Device and method for lumbar interbody fusion

Information

  • Patent Grant
  • 6730126
  • Patent Number
    6,730,126
  • Date Filed
    Wednesday, February 12, 2003
    22 years ago
  • Date Issued
    Tuesday, May 4, 2004
    20 years ago
Abstract
A method for performing percutaneous interbody fusion is disclosed. The method includes the steps of inserting a guide needle posteriorly to the disc space, inserting a dilator having an inner diameter slightly larger than the outer diameter of the guide needle over the guide needle to the disc space to enlarge the disc space, and successively passing a series of dilators, each having an inner diameter slightly larger than the outer diameter of the previous dilator, over the previous dilator to the disc space the gradually and incrementally increase the height of the disc space. Once the desired disc height is achieved, the guide needle and all the dilators, with the exception of the outermost dilator, are removed. An expandible intervertebral disc spacer is then passed through the remaining dilator and positioned in the disc space. Th disc spacer is expanded to the required disc height, and then a bone matrix is passed through the dilator to fill the disc space. The dilator is then removed. An expandible intervertebral disc spacer is also disclosed, having a tapered bore that causes greater expansion of one end of the spacer with respect to the other. A kit for performing the percutaneous interbody fusion procedure is also disclosed.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a device and method for performing interbody spinal fusion, stabilization and restoration of the disc height in the spine, and in particular to a device and method for performing percutaneous, minimally invasive interbody fusion of the lumbar spine.




2. Discussion of the Related Art




Many devices exist to assist in maintaining the position of the lumbar vertebra in conjunction with lumbar fusion surgery. Fusion is the joining together of the vertebra of the spine. The underlying concept of the known devices is to maintain the relative position of the vertebral bodies with respect to each other, while the bone that has been placed between the vertebra to form the fusion of the vertebra, has an opportunity to heal and mature. These devices employ different strategies and philosophies, and can include devices which utilize the pedicles, as well as devices which are placed in to the disc space to promote fusion across the disc space. The latter devices and techniques associated with these devices are known as “interbody fusion”. While no single technique has been universally accepted as the most optimum method, there is growing evidence that interbody fusion may be the preferred method.




The interbody fusion procedure may be performed via an anterior or posterior approach. Initially, all interbody fusion procedures were accomplished using the posterior approach. The procedure was performed by first performing a laminectomy, removing the disc space, and then packing the disc space with pieces of bone, which were then permitted to heal over time. The hope was that the inserted bone pieces would grow and fuse together with the vertebra above and below that disc space, forming a bridge of bone between the two vertebral bodies, thus accomplishing the interbody fusion.




Posterior interbody fusion procedures are accomplished via a variety of techniques. Most procedures attempt to restore proper disc height, i.e. the space between the adjacent vertebra. The patient benefits from restoring the proper disc height, particularly where there has been deterioration, degeneration or collapse of the disc.




More recently, the anterior interbody fusion procedure has gained popularity, due to the availability and improvements made in devices that enable the anterior approach for lumbar interbody fusions. These devices typically provide for a retroperitoneal or transperitoneal technique to be used for approaching the lumbar disc, removing some or all of the disc, and placing either bone or a metallic device into the disc space. These devices also typically provide a means for distracting the disc space, i.e. making the space between the discs wider. Presently, this aspect of lumbar interbody fusion procedures are considered to be an important step in the procedure because of its effects on the neural foramina, or areas from which the nerve roots exit through the vertebra. It is generally accepted that enlarging the disc space consequently enlarges the neural foramina, thus decompressing the exiting nerve roots.




The current techniques, due to the present equipment available, particularly for anterior interbody fusion, suffer the disadvantage in that they are major surgeries and require large incisions with the manipulation of both tissue and organs. While attempts have been made to perform anterior interbody fusions laparoscopically, these procedures are often complicated and are typically performed under general anesthesia.




Therefore, a need exists for a method for performing interbody fusions that reduces the trauma to the patient, and consequently reducing recovery time. A device is also needed to facilitate the interbody fusion procedure to enable the procedure to be performed percutaneously, enabling the surgeon to distract the disc to restore disc height, maintain the distraction, and promote the growth of the bone placed in the disc space between the two vertebral bodies, thus accomplishing the interbody fusion.




SUMMARY OF THE INVENTION




It is, therefore, an object of the present invention to provide a minimally invasive, percutaneous surgical procedure for performing interbody fusion which reduces the trauma to the patient and reduces recovery time.




It is also an object of the present invention to provide a percutaneous interbody fusion procedure which accomplishes the interbody fusion through small incisions in the body of the patient and utilizes a minimum of incisions to complete the procedure.




It is a further object of the present invention to provide a device which facilitates the percutaneous interbody fusion procedure.




It is yet another object of the present invention to provide a device which distracts the disc space and which may be inserted through a tube to effect the percutaneous interbody fusion procedure.




It is a further object of the present invention to provide a collapsible and expandible interbody fusion spacing device that facilitates the percutaneous interbody fusion procedure.




It is still a further object of the present invention to provide a kit for performing a minimally invasive percutaneous interbody fusion procedure.




The above and other objects of the present invention may be achieved by providing a collapsible and expandible interbody fusion spacer device that may be inserted through a small diameter tube to the disc space that is being fused, so that the procedure may be performed in a minimally invasive manner. The spacer is preferably constructed in two halves that are connected by pins located on the sides of the spacer. The outer surface may be flat to engage the end plate of the vertebra above and below the spacer, and the outer surface may be scored, have ridges, points, tabs, detents, or the like to enhance gripping of the end plates of the vertebra to resist movement of the spacer once it is in place. The interior surfaces of the halves that make up the spacer include a semicircular hollowed portion that is preferably threaded along at least a portion of its length that is aligned with a similar semicircular threaded hollowed portion on the other half of the spacer. When the spacer is assembled, the threaded portion forms a canal for acceptance of a piston screw. Preferably, the threaded canal is tapered from one end to the other, particularly from the end which will be positioned posteriorly in the disc space to the end which will be positioned anteriorly in the disc space. When the piston screw is inserted, the anteriorly positioned end will expand a greater distance in the disc space than the posterior end, due to the tapered threaded canal. This will cause the disc height, i.e. the distance between the vertebra, to be greater anteriorly than posteriorly, which more closely mimics the natural curve of the spine, particularly in the lumbar spine, thus restoring lordosis, the natural curve of the lumbar spine.




A method for performing percutaneous interbody fusion is also provided, in which the disc space is enlarged in the craniocaudal direction following percutaneous discectomy. Following the discectomy, a guide needle is passed through the incision to the disc space between the vertebra. Over the needle, a series of tubularly shaped dilators are passed, with each successive dilator having an inner diameter that is slightly larger than the outer diameter of the dilator that is in place. As each successive dilator is inserted in the disc space, it forces the vertebra apart, increasing the disc space, until a desired height between the vertebra is achieved. Once a desired height is reached, which is only a desired height and not necessarily the maximum height, the outer dilator is left in place, while those inside the outer dilator are removed. The maximum height does not have to be achieved by the dilators because the expandible intervertebral disc spacer of the present invention is then inserted into the disc space through the outer dilator. Once in place, the spacer is expanded to increase the disc height to the maximum distance. After the spacer is in place on one side of the vertebral body, the procedure is repeated on the other side. After the two spacers are in place, a bone matrix, which encourages fusion, is passed through the dilators, filling the space with bone. The dilators are then removed and the procedure is complete.




A kit for performing percutaneous interbody fusion is also provided, which includes a plurality of expandible intervertebral disc spacers, which preferably expand the disc space a greater distance anteriorly than posteriorly, at least one dilator for expanding the disc height and having a hollow interior for allowing passage of the disc spacers to the disc space, and a guide needle. A curette for performing percutaneous discectomies may be provided, and a bone matrix for fusing the vertebra together may also be provided.











BRIEF DESCRIPTION OF THE DRAWINGS




The above and other objects, features and advantages of the present invention will become more readily apparent from the following detailed description of preferred embodiments of the invention, taken in conjunction with the accompanying drawings, in which:





FIG. 1

illustrates a perspective view of an expandible intervertebral disc spacer according to the present invention;





FIG. 2

illustrates a side cross-sectional view of the disc spacer of

FIG. 1

;





FIG. 3

illustrates a perspective view of an alternative embodiment of the expandible intervertebral disc spacer of

FIG. 1

;





FIG. 4

illustrates a side cross-sectional view of the disc spacer of

FIG. 3

;





FIG. 5

illustrates diagrammatic view of a dilator system for enlarging the disc height of the vertebra prior to placement of the disc spacer of the present invention between the vertebra;





FIG. 6

illustrates a diagrammatic view of the placement procedure of the disc spacer of the present invention;





FIG. 7

illustrates a diagrammatic view of the disc spacer in place between the vertebra and in a fully expanded condition to restore the natural curvature of the spine;





FIG. 8

illustrates a percutaneous interbody fusion kit according to the present invention; and





FIG. 9

illustrates a flow chart of the percutaneous interbody fusion method according to the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to the drawings, in which like reference numerals identify similar or identical elements throughout the several views, and inn particular to

FIG. 1

, there is shown the expandible intervertebral disc spacer device


10


according to the present invention. Preferably, the disc spacer


10


is comprised of two similarly shaped halves


12


,


14


that are opposed to each other and loosely connected by pins


16


. The outer surface of each half may be scored, as indicted by reference numeral


22


, for facilitating adherence to the end plates of the vertebral bodies between which disc spacer


10


is placed. When top half


12


and bottom half


14


are assembled, together they may form a cylinder, a cube, a rectangular box, or any geometric shape that may be split to form two opposed halves. A tapered bore


18


is provided, which has a larger diameter


30


at a first end and a smaller diameter


32


at a second end. Preferably, tapered bore


18


is threaded over at least a portion of its length. While disc spacer


10


is preferably constructed of titanium or other suitable metal alloy, cortical bone may also be used. It is also contemplated that the material of the disc spacer


10


, or at least the material of which tapered bore


18


is constructed, is self-tapping so that threads are not needed.




Screw


20


is provided for insertion into bore


18


to expand the disc spacer


10


. As seen in

FIG. 2

, pins


16


are located in pin bores


26


which have a larger diameter near the outer surface of disc spacer


10


, and a smaller diameter near the interior of the spacer. The change in diameter creates a stop


34


which engages the head


24


of pins


16


, to terminate expansion of the spacer


10


. When screw


20


is inserted into bore


18


, the smaller diameter


32


of the threaded bore causes a greater expansion at the second end than at the first, for reasons which will be described below.





FIGS. 3 and 4

illustrate an alternative embodiment of the disc spacer


40


of the present invention. Disc spacer


40


comprises a pair of opposed plates


42


,


44


which may be square, rectangular, rhomboidal, trapezoidal, or any suitable geometric shape. Pins


16


loosely hold the plates together, as described above, through pin bores


26


, which include larger diameter portion


28


which creates stop


34


to engage the head


24


of pins


16


. The outer surface of plates


42


,


44


may include ridges


50


, detents, scoring or the like to enhance adherence to the end plates of the vertebra. Each plate includes a threaded ledge portion


48


, which forms a bore for accepting screw


20


when the plates are assembled to form disc spacer


40


. Preferably, the threaded portion has a larger diameter at a first end


52


and a smaller diameter at a second end


54


, so that there is greater expansion of the spacer at the second end


54


than at first end


52


, for reasons which will be described below.





FIGS. 5

,


6


and


7


illustrate the percutaneous interbody fusion procedure of the present invention, utilizing the expandible intervertebral disc spacer of the present invention. Following a percutaneous discectomy in which the disc between vertebra


64


and


66


is removed, preferably posteriorly, through a small incision, disc space


62


is enlarged using dilator system


60


in the procedure according to the present invention. In the procedure, a guide needle


68


is inserted into the disc space under scanning imaging, preferably fluoroscopy. Once the guide needle


68


is in place in the disc space


62


, a series of dilators


70


are inserted over guide needle to enlarge the disc space. A first dilator


72


, having an inner diameter that is slightly larger than the outer diameter of guide needle


68


is passed over the guide needle through the incision until it reaches the disc space


62


. A second dilator


74


, having an inner diameter that is slightly larger than the outer diameter of first dilator


72


is then passed over dilator


72


until it reaches disc space


62


. A third dilator


76


, a fourth dilator


78


and a fifth dilator


80


, each having successively larger inner diameters, are then passed over the previous dilator into the disc space


62


. As each dilator enters the disc space, it gradually and incrementally enlarges the height of disc space


62


until the disc space is at a desired height. The desired height does not have to be the maximum required height, since that height may be reached by the expandible disc spacer which will be inserted into the disc space. The number of dilators may of course vary, depending on the height of the disc space desired. The depth to which the dilators are inserted can be monitored in many known ways, such as by fluoroscopy, calibrations on the dilators, a combination of both, or other means.




Referring to

FIG. 6

, once the dilators are in place, and the disc space


62


is at the desired height, the guide needle


68


and all the dilators, with exception of the outermost dilator


80


, are removed. Expandible intervertebral disc spacer


10


is the passed through dilator


80


to the disc space


62


by an insertion tool


82


. The position of disc spacer


10


is confirmed under fluoroscopy, and either tool


82


or another tool inserted through dilator


80


is used to tighten screw


20


. Disc spacer


10


is positioned so that the first end of spacer


10


, having the larger diameter


30


of tapered bore


18


, is positioned posteriorly, while the second end having smaller diameter


32


of bore


18


is positioned anteriorly. As seen in

FIG. 7

, when the screw


20


is tightened, the second end, on the anterior side of the spine opens a distance D


2


, which is greater than distance D


1


, which is on the posterior side of the spine. This restores lordosis, or the natural curvature of the spine, particularly in the lumbar region, and relieves the intervertebral foramina and decompresses the nerve roots. Once the disc spacer


10


is in position, bone matrix is passed through the dilator


80


to encourage fusion, to fill the disc space with bone.




While the above procedure has been described for only one set of dilators, and for enlarging the disc space for placement of a disc spacer on one side of the disc space


62


, it is understood that the procedure is performed on both sides of the disc space to raise the disc height evenly, and that two disc spacers


10


are inserted. After the bone matrix is inserted, the dilators are then removed and the procedure is complete.





FIG. 8

illustrates a kit for performing the percutaneous interbody fusion procedure of the present invention. Kit


90


comprises a package having top cover


92


and bottom cover


94


, where top cover


92


is preferably formed of plastic having depressions or indentations


96


for holding the instruments packaged therein. Packaged in kit


90


are preferably at least two disc spacers


10


, a corresponding number of screws


20


, a plurality of dilators


70


and a guide needle


68


. Kit


90


is preferably sterilized.





FIG. 9

is a flow chart of the method of the present invention. Following a percutaneous discectomy procedure, a guide needle is inserted through the incision at step


100


to the disc space between the vertebral bodies to be fused. The depth to which the guide needle is inserted is observed, preferably through fluoroscopy, in step


102


. Once the guide needle is in place, a dilator having an inner diameter that is slightly larger than the outer diameter of the guide needle is passed over the guide needle to the disc space in step


104


. The dilator increases the height of the disc space. In step


106


, a second dilator is passed over the first dilator, where the second dilator has an inner diameter that is slightly larger than the outer diameter of the first dilator, to further increase or enlarge the disc space. At step


108


, the height of the disc space is then observed, preferably through fluoroscopy, to see if it is at the desired height, at step


110


. If not, the procedure returns to step


106


and another dilator, having an inner diameter slightly larger than the outer diameter of the previous dilator, is passed over the previous dilator to the disc space. If the disc space is at the desired height, the guide needle and all the dilators, with the exception of the outermost dilator, are removed at step


112


. At step


114


, an expandible intervertebral disc spacer is inserted through the dilator to the disc space. The position of the disc spacer is adjusted to a proper position at step


116


, and then observed, preferably through fluoroscopy, at step


118


. If it is determined at step


120


that the disc spacer is not at the correct location, the procedure returns to step


116


. If the position is correct, the disc spacer is expanded to enlarge the disc space to a desired height at step


122


. If it is determined at step


124


that the space is not at the desired height, the procedure returns to step


122


. If the space is at the desired height, the tool is removed at step


126


, and a bone matrix is passed down the dilator to the disc space in step


128


. Once the bone matrix is in place, the dilator is removed at step


130


, and the incision is closed at step


132


, ending the procedure.




While the invention has been shown and described with reference to certain preferred embodiments, it will be understood by those skilled in the art that various changes and modifications in form and detail may be made therein without departing from the spirit and scope of the invention, as defined by the appended claims.



Claims
  • 1. An expandible intervertebral disc spacer, comprising:a split cylinder having a top half and a bottom half joined by a plurality of pins to permit movement of the top half with respect to the bottom half, an inner surface of the top half and an inner surface of the bottom half facing each other defining a tapered bore extending from a first end of the cylinder towards a second end of the cylinder; and a piston screw insertable into the tapered bore to expand the cylinder by moving the top half away from the bottom half; wherein the piston screw moving into the taperd bore causes the second end of the cylinder to expand a greater distance than the first end.
  • 2. An expandible intervertebral disc spacer for implantation in a disc space to enlarge the height of the disc space and restore lordosis in a spine of a patient during interbody fusion procedures, comprising:a top portion having an inner surface and an outer surface, and having a first end and a second end; a bottom portion having an inner surface and an outer surface, and having a first end and a second end, the inner surface of the bottom portion facing the inner surface of the top portion; a plurality of pins joining the top portion to the bottom portion to permit vertical movement of the top portion with respect to the bottom portion; the inner surface of the top portion and the inner surface of the bottom portion defining a tapered bore having a diameter at a first end that is greater than a diameter at a second end; and a rod for insertion into the tapered bore to expand a distance between the top portion and the bottom portion, the second end of the top portion moving a greater distance with respect to the second end of the bottom portion than the first end.
  • 3. The disc spacer of claim 2, wherein the tapered bore is threaded along at least a portion of its length.
  • 4. The disc spacer of claim 3, wherein the rod is threaded.
  • 5. The disc spacer of claim 2, wherein the top portion and bottom portion are constructed of bone material.
  • 6. The disc spacer of claim 2, wherein the outer surface of the top portion and the outer surface of the bottom portion are scored to enhance adherence to vertebra of the spine.
Parent Case Info

This application is a Divisional of U.S. Patent Application Ser. No. 10/010,314, now U.S. Pat. No. 6,666,891 filed on Nov. 13, 2001 which claims priority to U.S. Provisional Patent Appln. Ser. No. 60/248,137, filed on Nov. 13, 2000, the contents of which are incorporated herein by reference.

US Referenced Citations (36)
Number Name Date Kind
3811449 Gravlee et al. May 1974 A
5015247 Michelson May 1991 A
5522899 Michelson Jun 1996 A
5609635 Michelson Mar 1997 A
5665122 Kambin Sep 1997 A
5782832 Larsen et al. Jul 1998 A
5888228 Knothe et al. Mar 1999 A
5984967 Zdeblick et al. Nov 1999 A
6042582 Ray Mar 2000 A
6063121 Xavier et al. May 2000 A
6080155 Michelson Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6083225 Winslow et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6113602 Sand Sep 2000 A
6117174 Nolan Sep 2000 A
6126689 Brett Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6197033 Haid, Jr. et al. Mar 2001 B1
6200322 Branch et al. Mar 2001 B1
6224595 Michelson May 2001 B1
6224607 Michelson May 2001 B1
6241769 Nicholson et al. Jun 2001 B1
6245072 Zdeblick et al. Jun 2001 B1
6375655 Zdeblick et al. Apr 2002 B1
6395034 Suddaby May 2002 B1
6419705 Erickson Jul 2002 B1
6436098 Michelson Aug 2002 B1
6436142 Paes et al. Aug 2002 B1
6454807 Jackson Sep 2002 B1
6527734 Cragg et al. Mar 2003 B2
6648917 Gerbec et al. Nov 2003 B2
20020032483 Nicholson et al. Mar 2002 A1
20020077641 Michelson Jun 2002 A1
20020107574 Boehm et al. Aug 2002 A1
20020138146 Jackson Sep 2002 A1
Foreign Referenced Citations (15)
Number Date Country
44 16 605 Nov 1994 DE
0 077 159 Oct 1982 EP
0 712 607 May 1996 EP
1 129 668 Sep 2001 EP
1 153 574 Nov 2001 EP
1 219 268 Jul 2002 EP
98 10832 Aug 1998 FR
WO 9627321 Sep 1996 WO
WO 0035388 Jun 2000 WO
WO 0042898 Jul 2000 WO
WO 0049977 Aug 2000 WO
WO 0061011 Oct 2000 WO
WO 0112080 Feb 2001 WO
WO 0024326 May 2002 WO
WO 02067786 Sep 2002 WO
Non-Patent Literature Citations (1)
Entry
International Search Report dated Sep. 13, 2002, issued in a counterpart application, namely Appln. No. PCT/US01/47121.
Provisional Applications (1)
Number Date Country
60/248137 Nov 2000 US