Many applications and technologies use mixtures of high-viscosity materials and solutions. For example, medical device coatings often use a polymer mixed with a solvent and various additives such as therapeutic agents. Due to the high viscosity of the polymer, achieving a uniform mixture of the desired materials may be difficult or time-consuming. Conventional mixing techniques and devices include magnetic stir plates, rolling, shaking (such as with ultrasonic tables), and paddle mixing. These techniques can be relatively slow, particularly with high-viscosity materials, often requiring processing times of a day or more. They also have a relatively high risk of material contamination, such as during loading or unloading of stir bars, mill balls, or paddles.
Recently, dual-axis centrifuges have been used to mix high-viscosity materials. These devices induce strong internal shear forces on the materials being mixed, allowing for rapid mixing of materials. Dual-axis centrifuges include devices such as the SpeedMixer™ devices available from FlackTek of Landrum, S.C. A conventional dual-axis centrifuge includes a turntable positioned on and at an angle to a carousel. A cup of material to be mixed is placed on the turntable. When the centrifuge is activated, the turntable rotates around its axis and the carousel rotates around its axis in the opposite direction of the turntable. The resulting movement causes materials in the cup to be mixed relatively quickly and thoroughly.
Devices according to embodiments of the invention may include a rotatable main support such as a carousel and one or more rotatable offset supports such as turntables arranged on or in the main support, where the main support and the offset support can be rotated both concurrently and independently of one another. Materials to be mixed may be placed in holders such as cups on the offset supports. By rotating only the main support or only the offset supports in addition to rotating both concurrently, the materials may be mixed more efficiently than is possible in a conventional centrifuge.
It has been found that conventional dual-axis centrifuges typically cause “dead zones” in the material being mixed. For example, when materials are mixed in a conventional dual-axis centrifuge for a time less than that required to achieve complete mixing, certain mixing areas within the mixing cup are subject to internal shear forces sufficient to cause the various materials in the cup to mix; however, a dead zone may form, typically in the center and/or bottom of the cup, where little or no mixing occurs or where mixing occurs very slowly and often due only to edge effects resulting from movement in the primary mixing regions. A dual-swirl and dead zone mixing pattern is common in dual-axis centrifuge systems. When materials of different viscosity, particle size, and/or tackiness are mixed, the dead zone may cause a buildup of unmixed material. When similar materials are mixed these effects may be less pronounced, though they may still increase the total time required to sufficiently mix the materials. For example, when a particulate material is mixed with a viscous or semi-solid material such as a polymer, the particulate material may collect in the dead zone. This buildup can prevent the materials from mixing completely, require the centrifuge to be run for an unacceptably long period of time to completely mix the materials, or require operator intervention to loosen the undesirable buildup during the mixing process.
In accordance with an embodiment of the invention, the formation of dead zones in a mixture of materials may be prevented or reduced by independently varying rotation of the offset support holding the sample and the main support.
The turntables 101, 102, 103 may be rotated independently of the main support 120. For example, the main support 120 may be driven by a separate motor than the turntables 101, 102, 103. The turntables 101, 102, 103 may be driven by a single motor or by separate motors. The turntables may be controlled together, so that each turntable is rotated at the same time and speed, or each turntable may be controlled independently. A processor or other device may control rotation of the main support and the turntables. By performing combinations of concurrent turntable and main support rotations, independent main support rotation, and/or independent turntable rotation, dead zones may be reduced or eliminated during mixing.
In each of the configurations illustrated in
In a conventional dual-axis centrifuge, both the carousel and the turntables rotate simultaneously, which can leave a dead zone 401 where little or no mixing occurs in the bottom central portion of the material 400. To reduce or prevent formation of a dead zone, devices according to embodiments of the invention may rotate the support and turntables independently of one another. For example, a period of normal dual-axis operation (
Since each type of rotation subjects material in the mixing cup to differently-directed forces, buildup or accumulation of material in the dead zone may be reduced or removed by applying different rotation modes. As a specific example, materials to be mixed may be placed in a mixing device according to an embodiment of the present invention. The device initially may be run in a conventional dual-axis mode where both the main support and the offset support are rotated. After a certain period of time, or when an operator observes buildup or reduced mixing in a dead zone, the dual-axis rotation may be stopped and a different rotation mode engaged. In an independent rotation mode, either the main support or the offset support is rotated, while the other is held rotationally fixed. The rotation rate may be the same as during dual-axis operation or it may be different. In some embodiments, the rotation rate may be specified by an operator upon beginning the independent rotation mode. In other rotation modes, both the main support and the offset support may rotate, but the speed of one or both may be varied. By engaging different rotation modes, dead zone formation may be reduced or prevented since the different modes will exert different forces or differently-directed forces on materials mixed by the device. For example, a turntable-only rotation mode may be engaged to force materials in the mixing cups toward the outside edges of the cups, thus reducing or removing undesirable buildup in the bottom and/or center area of the cups.
When the offset supports and the main support are rotated concurrently, they typically are rotated in opposite rotational directions. Thus, the main support may rotate clockwise and the offset supports counter-clockwise, or the main support may rotate counter-clockwise and the offset supports clockwise. In embodiments where an offset support is arranged at an angle relative to the axis of rotation of the main support, the rotational direction of the offset support may be defined as if the offset support was arranged to have its axis of rotation parallel to that of the support after rotation through the smallest angle that would cause the axis of the offset support to be parallel to the axis of the main support. For example, in
The offset and main supports may be controlled by a processor. The processor may be hardware or a combination of hardware and software. The processor may be configured to implement commands specifying rotation of the main and/or offset supports, concurrently or independently. The commands may be specified by an operator, such as in a rotation procedure, or may be pre-defined and stored in the device. The commands used in a rotation procedure, or commands used by the system to implement a rotation procedure or any other operation performed by the device, may be stored on a computer-readable medium. A user interface may be implemented in hardware and/or software to allow for transmission of information between the processor and an operator.
Devices according to embodiments of the invention may include additional equipment to further process materials being mixed. For example, a vibration unit such as an ultrasonic vibrator may be disposed within the device. The vibrator may be placed into contact with the main support, offset supports, and/or holders and actuated to vibrate the materials. Similarly, the device may include a shaker to agitate the main support, offset supports, and/or holders. A temperature control such as a heater and/or cooler may be controlled by the processor or operate independently to set a desired temperature within the device. Typically, the main support and offset supports may be disposed within a chamber in the device, and the temperature control arranged to measure and/or set the temperature within the chamber. An ultraviolet (UV) lamp or other radiation source may be disposed within the device. The lamp may be controlled by the processor or operate independently to irradiate materials placed in the device with UV light or other electromagnetic radiation.
In some embodiments, an operator may provide a rotation procedure to the processor that specifies various rotation modes, times, and other parameters of operation of the device. The rotation procedure may be provided directly to the device, such as via an integrated user interface, or it may be created on a separate device such as a computer and transferred to a device according to an embodiment of the invention via any suitable communication medium. Exemplary commands that may be used in a rotation procedure include: start/stop device, set speed of main support and offset support concurrently/simultaneously, set speed of main support only, set speed of offset supports only, set speed of individual offset support, set mixing time, ramp up/down main support, ramp up/down offset supports, rapid start/stop main support, rapid start/stop offset supports, set temperature, start/stop ultrasonic vibration, start/stop shaker, and turn UV lamp on/off. Other commands may be used, and commands may be used in any possible combination.
Devices according to embodiments of the invention also may have pre-configured rotation procedures. For example, when an efficient rotation procedure for specific materials is known, the rotation procedure may be stored in a mixing device according to an embodiment of the invention for use by an operator. The device may include a storage mechanism, such as a computer-readable medium, to store the rotation procedures. The device also may include a user interface as previously described to allow an operator to provide, select, modify, and remove rotation procedures stored in the device.
An exemplary, non-limiting rotation procedure that may be used with embodiments of the invention is shown in
Conventional dual-axis centrifuges typically are used for research and development or prototyping purposes and, therefore, are designed to hold and mix small amounts of material. In contrast, devices according to embodiments of the invention may use multiple material cups or otherwise be configured to hold larger amounts of material. In many cases, devices according to embodiments of the invention may process a sufficient amount of material to be used in mass fabrication of materials such as for use in pharmaceuticals, medical devices, polymer coatings, therapeutic agents, polymer/therapeutic agent combinations, and other applications. In an embodiment, multiple turntables and cups may be disposed on the rotatable support as shown in
The devices and methods for mixing materials herein may be particularly suited to combining multiple materials having different viscosity, particle size, tackiness, or other similar characteristic. For example, they may be suited to fabrication of polymer and polymer/drug solutions used to coat medical devices such as stents. As a specific example, Xylene and poly(styrene-b-isobutylene-b-styrene) (SIBS) may be mixed more efficiently than with a conventional dual-axis centrifuge. For example, a solution comprising 75% Xylene and 25% SIBS may be mixed for use in roll coating of medical devices such as stents.
The various computer systems described herein may each include a storage component for storing machine-readable instructions for performing the various processes as described and illustrated. The storage component may be any type of machine readable medium (i.e., one capable of being read by a machine) such as hard drive memory, flash memory, floppy disk memory, optically-encoded memory (e.g., a compact disk, DVD-ROM, DVD±R, CD-ROM, CD±R, holographic disk), a thermomechanical memory (e.g., scanning-probe-based data-storage), or any type of machine readable (computer readable) storing medium. Each computer system may also include addressable memory (e.g., random access memory, cache memory) to store data and/or sets of instructions that may be included within, or be generated by, the machine-readable instructions when they are executed by a processor on the respective platform. The methods and systems described herein may also be implemented as machine-readable instructions stored on or embodied in any of the above-described storage mechanisms.
The devices and methods described herein may be used to fabricate or modify various therapeutic agents, such as for use in coating a medical device. The therapeutic agent may be any suitable biologically acceptable agent such as a non-genetic therapeutic agent, a biomolecule, a small molecule, or cells. Examples of therapeutic agents, as well as examples of polymers and other materials that may be mixed in a device or method according to the invention include those identified in U.S. Pat. No. 7,344,601, which is incorporated by reference herein.
Although the present invention has been described with reference to particular examples and embodiments, it is understood that the present invention is not limited to those examples and embodiments. The present invention as claimed therefore includes variations from the specific examples and embodiments described herein, as will be apparent to one of skill in the art.
The present application claims priority to U.S. provisional application Ser. No. 61/050,771 filed May 6, 2008, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61050771 | May 2008 | US |