single relative movement. By virtue of the temporally overlapping execution, the watercraft is pulled out of the water more quickly. By virtue of the chain, the frame can be configured in a shorter manner—compared with a conceivable configuration of the frame without a chain. The extent of the frame in the direction of movement in which a watercraft is pulled out of the water only needs to be large enough for the frame to be able to securely hold a watercraft to be recovered. The extent of the frame can be less than the length of the watercraft. By virtue of the chain, the distance over which the frame is moved when it is moved from the recovering position into the parked position can be shorter compared with a conceivable configuration of the frame without a chain.
By virtue of the recovery apparatus according to the solution and of the recovery method according to the solution, a watercraft can be pulled out of the water into the or a parked position with little deployment of personnel or even in a fully automatic manner. It is sufficient for a watercraft to be recovered to travel in a central orientation toward the frame and for the frame to be located in the recovering position. All further steps in the recovery of the watercraft can proceed automatically. Therefore, the invention can also be used for recovering an unmanned watercraft. If the recovery apparatus is mounted on board a further watercraft, by virtue of the invention, it is not necessary for a crew member of the further watercraft to go to the recovery apparatus in order to pull the watercraft out of the water.
Preferably, the frame of the recovery apparatus is arranged in an obliquely rising manner relative to the carrying structure—as seen in the direction in which the frame actuator moves the frame into the parked position and the recovery apparatus pulls a watercraft out of the water. During this positioning of the frame, less force is required in order to pull the frame together with a watercraft to be recovered out of the recovering position into the or a parked position—compared with a vertical movement or a movement along a curved path. Preferably, the frame can be moved back and forth between the recovering position and the parked position by way of a purely linear movement in translation.
The frame in the recovering position is located partially beneath the water surface in order that a watercraft to be recovered can travel into a position above the frame in the recovering position and in order that at least one driver of the recovery apparatus can take hold of the watercraft from below. In one configuration, the frame in the or a parked position is located entirely above the water surface. This configuration reduces the risk of the frame being damaged by the water or by an object floating in the water, and reduces in particular the risk of corrosion or undesired fouling on the frame. In a preferred configuration, not only the frame but also a watercraft to be recovered that is on the frame are located entirely above the water surface when the frame is located in the or a parked position. This configuration reduces the risk of the watercraft being damaged by the water or an object in the water.
Preferably, the or each moved chain moves a watercraft to be recovered, which is connected temporarily to the chain, into the parked position in a direction parallel to the direction of movement of the frame. The movements of the frame and of the chain are thus executed parallel to one another. Further configurations are possible, for example wherein the or a chain moves the watercraft obliquely to the direction of movement of the frame.
In one configuration, the or at least one chain comprises two individual part-chains, between which a sequence of connecting elements, for example rollers or bars or crosspieces, is mounted. These connecting elements act as the drivers. This configuration with two connected part-chains allows a particularly robust construction of the chain.
In one configuration, the recovery apparatus comprises a first endless driven chain having a sequence of drivers, and a further endless driven chain, which comprises a further sequence of drivers. The two chains are—as seen in the direction of movement of the frame from the recovering position into the parked position—attached to the frame alongside one another. Thus, the recovery apparatus comprises a left-hand chain and a right-hand chain. Preferably, in each case one driver of the left-hand chain and one driver of the right-hand chain—as seen in the direction of movement of the frame—are arranged at the same height. By virtue of this configuration, the same recovery apparatus is capable of selectively recovering a watercraft with one hull or with two hulls arranged alongside one another, for example a catamaran, or two sufficiently narrow watercraft alongside one another at the same time. In the case of a watercraft to be recovered having two hulls, the two chains prevent the watercraft from being pulled with a lateral offset or in such a way that the longitudinal axis of the watercraft is arranged obliquely to the direction of movement of the frame, resulting in the watercraft passing into an undesired oblique position relative to the frame. This undesired oblique position is prevented even more reliably when in each case two drivers are arranged at the same height.
A watercraft to be recovered is located above the or at least one chain and is pulled upward by at least one driver of the moved chain. In a first phase of this movement, the watercraft to be recovered is still floating on the water. Preferably, a holding apparatus of the recovery apparatus prevents the watercraft still floating on the water from moving upward relative to the chain and as a result losing contact with the drivers and slipping down again or to the side. This holding apparatus can be moved back and forth between a holding position and a releasing position. If the recovery apparatus is mounted on board a further watercraft, the holding apparatus also prevents the recovered watercraft from slipping down from the frame in the parked position on account of movements of the further watercraft.
In one configuration, the holding apparatus in the holding position pushes a watercraft to be recovered onto the frame. In one embodiment, the holding apparatus is fastened to the carrying structure or to the frame. The holding apparatus in the holding position holds the watercraft and nevertheless makes it possible for a watercraft pulled by the driven chain to be able to move relative to the frame and to be held by the holding apparatus during the movement. Preferably, at least one running roller is mounted on the holding apparatus and comes into contact with the watercraft when the holding apparatus is in the holding position.
Preferably, a guide device guides the frame during a movement from the recovering position into the or a parked position. In one configuration, the guided frame is capable of executing only a linear movement from the recovering position into the parked position, and the guide device prevents any lateral or oblique movement of the frame, even when the recovery apparatus is mounted on board a further watercraft that can be exposed to wave movements while it recovers the watercraft. Furthermore, the guide device limits preferably the linear movement of the frame in the direction of movement and in the opposite direction. The guide device can comprise for example at least one sequence of running rollers, which are mounted in a rail, for example a U profile, and can roll along the rail. In one embodiment, the guide device comprises two sequences of running rollers and two rails. The or each sequence of running rollers can be mounted on the frame and the or each rail can be mounted on the carrying structure. The or each rail is preferably delimited upwardly and downwardly by in each case two stop elements, which limit the possible upward and downward movement of the frame relative to the carrying structure.
Preferably, a directing unit of the recovery apparatus guides a watercraft to be recovered along the frame, while the or at least one chain pulls the watercraft along the frame. This configuration further reduces the risk of the watercraft—as seen in the direction of movement of the frame—tipping over to one side. This directing unit for the watercraft can consist of exclusively passive components, for example of running rollers.
Preferably, the frame executes a linear movement when it is moved from the recovering position into the parked position. Further forms of movement are likewise possible, for example rotation about a horizontal axis that is perpendicular to the longitudinal axis of a watercraft to be recovered and thus transverse to the direction of travel of the watercraft. The guide device for the frame can in this case comprise a parallelogram guide.
In one configuration, a sensor automatically detects the event of the frame reaching the parked position or a watercraft to be recovered that is on the frame reaching a stowed position. The sensor can comprise a light barrier, a proximity sensor, a contact sensor and/or a camera and an image evaluation unit. The event of the frame reaching the parked position or the watercraft reaching the stowed position triggers the step in which the chain drive is stopped. In one configuration, the chain drive is automatically stopped, and in another configuration, it is stopped manually.
The recovery apparatus according to the solution is capable of pulling a watercraft out of the water. In one configuration, the recovery apparatus is capable of actively launching a recovered watercraft again. For this purpose, the frame is moved out of the parked position into the recovering position, wherein the watercraft is still located on the frame and at least one driver of the recovery apparatus temporarily holds the watercraft. The or each chain is moved in the opposite direction relative to the frame. Or gravity moves the watercraft to the water, and the or each chain can rotate freely. The watercraft slides down or is moved down and floats on the water.
Preferably, at least one protrusion is mounted on the outer hull of a watercraft to be recovered, specifically such that this or at least one protrusion is located under water when the watercraft is floating on the water. A driver of the or a chain of the recovery apparatus comes into contact with the or a protrusion of the watercraft when the frame is in the recovering position and the watercraft travels toward the chain. When the chain is moved, the driver pulls the watercraft out of the water by way of the protrusion. Preferably, the frame with the chain is arranged obliquely relative to the carrying structure. Because the endless chain on the frame reaches obliquely into the water, the driver catches the watercraft at the protrusion regardless of the draft of the watercraft. This configuration saves on the need to pull the watercraft out of the water by means of a rope or an eye or even a crane.
The recovery apparatus can be mounted on board a further and preferably driven watercraft, for example a mother ship, a floating platform, or on land. The watercraft to be recovered can be a surface vessel or an underwater vehicle and have its own drive or no drive. In particular, the watercraft to be recovered can be an unmanned surface vessel or underwater vehicle, known as a drone, which is remote-controlled or autonomously controlled.
The recovery apparatus according to the invention is explained in more detail in the following text by way of an exemplary embodiment illustrated in the drawings, in which
In the exemplary embodiment, the invention is used in order to pull a manned or unmanned boat, for example a floating drone, out of the water and to move it on board a mother ship 1 and to hold it in a stowed position there. Preferably, the boat has its own drive. The mother ship 1 likewise has its own drive and travels over water in a direction of travel FR (from left to right in
The invention can equally also be used in order to pull the boat out of the water onto land. The recovery apparatus is then mounted on land and on the shore.
In the following text, two embodiments of the recovery apparatus according to the solution are described, which are used for in each case one type of boat to be recovered. The first embodiment is used in order to pull a boat 2 with a single hull out of the water, and the second embodiment is used for a boat 2.2 with two hulls, for example for a catamaran.
The boat 2, 2.2 travels toward the mother ship 1 from the rear in the direction of travel FR until it arrives in a region above the recovery apparatus, and is then recovered by the recovery apparatus, as will be described further below. The designations “left” and “right” and “front” and “rear” relate to the common direction of travel FR of the mother ship 1 and of the boat 2, 2.2.
The boat 2 of the first embodiment has a single sequence of protrusions in the form of gripping teeth 11, which together form a toothed chain, or hooks or noses, wherein the protrusions are mounted centrally on the single hull of the boat 2 and are distributed over a lower part of the bow and a front part of the keel, cf.
In a corresponding manner, two sequences of protrusions, for example gripping teeth 11.2, are mounted on the two hulls of the boat 2.2 of the second embodiment, cf.
The recovery apparatus of the exemplary embodiment comprises the following essential constituents:
The frame 3 is—as seen in the direction of travel FR of the mother ship 1—arranged in an obliquely rising plane in the carrying structure 40 and can be moved linearly back and forth relative to the carrying structure 40 between a recovering position and at least one parked position.
As can be seen in
In one configuration, a sensor arrangement automatically senses the event of the boat 2, 2.2 temporarily being connected to the chain 8, 8.l, 8.r. For example, a sensor on a chain 8, 8.l, 8.r senses that a gripping tooth 11, 11.2 is in contact with a driver 14.1, 14.2, . . . , 14.l.1, 14.l.2, . . . , 14.r.1, 14.r.2, . . . of the chain 8, 8.l, 8.r. Or a sensor senses the position of the boat 2, 2.2 relative to the frame 3 in a sensor direction parallel to the direction of travel FR or to the direction of movement BR, in order to sense the lateral offset of the boat 2, 2.2 relative to the frame 3. A further sensor senses the position of the boat 2, 2.2 relative to the frame 3 in a sensor direction perpendicular to the direction of travel FR and perpendicular to the direction of movement BR, in order to identify whether the boat 2, 2.2 has reached a chain 8, 8.l, 8.r. Rather than a sensor, it is also possible for a person on board the mother ship 1 to sense this event.
A guide device guides the frame 3 during a movement from the recovering position into the parked position and during a movement in the opposite direction. The guide device of the exemplary embodiment includes a left-hand sequence 5.l of running rollers and a right-hand sequence 5.r of further running rollers, wherein the running rollers 5.l, 5.r are fastened to the frame 3 and can rotate relative to the frame 3 in each case about a horizontal axis of rotation that is perpendicular to the direction of movement BR. Preferably, the running rollers 5.l, 5.r are manufactured from hard plastic, provided with a settable eccentric axis and can be easily removed and replaced. The side view in
The centrally attached double-roller conveyor chain 8 of the first embodiment comprises two endless part-chains 21.1 and 21.2, which are arranged alongside one another. Each part-chain 21.1, 21.2 comprises in each case a sequence of chain links, which are connected together in an articulated manner. Mounted between the left-hand part-chain 21.1 and the right-hand part-chain 21.2 is a sequence of drivers in the form of pins or rollers 14.1, 14.2, . . . , cf.
As can be seen in
In a corresponding manner, the left-hand double-roller conveyor chain 8.l of the second embodiment comprises two left-hand endless part-chains 21.l.1 and 21.l.2, which are shown in
In each case one driver 14.l.1, 14.l.2, . . . of the left-hand double-roller conveyor chain 8.l is—as seen in the direction of movement BR—arranged at the same height as a driver 14.r.1, 14.r.2, . . . of the right-hand double-roller conveyor chain 8.r. The distance between two successive drivers of the same double-roller conveyor chain 8.l or 8.r is large enough that the following is brought about: A boat 2.2 with two sequences, arranged alongside one another, of gripping teeth 11.2 travels centrally toward the frame 3, which is in the recovering position. A driver 14.l.1, 14.l.2, . . . of the left-hand double-roller conveyor chain 8.l comes into contact with a gripping tooth of the left-hand sequence and a driver 14.r.1, 14.r.2, . . . of the right-hand conveyor chain 8.r comes into contact with a gripping tooth of the right-hand sequence. It is possible for the direction of travel of the boat 2.2 toward the recovery apparatus not to coincide exactly with the direction of travel FR of the mother ship 1. Nevertheless, the two gripping teeth, arranged alongside one another, of two drivers that are arranged at the same height are caught. The distance between two gripping teeth of the same sequence and the distance between two drivers of the same chain 8.l, 8.r are sufficiently large. The synchronous movement of the chains 8.l and 8.r brings the boat 2.2 into a position in which the central axis thereof is arranged parallel to the direction of travel FR of the mother ship 1.
The plan view in
In the plan views in
The gripping teeth 11, 11.2 on the boat 2, 2.2 to be recovered and the chain 8, 8.l, 8.r having the drivers 14.1, 14.2, . . . , 14.l.1, 14.l.2, . . . , 14.r.1, 14.r.2, . . . are adapted to one another such that at least one gripping tooth 11, 11.2 can engage in the gap between two drivers 14.1, 14.2, . . . , 14.l.1, 14.l.2, . . . , 14.r.1, 14.r.2, . . . , cf.
Each chain 8, 8.l, 8.r can be moved along a closed curve relative to the frame 3. During operation, the chain 8, 8.l, 8.r does not perform any other movement relative to the frame 3. A motor 9, preferably an electric motor, rotates the or each chain 8, 8.l, 8.r through the closed curve. Preferably, the motor 9 is capable of moving the or each chain 8, 8.l, 8.r selectively in a first direction or in an opposite second direction. When the or each chain 8, 8.l, 8.r is moved in the first direction, the upper segment of the chain 8, 8.l, 8.r is pulled in the direction of movement BR of the frame 3 and pulls a boat 2, 2.2 out of the water, when a gripping tooth 11, 11.2 of the boat 2, 2.2 is caught by a driver 14.1, 14.2, . . . , 14.l.1, 14.l.2, . . . , 14.r.1, 14.r.2, . . . of the or a chain 8, 8.l, 8.r. If the chain 8, 8.l, 8.r is moved in the opposite direction or can run in an unbraked manner, a boat 2, 2.2 can be moved to the water on the frame 3 and launched, wherein gravity slides the boat 2, 2.2 downward on the inclined frame 3.
The motor 9 moves the or each chain 8, 8.l, 8.r as follows: An output shaft of the motor 9 drives a drive sprocket. The drive sprocket moves a drive roller chain 18. The drive roller chain 18 rotates a driven sprocket 24, which is mounted fixedly on the shaft 19 and rotates the shaft 19. Further drive concepts are possible. For example, the motor 9 can be arranged in the interior of the shaft 19.
The or each chain 8, 8.l, 8.r pulls the boat 2, 2.2 in the direction of movement BR over the frame 3.
Preferably, the running rollers are manufactured from an elastic material, for example rubber, or from a low-wear plastic. The boat 2, 2.2 slides over the running rollers 4.l and 4.r. In one configuration, the distance between the mounts 13.l and 13.r and thus the distance between the sequences of running rollers 4.l and 4.r can be changed and thus adapted to the underwater profile of a boat 2, 2.2. In
In one configuration, the mounts 13.l and 13.r can be extended and retracted again, such that the running rollers 4.l and 4.r can be moved obliquely or vertically up or down relative to the frame 3. As a result, the recovery apparatus can be adapted to the depth of a keel of the boat 2, 2.2 and to the underwater profile thereof.
Mounted on each of the two lateral carriers 25.l, 25.r of the frame 3 is a sequence 16.l, 16.r of guide elements, cf.
An actuator 10 is capable of moving the frame 3 together with the chain 8, 8.l, 8.r and a boat 2, 2.2 on the frame 3 from the recovering position into the or a parked position or vice versa. In the exemplary embodiment, the ramp actuator 10 is configured as a hydraulic or pneumatic piston-cylinder unit, which is arranged centrally beneath the frame 3 and in one configuration protrudes forward beyond the frame 3, cf.
The boat 2, 2.2 is pulled out of the water with the aid of the chain 8, 8.l, 8.r and the movement of the frame 3 into the parked position and is itself brought into a stowed position on board the mother ship 1. In this stowed position, the boat 2, 2.2 is located preferably entirely in the interior of the mother ship 1 and does not protrude beyond the outer hull. It is possible to close a flap or a gate of the mother ship 1 and to protect the boat 2, 2.2 in the stowed position from environmental influences. This configuration reduces the electronic signature (the radar cross section) of the mother ship, i.e. the identifiability thereof in a radar image. The boat 2, 2.2 in the stowed position can also be positioned on an open deck of the mother ship 1.
In one configuration, the boat 2, 2.2 remains on the frame 3 as long as it remains on board the mother ship 1 in the stowed position, and at least one gripping tooth 11, 11.2 remains connected to a driver 14.1, 14.2, . . . , 14.l.1, 14.l.2, . . . , 14.r.1, 14.r.2, . . . . In one configuration, a sensor (not shown) senses the event of the frame 3 reaching the only possible parked position. The sensor can comprise a contact switch or a proximity switch or a light barrier. It is also possible for a camera to capture images of the boat 2, 2.2 on the frame 3 and for an image evaluation unit to evaluate these images and to automatically sense the event. The sensing of the event of the frame 3 reaching the parked position triggers the steps in which the ramp actuator 10 and the motor 9 for the chain 8, 8.l, 8.r are stopped. In a modification, the movements of the frame 3 and/or of the or each chain 8, 8.l, 8.r are stopped when the boat 2, 2.2 reaches a predetermined position relative to the carrying structure 40, for example the stern of the boat 2, 2.2 reaches a particular point of the frame 3. The parked position of the frame 3 can thus depend on the length of the boat 2, 2.2 and on the position of the boat 2, 2.2 on the frame 3. This configuration avoids the need to pull the boat 2, 2.2 out of the water further than necessary. The frame 3 is also only moved as far as necessary.
In one configuration, the ramp actuator 10 holds the frame 3 in the parked position and the motor 9 prevents the chain 8, 8.l, 8.r from rotating as long as the boat 2, 2.2 is intended to remain in the stowed position. In an alternative configuration, a locking unit holds the frame 3 in the parked position. Preferably, a spring element holds a locking body (not shown) in a locking position. As a result, the locking body holds the frame 3 in the parked position until an actuator (not shown) pulls the locking body counter to the spring force into a releasing position and the frame 3 can be moved again. This configuration further reduces the risk of the frame 3 with the boat 2, 2.2 sliding undesirably down from the parked position. In one configuration, this or another locking unit also locks the or each chain 8, 8.l, 8.r.
A rear part of the boat 2, 2.2 still floats on the water even when a gripping tooth 11, 11.2 is caught by a driver 14.1, 14.2, . . . , 14.l.1, 14.l.2, . . . , 14.r.1, 14.r.2, . . . and a chain 8, 8.l, 8.r pulls the boat 2, 2.2 out of the water. It is only shortly before the frame 3 reaches the parked position that the boat 2, 2.2 fully leaves the water. The boat 2, 2.2 is intended to maintain contact with the chain 8, 8.l, 8.r even in swell. Furthermore, the boat is intended to be held securely in the parked position of the frame 3 and be securely supported. Therefore, in the exemplary embodiment, a holding apparatus with a left-hand constituent 15.l and a corresponding right-hand constituent 15.r holds the boat 2, 2.2 on the frame 3 and in a position there in which the boat 2, 2.2 remains connected to the chain 8, 8.l, 8.r.
Various configurations are possible for how the holding apparatus 15.l, 15.r holds a boat 2, 2.2 on the frame 3. In one configuration, the constituents 15.l, 15.r are mounted fixedly on the carrying structure 40, and in another configuration they are mounted fixedly on the frame 3 and moved together with the frame 3.
In one configuration, the contact element 23.l, 23.r is capable of holding the boat 2, 2.2 only when the boat 2, 2.2 has reached the stowed position. The contact element 23.l, 23.r is configured for example as a rubber buffer. In another configuration, the boat 2, 2.2 can move relative to the contact element 23.l, 23.r even when the contact element 23.l, 23.r is contact with the boat 2, 2.2 on the frame 3. Each contact element 23.l, 23.r comprises, in one configuration, a running roller that can rotate about an axis that is perpendicular to the direction of movement BR of the frame 3. This axis of rotation can be permanently horizontal or be able to rotate about an axis parallel to the direction of movement BR and adapt to the upper edge of the boat hull.
In one configuration, the constituents 15.l, 15.r are moved into the holding position when the boat 2, 2.2 has reached its stowed position. The holding apparatus 15.l, 15.r can be mounted on the carrying structure 40, cf.
In one configuration, each holding apparatus actuator 22.l, 22.r exerts a pressure on the contact element 23.l, 23.r and acts as a spring element. Preferably, the pressure that the actuator 22.l, 22.r exerts on the boat 2, 2.2 on the frame 3 is measured, for example in that the hydraulic pressure in a fluid circuit for the actuators 22.l, 22.r is measured. The actuator 22.l, 22.r moves the constituent 15.l, 15.r toward the boat 2, 2.2 as long as the exerted pressure remains under a predetermined pressure limit, and then stops the movement of the constituent 15.l, 15.r. This ensures that the holding apparatus 15.l, 15.r does not damage the boat 2, 2.2. Nevertheless, the holding apparatus 15.l, 15.r can successively hold boats with different vertical dimensions on the frame 3.
A boat 2, 2.2 is recovered as follows in the exemplary embodiment:
In the exemplary embodiment, the boat 2, 2.2 remains on the frame 3 in the stowed position until it is intended to be launched again. For this purpose, the corresponding reverse steps are carried out. In one configuration, the motor 9 rotates the chain 8, 8.l, 8.r in the opposite direction, such that the chain 8, 8.l, 8.r pulls the boat 2, 2.2 into the water. In another configuration, gravity moves the boat 2, 2.2 from the inclined frame 3 into the water. It is possible for the motor 9 configured as an electric motor to act as a brake and generator when the boat 2, 2.2 slides onto the water.
1 Mother ship, carries the recovery apparatus of the exemplary embodiment
2 Watercraft to be recovered, having a hull and a plurality of gripping teeth 11 (first embodiment)
2.2 Watercraft to be recovered, having two hulls and a plurality of gripping teeth 11.2 on each hull (second embodiment)
Frame, linearly movable relative to the carrying structure 40 of the mother ship 1, comprises the horizontal platform 26 and the lateral carriers 25.l, 25.r
4.l Running rollers arranged on the left for guiding the watercraft 2, 2.2 relative to the frame 3, mounted on the left-hand mount 13.l
4.r Running rollers arranged on the right for guiding the watercraft 2, 2.2 relative to the frame 3, mounted on the right-hand mount 13.r
5.l Running rollers arranged on the left for guiding the frame 3 relative to the carrying structure 40 of the mother ship 1
5.r Running rollers arranged on the right for guiding the frame 3 relative to the carrying structure 40 of the mother ship 1
6.l Guide rail for holding the running rollers 5.l arranged on the left, slide along the left-hand guide rail 6.l
6.r Guide rail for holding the running rollers 5.r arranged on the right, slide along the right-hand guide rail 6.r
7.h Bearing for the axle 20 of the sprocket pairs 17.l.2, 17.r.2
7.v Bearing for the driveshaft 19 of the sprocket pairs 17.l.1, 17.r.1
8 Centrally arranged double-roller conveyor chain of the first embodiment, comprises the part-chains 21.1 and 21.2 and the drivers 14.1, 14.2, . . . , is guided over the roller-chain guide rails 12.o and 12.u
8.l Left-hand double-roller conveyor chain of the second embodiment, comprises the part-chains 21.l.1 and 21.l.2 and the drivers 14.l.1, 14.l.2, . . . , is guided over the left-hand roller-chain guide rails 12.l.o and 12.l.u
8.r Right-hand double-roller conveyor chain of the second embodiment, comprises the part-chains 21.r.1 and 21.r.2 and the drivers 14.r.1, 14.r.2, . . . , is guided over the right-hand roller-chain guide rails 12.r.o and 12.r.u
9 Drive motor for the double-roller conveyor chain 8, 8.l, 8.r, rotates the drive roller chain 18
10 Hydraulic or pneumatic piston-cylinder unit, acts as an actuator for the frame 3, mounted in an articulated manner on the connecting elements 30 and 31
11 Gripping teeth on the watercraft 2, act as protrusions
11.2 Gripping teeth on the watercraft 2.2, act as further protrusions
12.o Upper roller-chain guide rail made of plastic for the upper segment of the centrally arranged double-roller conveyor chain 8
12.u Lower roller-chain guide rail made of plastic for the lower segment of the centrally arranged double-roller conveyor chain 8
12.l.o Left-hand upper roller-chain guide rail made of plastic for the upper segment of the left-hand double-roller conveyor chain 8.l
12.l.u Left-hand lower roller-chain guide rail made of plastic for the lower segment of the left-hand double-roller conveyor chain 8.l
12.r.o Right-hand upper roller-chain guide rail made of plastic for the upper segment of the right-hand double-roller conveyor chain 8.r
12.r.u Right-hand lower roller-chain guide rail made of plastic for the lower segment of the right-hand double-roller conveyor chain 8.r
13.l Mount for the left-hand running rollers 4.l, mounted on the frame 3
13.r Mount for the right-hand running rollers 4.r, mounted on the frame 3
14.1, 14.2, . . . Sequence of pins between the two part-chains 21.1 and 21.2 of the centrally arranged double-roller conveyor chain 8, act as drivers for the central sequence of gripping teeth 11
14.l.1, 14.l.2, . . . Sequence of pins between the two part-chains 21.l.1 and 21.l.2 of the left-hand double-roller conveyor chain 8.l, act as drivers for the left-hand sequence of gripping teeth 11.2
14.r.1, 14.r.2, . . . Sequence of pins between the two part-chains 21.r.1 and 21.r.2 of the right-hand double-roller conveyor chain 8.r, act as drivers for the right-hand sequence of gripping teeth 11.2
15.l Left-hand constituent of the holding apparatus for holding the watercraft 2, 2.2 on the frame 3, comprises the contact element 22.l, can be moved by the left-hand actuator 22.l
15.r Right-hand constituent of the holding apparatus for holding the watercraft 2, 2.2 on the frame 3, comprises the contact element 22.r, can be moved by the right-hand actuator 22.r
16.l Guide elements arranged on the left for guiding the watercraft 2, 2.2 along the frame 3, mounted on the left-hand lateral carrier 25.l
16.r Guide elements arranged on the right for guiding the watercraft 2, 2.2 along the frame 3, mounted on the right-hand lateral carrier 25.r
17.1, 17.2 Sprocket pairs for the central double-roller conveyor chain 8
17.l.1, 17.l.2 Sprocket pairs for the left-hand double-roller conveyor chain 8.l
17.r.1, 17.r.2 Sprocket pairs for the right-hand double-roller conveyor chain 8.r
18 Drive roller chain for rotating the sprocket 24 on the shaft 19, is rotated by the motor 9
19 Driveshaft for rotating the sprockets 17.l.1, 17.r.1, rotated by the drive roller chain 18, supported in the bearing 7.v
20 Nondriven axle, on which the sprockets 17.l.2, 17.r.2 are mounted, supported in the bearing 7.h
21.1, 21.2 Part-chains of the centrally arranged double-roller conveyor chain 8
21.l.1, 21.l.2 Part-chains of the left-hand double-roller conveyor chain 8.l
21.r.1, 21.r.2 Part-chains of the right-hand double-roller conveyor chain 8.r
22.l Left-hand piston-cylinder unit, moves the left-hand constituent 15.l of the holding apparatus back and forth between the releasing position and the holding position, acts as a spring element
22.r Right-hand piston-cylinder unit, moves the right-hand constituent 15.r of the holding apparatus back and forth between the releasing position and the holding position, acts as a spring element
23.l Contact element of the left-hand constituent 15.l of the holding apparatus, comes into contact with the boat 2, 2.2, can comprise a running roller
23.r Contact element of the right-hand constituent 15.r of the holding apparatus, comes into contact with the boat 2, 2.2, can comprise a running roller
24 Sprocket on the shaft 19, is driven by the drive roller chain 18
25.l, 25.r Lateral carriers of the frame 3, mounted on the horizontal platform 26
26 Horizontal platform of the frame 3, about which the chains 8, 8.l, 8.r are guided
30 Mechanical connecting element between the hydraulic piston-cylinder unit 10 and the frame 3
31 Mechanical connecting element between the hydraulic piston-cylinder unit 10 and the carrying structure 40 of the mother ship 1
40 Carrying structure of the recovery apparatus, is formed by the carrying structure of the mother ship 1, carries the frame 3
BR Direction of movement of the frame 3 from the recovering position into the parked position, at the same time the direction of movement of the respective upper segment of each chain 8, 8.l, 8.r relative to the frame 3
FR Coinciding direction of travel of the mother ship 1 and the boat 2, 2.2 to be recovered on the water
DWL Design waterline of the mother ship 1
M.8.l Central axis of the left-hand double-roller conveyor chain 8.l, is located centrally between the left-hand part-chains 21.l.1 and 21.l.2
M.8.r Central axis of the right-hand double-roller conveyor chain 8.r, is located centrally between the right-hand part-chains 21.r.1 and 21.r.2
M.8 Central axis of the centrally arranged double-roller conveyor chain 8, is located centrally between the part-chains 21.1 and 21.2
MW Centerline of the watercraft 2, 2.2
Number | Date | Country | Kind |
---|---|---|---|
10 2017 220 932.1 | Nov 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/080871 | 11/12/2018 | WO | 00 |