The present invention relates to the treatment of a patient's lung, for example, the treatment of chronic obstructive pulmonary diseases (COPD). In particular this invention relates to systems, devices and methods for affecting lung volume reduction for the treatment of COPD, such as emphysema.
Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. COPD is generally characterized by airflow obstruction, which in particular limits the patient's air flow during expiration. Patients with chronic bronchitis have chronic cough with sputum production leading to obstructed expiration. In patients with emphysema, destruction of lung parenchyma can lead to loss of elastic recoil, reduced tethering of the airways, obstruction to expiration, and cough.
Lung function as well as quality of life in patients suffering with a COPD can be improved by reducing a patient's effective lung volume. One way to reduce effective lung volume is by surgically removing diseased portions of the lungs, both to promote expansion of the non-diseased regions, realign a patient's diagraph and to redirect inhaled air from diseased portions of lungs into healthier, better functioning lung regions. Surgery often results in effective volume reduction of about 15-30%, which may not be sufficient to cause an appreciable improvement in lung function. Also, conventional lung reduction surgery is traumatic, even when thorascopic procedures are employed.
Recently, bronchoscopic approaches for reducing effective lung volume have been proposed. See for example, U.S. Pat. Nos. 6,592,594, 6,679,264, 6,398,775 and 6,610,043; and U.S. Patent Publications 2003/0181922, 2004/0055606, and 2004/0047855. One challenge to achieving effective lung reduction, particularly in emphysematous lungs, is collateral ventilation or collateral pathways.
Accordingly, there is a need for devices, methods and systems for reducing effective lung volume without surgery, and also for reducing lung volume in the presence of collateral pathways. The present invention is directed to meeting these, as well as other, needs.
This invention relates to the treatment of a patient's lung, for example, the treatment of chronic obstructive pulmonary disease (COPD) and other conditions that can be treated by decreasing a patient's effective lung volume. In particular methods and devices of the invention relate to treatment for affecting lung volume reduction by delivering a thermal damaging agent to a targeted region of a patient's lung so that the region is essentially non-functional.
A method of treating a patient's lung includes delivering a thermal damaging agent to a targeted region of the patient's lung to raise the temperature of the tissue in the region sufficiently high to the extent that blood flow and air flow within the targeted region are terminated. Preferably the thermal damaging agent damages at least one of the group consisting of tissue defining at least in part an air sac of the targeted region, tissue of terminal bronchioles in the targeted region and collateral passageways in the targeted region. The method can also include occluding an airway of the lung through which the thermal damaging agent is delivered at a point proximal to where the thermal damaging agent enters the target region so as to isolate the region and prevent excursions of the thermal damaging agent to areas outside the target region.
One preferred method of treating a patient's lungs includes delivering a condensable vapor at a temperature above body temperature at atmospheric pressures to lung tissue of the target region, particularly the tissue defining at least in part an air sac within the patient's lung.
A device for delivering a thermal damaging agent to a targeted region of the patient's lung to raise the temperature of the lung tissue in the targeted region sufficiently high to render the targeted region essentially non-functional wherein neither blood flow nor air flow occurs within the region. The device for delivering a thermal damaging agent includes an elongate shaft having a proximal portion, a distal portion, and a thermal damaging agent delivering lumen extending within at least a distal portion of the shaft. The device has at least one discharge port in the distal portion of the elongate shaft in fluid communication with the thermal damaging agent delivering inner lumen. A thermal damaging agent generator is in fluid communication with the thermal damaging agent delivery lumen in the elongate shaft and is configured for generating a thermal damaging agent at a temperature above 40° C. to the tissue at the targeted region to render the region essentially non-functional. Preferably the device also includes an occluding member disposed on a distal portion of the shaft to occlude the airway passage proximal to the delivery location of the thermal damaging agent.
In one embodiment the device includes an elongate shaft having a proximal portion, a distal portion, and a vapor delivering inner lumen extending within at least the distal portion of the shaft. The device has at least one discharge port in the distal portion of the elongate shaft in fluid communication with the vapor delivering inner lumen configured to deliver condensable vapor to the target region. A condensable vapor generator is provided in fluid communication with the vapor delivering lumen of the elongate shaft for generating a condensable vapor at a temperature above 40° C. to thermally damage tissue at the targeted region sufficiently to terminate blood flow and air flow to the targeted region. Preferably the device also includes an occluding member disposed on a distal portion of the shaft. The delivered condensable vapor is generally about 40° to 80° C., and preferably is about 50° to about 60° C. The condensable vapor is delivered to the targeted region for a period of about 5 seconds to about 10 minutes, preferably about 5 seconds to about 10 seconds. Suitable liquids for forming the condensable vapor includes water based fluids and perfluorocarbon.
In addition to the treatment of COPD, other conditions can be treated, for example by applying the methods and devices described to pre-cancerous lesions, cancer tumors, or lung nodules. As will be recognized by those skilled in the art, reducing the total volume of a patient's lung, especially an emphysematous lung, can be an effective treatment for COPD.
The method includes delivering the condensable vapor through an airway 20 of the lung to the targeted lung region. Preferably the airway 20 is a bronchial passageway such as segmental bronchi, and most preferably a sub segmental bronchi 20.
The condensable vapor 12 serves to rapidly heat the targeted lung region as the vapor 12 is delivered and induces tissue collapse, shrinkage, neointima hyperplasia, necrosis and fibrosis (collectively referred to herein as “bioeffects”) of the targeted lung region. Such bioeffects render the target lung region non-functioning.
The method may also include applying a vacuum to the targeted region after delivery of the condensable vapor to further supplement tissue contraction and collapse caused by introduction of the condensable vapor 12. The vacuum generated in the targeted region is about 1 to about 50 mm Hg, preferably about 10 to about 30 mm Hg to effectively collapse the targeted region. The vacuum may also facilitate aspiration of any residual vapor or liquid.
In general the vapor is applied into the targeted region through an airway for anywhere from 5 seconds to 10 minutes or longer. Preferably the condensable vapor is delivered for a short period of time, about 5 seconds to 10 seconds. Because tissue heating and the resulting damage is rapid using energetic vapor, short vapor application times are preferred. In longer procedures, less vapor may be used to cause gradual tissue bioeffects or to treat larger regions or volumes of tissue. Separate procedures may be utilized for separate regions to be treated.
The condensable vapor 12 maybe generated from a liquid, for example, sterile water or other fluids such as perfluorocarbons, having relatively high liquid-gas phase-change temperatures, i.e., boiling points, preferably temperatures well above body temperature. In addition, preferably the condensable vapor 12 is at a temperature sufficient to increase the temperature of the surrounding lung parenchyma to cause damage, for example, above at least 40° C.
In one method of the invention the condensable vapor 12 additionally includes a detectable substance, such as a dye, preferably a biocompatible dye, to detect movement of the condensable vapor 12 and the affected lung regions. Alternatively or in conjunction with the visually detectable substance, diagnostic ultrasound, endoscopic and other conventional visualization techniques are used to monitor the vapor treatment and resulting tissue effects during and after treatment.
In another method embodying features of the invention, the condensable vapor 12 is delivered with microparticulates. Suitable microparticulates include talc, calcium carbonate, antibiotics such as tetracycline and other penicillin derivates, or other particulate substances which induce fibrosis or cause necrosis of the lung tissue.
In another method embodying features of the invention the condensable vapor 12 includes a treatment agent such as an anesthetic or painkillers to alleviate patient discomfort and pain during the treatment. A painkiller, such as lidocane in powder or liquid form, preferably is used or mixed with a condensable vapor 12. Alternatively, pain killers may be delivered to the entire lung, or just to the targeted lung region. Patient preparation with pain medication before, during, and after the procedure is preferred in order to allow treatment using the present invention without the need for general anesthesia.
In another method embodying features of the invention helium or carbon dioxide is delivered in addition to the vapor 12 to lower the temperature of the vapor 12.
A method of the invention includes occluding the airway of a lung proximal to the area where the condensable vapor 12 is delivered. In some embodiments, to prevent condensable vapor from entering and damaging adjacent airways and lung regions, the adjacent airways are filled with a fluid, such as saline. Airways leading to untargeted lung regions may be obstructed to prevent vapor flow therein.
In one method embodying features of the invention high intensity focused ultrasound (HIFU) energy is delivered to damage lung tissue such as the tissue of an air sac or alveoli in the lung. Preferably suitable ultrasound transducers that are capable of delivering high intensity. focused ultrasound (HIFU), generally between about 100-10,000 W/cm2 at a focal spot.
The HIFU energy is delivered in amounts sufficient to cause contraction of lung tissue. Because HIFU can be tightly controlled, the ultrasound energy can be specifically targeted to the epithelium, smooth muscle layer, or collagen layer. Delivery of the HIFU energy can also serve to initiate a healing response (including neointima hyperplasia) which further serves to occlude the passageway. The method can include a wave guide to direct the HIFU sound waves to the intended treatment site. Additionally a vacuum may be applied prior the HIFU to draw down the airway or air sacs. Alternatively the vacuum may be applied after delivery of the HIFU energy as in the previously discussed embodiment to further supplement tissue contraction and collapse of the terminal bronchioles, air sacs and collateral passageways caused by introduction of the ultrasound energy.
In another embodiment, an ultrasound absorptive material, such as a liquid or gel, can be eluted into the airway of the lung. The absorptive material is heated by the HIFU energy in order to thermally damage the surrounding tissue, resulting in contraction of the airway and or neointima hyperplasia, which will occlude the airway and or damage the air sacs of the lung.
In an alternative embodiment, RF energy can be delivered to a desired location within a patient's lung to damage lung tissue but this usually requires a conductive fluid in contact with the lung tissue for effective ablation.
The elongate shaft 24 also contains a vacuum lumen 36 which is configured to be connected to a vacuum source for application of a vacuum through vacuum port 38 in the distal portion 26 of the elongate shaft.
The elongated shaft 24 is also provided with an inflation lumen 40 which leads to the inflation port 42. Port 42 opens to the interior 44 of the inflatable balloon 46 which is secured to the distal portion 26 of the shaft. The inflation device 48 may be a conventional syringe. The occluding member 46 is preferably expandable, compliant, and is configured to prevent vapor flow proximal to the location of the member. Suitable balloon materials include silicone or latex. The exterior of the working surface of the inflatable balloon 46 is preferably provided with a knurled or roughened surface to better engage the airway walls and prevent recoil when the condensable vapor is delivered to the target location.
A venting system may be included with the device to ensure that high pressure does not exceed suitable limits. The venting system includes a venting lumen 50 in the shaft 24 which is in fluid communication with the port 52 in the distal end of the shaft 24. The venting mechanism can be a pressure actuated relief valve 54.
The device 22 also includes a temperature sensor 56, for example a thermocouple, located on the distal portion 26 of the elongate shaft 24 to monitor the surrounding temperature. When the temperature is too high, the lung region is brought back to normal temperatures with a lavage or washout procedure to facilitate removal of residual vapor.
The device 22 preferably includes a pressure sensor 58 on the distal portion 26 of the elongate shaft 24 to detect pressure within the targeted lung region. The pressure sensor 58 communicates with a pressure gauge 60 on the proximal portion 28 of the elongate shaft 24. The pressure sensing system may be tied in with the venting system to ensure that preset pressure limits are not exceeded during vapor delivery. Over inflation of the target region could lead to air leaks and tears in the lung pleura.
A suitable flow meter (not shown) may be included to monitor vapor flow to the targeted region of the patient's lung.
As shown in
Alternatively or in addition to the use of the occluding member 46, airways adjacent the delivery airway can be obstructed, for example, with a fluid such as saline. The fluid in the adjacent airways prevents condensable vapor 12 from entering into other lung regions which are not targeted for treatment and prevents damage of the adjacent regions.
Preferably the vapor generator 34, as shown in
Alternatively, as shown in
In one embodiment, the vapor generator 34, as shown in
Alternatively, the vapor generator 34 can be disposed within the elongate shaft 24. The heating elements, for example an RF electrode or emitter such as a helical coil, may be embedded within the wall of the shaft, surrounding the lumen 32. The heater may be used as an alternative to the vapor generator 34 or to augment or further control the temperature of the vapor leaving the discharge port 30 from lumen 32.
Preferably, the elongate shaft 24 of the device 22 is heat insulated to avoid overheating of the elongate shaft 24 inside the endoscope 62. In one embodiment the elongate shaft 24 contains a liquid lumen (not shown) and a cooling fluid is delivered within this lumen to prevent overheating.
The condensable vapor 12 is a substance which is capable of rapidly heating a region of the lung to render the target region non-functioning where there is little or no blood flow or air flow within the region. Suitable condensable vapors 12 are selected from the group consisting of condensable vapors from aqueous based fluids, for example, sterile water, saline, contrast fluid, and other fluids such as perfluorocarbons, liquid antibiotics, and other liquids having high liquid-gas phase-change temperatures, i.e., boiling point, preferably above body temperature. In addition preferably the condensable vapor 12 is at a temperature sufficient to increase the temperature of the tissue at the target site to cause tissue damage.
In another embodiment of the invention the condensable vapor 12 includes a detectable substance, such as a dye or a biocompatible dye, to allow the physician to visually track progress of treatment and which lung regions have been treated. Alternatively or in conjunction with the visually detectable material, diagnostic ultrasound, endoscopic and other conventional visualization techniques are used to monitor the condensable vapor treatment and resulting tissue effects during and after treatment.
In yet another embodiment the condensable vapor 12 comprises a treatment agent such as a pain-numbing substance or painkillers to alleviate patient discomfort and pain during the treatment. A painkiller, such as lidocane in aqueous powder or liquid form, preferably is used or mixed with a condensable vapor 12. Alternatively pain killers are delivered to the entire lung, or the targeted lung region. Preferably patient preparation with pain medication before, during, and after the procedure is preferred in order to allow treatment using the present invention without the need for general anesthesia. The device can include a drug delivery lumen in fluid communication with a drug delivery port in the distal portion of the elongate shaft. Painkillers or other drugs can be delivered to the desired area through the optional drug delivery lumen.
In yet another embodiment the elongate shaft 24 of device 22 has a helium or carbon dioxide delivery lumen (not shown) for delivering helium or carbon dioxide in addition to the vapor 12 to lower the temperature of the condensable vapor 12.
While particular forms of the invention have been illustrated and described herein, it will be apparent that various modifications and improvements can be made to the invention. Moreover, individual features of embodiments of the invention may be shown in some drawings and not in others, but those skilled in the art will recognize that individual features of one embodiment of the invention can be combined with any or all the features of another embodiment. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. It is therefore intended that this invention be defined by the scope of the appended claims as broadly as the prior art will permit.
Terms such as “element”, “member”, “device”, “section”, “portion”, “component”, “means”, “steps” and words of similar import when used herein shall not be construed as invoking the provisions of 35 U.S.C §112(6) unless the following claims expressly use the terms “means” or “step” followed by a particular function without reference to a specific structure or action. All patents and all patent applications referred to above are hereby incorporated by reference in their entirety.
This application is a division of U.S. application Ser. No. 13/073,660, filed Mar. 28, 2011, now U.S. Pat. No. 9,050,076; which is a continuation of U.S. application Ser. No. 11/281,212, filed Nov. 16, 2005, now U.S. Pat. No. 7,913,698; which application claims priority to U.S. Provisional Application No. 60/628,451, filed Nov. 16, 2004, and U.S. Provisional Application No. 60/648,036, filed Jan. 27, 2005, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
408899 | Small | Aug 1889 | A |
1719750 | Bridge et al. | Jul 1929 | A |
3880168 | Berman | Apr 1975 | A |
4026285 | Jackson | May 1977 | A |
4773410 | Blackmer et al. | Sep 1988 | A |
4793352 | Eichenlaub | Dec 1988 | A |
4915113 | Holman | Apr 1990 | A |
4950266 | Sinofsky | Aug 1990 | A |
5006119 | Acker et al. | Apr 1991 | A |
5011566 | Hoffman | Apr 1991 | A |
5084043 | Hertzmann et al. | Jan 1992 | A |
5112328 | Taboada et al. | May 1992 | A |
5158536 | Sekins et al. | Oct 1992 | A |
5263951 | Spears et al. | Nov 1993 | A |
5331947 | Shturman | Jul 1994 | A |
5334190 | Seiler | Aug 1994 | A |
5348551 | Spears et al. | Sep 1994 | A |
5352512 | Hoffman | Oct 1994 | A |
5424620 | Cheon et al. | Jun 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5524620 | Rosenschein | Jun 1996 | A |
5529076 | Schachar | Jun 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5562608 | Sekins et al. | Oct 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5591157 | Hennings et al. | Jan 1997 | A |
5620440 | Heckele et al. | Apr 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5735811 | Brisken | Apr 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5782914 | Schankereli | Jul 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5824703 | Clark, Jr. | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5913856 | Chia et al. | Jun 1999 | A |
5957919 | Laufer | Sep 1999 | A |
5964752 | Stone | Oct 1999 | A |
5972026 | Laufer et al. | Oct 1999 | A |
5986662 | Argiro et al. | Nov 1999 | A |
5989445 | Wise et al. | Nov 1999 | A |
6032077 | Pomeranz | Feb 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6059011 | Giolo | May 2000 | A |
6083255 | Laufer et al. | Jul 2000 | A |
6099251 | LaFleur | Aug 2000 | A |
6102037 | Koch | Aug 2000 | A |
6113722 | Hoffman et al. | Sep 2000 | A |
6130671 | Argiro | Oct 2000 | A |
6131570 | Schuster et al. | Oct 2000 | A |
6139571 | Fuller | Oct 2000 | A |
6156036 | Sussman et al. | Dec 2000 | A |
6162232 | Shadduck | Dec 2000 | A |
6179805 | Sussman et al. | Jan 2001 | B1 |
6194066 | Hoffman | Feb 2001 | B1 |
6200333 | Laufer | Mar 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6219059 | Argiro | Apr 2001 | B1 |
6273907 | Laufer | Aug 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6300150 | Venkatasubramanian | Oct 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6327505 | Medhkour et al. | Dec 2001 | B1 |
6394949 | Crowley et al. | May 2002 | B1 |
6398759 | Sussman et al. | Jun 2002 | B1 |
6398775 | Perkins et al. | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6411852 | Danek et al. | Jun 2002 | B1 |
6458231 | Wapner et al. | Oct 2002 | B1 |
6468313 | Claeson et al. | Oct 2002 | B1 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6508816 | Shadduck | Jan 2003 | B2 |
6527761 | Soltesz et al. | Mar 2003 | B1 |
6575929 | Sussman et al. | Jun 2003 | B2 |
6579270 | Sussman et al. | Jun 2003 | B2 |
6585639 | Kotmel et al. | Jul 2003 | B1 |
6588613 | Pechenik et al. | Jul 2003 | B1 |
6589201 | Sussman et al. | Jul 2003 | B1 |
6592594 | Rimbaugh et al. | Jul 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6610043 | Ingenito | Aug 2003 | B1 |
6629951 | Laufer et al. | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6653525 | Ingenito et al. | Nov 2003 | B2 |
6669694 | Shadduck | Dec 2003 | B2 |
6676628 | Sussman et al. | Jan 2004 | B2 |
6679264 | Deem et al. | Jan 2004 | B1 |
6682520 | Ingenito | Jan 2004 | B2 |
6692494 | Cooper et al. | Feb 2004 | B1 |
6712812 | Roschak et al. | Mar 2004 | B2 |
6719738 | Mehier | Apr 2004 | B2 |
6755794 | Soukup | Jun 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6776765 | Soukup et al. | Aug 2004 | B2 |
6860847 | Alferness et al. | Mar 2005 | B2 |
6885888 | Rezai | Apr 2005 | B2 |
6901927 | Deem et al. | Jun 2005 | B2 |
6904909 | Andreas et al. | Jun 2005 | B2 |
6907881 | Suki et al. | Jun 2005 | B2 |
6911028 | Shadduck | Jun 2005 | B2 |
6986769 | Nelson et al. | Jan 2006 | B2 |
6997189 | Biggs et al. | Feb 2006 | B2 |
7022088 | Keast et al. | Apr 2006 | B2 |
7027869 | Danek et al. | Apr 2006 | B2 |
7031504 | Argiro et al. | Apr 2006 | B1 |
7083612 | Littrup et al. | Aug 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7136064 | Zuiderveld | Nov 2006 | B2 |
7144402 | Kuester, III | Dec 2006 | B2 |
7144588 | Oray et al. | Dec 2006 | B2 |
7175644 | Cooper et al. | Feb 2007 | B2 |
7192400 | Campbell et al. | Mar 2007 | B2 |
7198635 | Danek | Apr 2007 | B2 |
7233820 | Gilboa | Jun 2007 | B2 |
7235070 | Vanney | Jun 2007 | B2 |
7335195 | Mehier | Feb 2008 | B2 |
7347859 | Garabedian et al. | Mar 2008 | B2 |
7412977 | Fields et al. | Aug 2008 | B2 |
7422563 | Roschak et al. | Sep 2008 | B2 |
7422584 | Loomas et al. | Sep 2008 | B2 |
7425212 | Danek et al. | Sep 2008 | B1 |
7462162 | Phan et al. | Dec 2008 | B2 |
7628789 | Soltesz et al. | Dec 2009 | B2 |
7708712 | Phan et al. | May 2010 | B2 |
7740017 | Danek et al. | Jun 2010 | B2 |
7778704 | Rezai | Aug 2010 | B2 |
7815590 | Cooper | Oct 2010 | B2 |
7819908 | Ingenito | Oct 2010 | B2 |
7906124 | Laufer et al. | Mar 2011 | B2 |
7913698 | Barry | Mar 2011 | B2 |
7993323 | Barry et al. | Aug 2011 | B2 |
8002740 | Willink et al. | Aug 2011 | B2 |
8172827 | Deem et al. | May 2012 | B2 |
8187269 | Shadduck et al. | May 2012 | B2 |
8251070 | Danek et al. | Aug 2012 | B2 |
8292882 | Danek et al. | Oct 2012 | B2 |
8322335 | Barry | Dec 2012 | B2 |
8568403 | Soltesz | Oct 2013 | B2 |
8585645 | Barry et al. | Nov 2013 | B2 |
8734380 | Barry et al. | May 2014 | B2 |
8858549 | Shadduck et al. | Oct 2014 | B2 |
9050076 | Barry | Jun 2015 | B2 |
20020077516 | Flanigan | Jun 2002 | A1 |
20020111386 | Sekins et al. | Aug 2002 | A1 |
20020112723 | Schuster | Aug 2002 | A1 |
20020177846 | Mulier et al. | Nov 2002 | A1 |
20030099279 | Venkatasubramanian et al. | May 2003 | A1 |
20030109869 | Shadduck | Jun 2003 | A1 |
20030181922 | Alferness | Sep 2003 | A1 |
20040031494 | Danek et al. | Feb 2004 | A1 |
20040038868 | Ingenito | Feb 2004 | A1 |
20040047855 | Ingenito | Mar 2004 | A1 |
20040055606 | Hendricksen et al. | Mar 2004 | A1 |
20040068306 | Shadduck | Apr 2004 | A1 |
20040199226 | Shadduck | Oct 2004 | A1 |
20040200484 | Springmeyer | Oct 2004 | A1 |
20040244803 | Tanaka | Dec 2004 | A1 |
20050016530 | McCutcheon et al. | Jan 2005 | A1 |
20050066974 | Fields et al. | Mar 2005 | A1 |
20050166925 | Wilson et al. | Aug 2005 | A1 |
20050171396 | Pankratov et al. | Aug 2005 | A1 |
20050171582 | Matlock | Aug 2005 | A1 |
20050203483 | Perkins et al. | Sep 2005 | A1 |
20050215991 | Altman et al. | Sep 2005 | A1 |
20050222485 | Shaw et al. | Oct 2005 | A1 |
20060004400 | McGurk et al. | Jan 2006 | A1 |
20060047291 | Barry | Mar 2006 | A1 |
20060100619 | McClurken et al. | May 2006 | A1 |
20060130830 | Barry | Jun 2006 | A1 |
20060135955 | Shadduck | Jun 2006 | A1 |
20060162731 | Wondka et al. | Jul 2006 | A1 |
20060200076 | Gonzalez et al. | Sep 2006 | A1 |
20060224154 | Shadduck et al. | Oct 2006 | A1 |
20070032785 | Diederich et al. | Feb 2007 | A1 |
20070036417 | Argiro et al. | Feb 2007 | A1 |
20070068530 | Pacey | Mar 2007 | A1 |
20070091087 | Zuiderveld | Apr 2007 | A1 |
20070092864 | Reinhardt et al. | Apr 2007 | A1 |
20070102011 | Danek et al. | May 2007 | A1 |
20070106292 | Kaplan et al. | May 2007 | A1 |
20070109299 | Peterson | May 2007 | A1 |
20070112349 | Danek et al. | May 2007 | A1 |
20070118184 | Danek et al. | May 2007 | A1 |
20070293853 | Truckai et al. | Dec 2007 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20090138001 | Barry et al. | May 2009 | A1 |
20090149846 | Hoey et al. | Jun 2009 | A1 |
20090192508 | Laufer et al. | Jul 2009 | A1 |
20090312753 | Shadduck | Dec 2009 | A1 |
20100256714 | Springmeyer | Oct 2010 | A1 |
20110257644 | Barry et al. | Oct 2011 | A1 |
20110270031 | Frazier et al. | Nov 2011 | A1 |
20130267939 | Barry et al. | Oct 2013 | A1 |
20150094607 | Barry et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
721086 | Jun 2000 | AU |
1003582 | Feb 2003 | EP |
1143864 | Feb 2004 | EP |
1173103 | Oct 2005 | EP |
1326549 | Dec 2005 | EP |
1326548 | Jan 2006 | EP |
1485033 | Aug 2009 | EP |
2004512893 | Apr 2004 | JP |
WO 0011927 | Mar 2000 | WO |
WO 0102042 | Jan 2001 | WO |
WO 02069821 | Sep 2002 | WO |
WO 03070302 | Aug 2003 | WO |
WO 03086498 | Oct 2003 | WO |
WO 2005025635 | Mar 2005 | WO |
WO 2005102175 | Nov 2005 | WO |
WO 2006003665 | Jan 2006 | WO |
WO 2006052940 | May 2006 | WO |
WO 2006053308 | May 2006 | WO |
WO 2006053309 | May 2006 | WO |
WO 2006080015 | Aug 2006 | WO |
WO 2006116198 | Nov 2006 | WO |
Entry |
---|
Becker, et al.; Lung volumes before and after lung volume reduction surgery; Am J Respir Crit Care Med; vol. 157; pp. 1593-1599; (1998) Oct. 28, 1997. |
Blacker, G. F.; Vaporization of the uterus; J. of Obstetrics and Gynaecology; vol. 33; pp. 488-511; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1902. |
Carpenter III et al.; Comparison of endoscopic cryosurgery and electrocoagulation of bronchi; Trans. Amer. Acad. Opth.; vol. 84; No. 1; pp. ORL-313-ORL-323; Jan. 1977. |
Clinical Trials.Gov.; Study of the AeriSeal System for HyPerinflation Reduction in Emphysema; 4 pages; Nov. 5, 2014; retrieved from the internet (http://clinicaltrials.gov/show/NCT01449292). |
Coda, et al., “Effects of pulmonary reventilation on gas exchange after cryolytic disobstruction of endobronchial tumors,” Minerva Medical, vol. 72, pp. 1627-1631, Jun. 1981 (w/ Eng. Trans.). |
Delaunois; Anatomy and physiology of collateral respiratory pathways; Eur. Respir. J.; 2(9); pp. 893-904; Oct. 1989. |
Eyal et al.; The acute effect of pulmonary burns on lung mechanics and gas exchange in the rabbit; Br. J. Anaesth.; vol. 47; pp. 546-552; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1975. |
Fishman et al., A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema, N Engl Med, vol. 348, No. 21, pp. 2059-2073, May 22, 2003. |
Goldberg et al.; Radiofrequency tissue ablation in the rabbit lung: Efficacy and complications; Acad. Radiol.; vol. 2; pp. 776-784; Sep. 1995. |
Homasson, et al., “Bronchoscopic cryotherapy for airway strictures caused by tumors,” Chest, vol. 90, No. 2, pp. 159-164, Aug. 1986. |
Kang, Li, “Efficient optimal net surface detection for image segmentation—from theory to practice,” M.Sc. Thesis, The University of Iowa, Dec. 2003. |
Kinsella et al.; Quantitation of emphysema by computed tomography using a “densitymask” program and correlation with pulmonary function tests; Chest; 97(2); pp. 315-321; Feb. 1990. |
Looga, R. U.; Mechanism of changes in the respiratory and cardiovascular reflexes from the lungs associated with intrapulmonary steam burns; Eng. Trans. from Byulleten Eksperimental noi Biologii I Meditsiny; vol. 61; No. 6; pp. 31-33; Jun. 1966. |
Marasso, et al., “Cryosurgery in bronchoscopic treatment of tracheobronchial stenosis,” Chest, vol. 103, No. 2, pp. 472-474, Feb. 1993. |
Marasso, et al., “Radiofrequency resection of bronchial tumours in combination with cryotherapy: evaluation of a new technique,” Thorax, vol. 53, pp. 106-109, (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1998. |
Mathur et al., Fiberoptic bronchoscopic cryotherapy in the management of tracheobronchial obstruction, Chest, vol. 110, No. 3, pp. 718-723, Sep. 1996. |
Morice et al.; Endobrinchial argon plasma coagulation for treatment of hemotysis and neoplastic airway obstruction, Chest, vol. 119, No. 3, pp. 781-787, Mar. 2001. |
Moritz et al.; The effects of inhaled heat on the air pasage and lungs; American Journal of Pathology; vol. XXI; pp. 311-331; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1944. |
Moulding et al.; Preliminary studies for achieving transcervical oviduct occlusion by hot water or low-pressure steam; Advances in Planned Parenthood; vol. 12, No. 2; pp. 79-85; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1977. |
Pracht, Adam, “VIDA takes new approach,” Iowa City Press-Citizen, Sep. 12, 2005. |
Quin, Jacquelyn, “Use of neodymium yttrium aluminum garnet laser in long-term palliation of airway obstruction,” Connecticut Medicine, vol. 59, No. 7, pp. 407-412, Jul. 1995. |
Sutedja, et al.; Bronchoscopic treatment of lung tumors; Elsevier, Lung Cancer, 11, pp. 1-17, Jul. 1994. |
Tschirren et al.; Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans; IEEE Trans. Med. Imaging; vol. 24, No. 12; pp. 1529-1539; Dec. 2005. |
Tschirren, Juerg; Segmentation, anatomical labeling, branchpoint matching, and quantitative analysis of human airway trees in volumetric CT images; Ph.D. Thesis; The University of Iowa; Aug. 2003. |
Tschirren, Juerg; Segmentation, anatomical labeling, branchpoint matching, and quantitative analysis of human airway trees in volumetric CT images; Slides from Ph.D. defense; The University of Iowa; Jul. 10, 2003. |
Van De Velde; Vapo-cauterization of the uterus; Amer. J. Med. Sci.; vol. CXVIII; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1899. |
Vorre et al.; Morphology of tracheal scar after resection with CO2-laser and high-frequency cutting loop; Acta Otolaryngol (Stockh); vol. 107; pp. 307-312; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1989. |
Number | Date | Country | |
---|---|---|---|
20150230852 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
60628451 | Nov 2004 | US | |
60648036 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13073660 | Mar 2011 | US |
Child | 14703580 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11281212 | Nov 2005 | US |
Child | 13073660 | US |