The mitral valve is a portion of the heart that is located between the chambers of the left atrium and the left ventricle. When the left ventricle contracts to pump blood throughout the body, the mitral valve closes to prevent the blood from being pumped back into the left atrium. In some patients, whether due to genetic malformation, disease or injury, the mitral valve fails to close properly causing a condition known as regurgitation, whereby blood is pumped into the atrium upon each contraction of the heart muscle. Regurgitation is a serious, often rapidly deteriorating, condition that reduces circulatory efficiency and should be corrected.
Three of the more common techniques for restoring the function of a damaged mitral valve are to surgically replace the valve with a mechanical valve, to surgically repair the valve, or to suture a flexible ring around the valve to support it. Each of these procedures is highly invasive because access to the heart is obtained through an opening in the patient's chest. Patients with severe mitral valve regurgitation can be relatively frail thereby increasing the risks associated with such an operation.
One less invasive approach for aiding the closure of the mitral valve involves the placement of a support structure in the cardiac sinus and vessel that passes adjacent the mitral valve. The support structure is designed to push the vessel and surrounding tissue against the valve to aid its closure. This technique has the advantage over other methods of mitral valve repair because it can be performed percutaneously without opening the chest wall. Examples of such devices are shown in U.S. patent application Ser. No. 10/003,910, “Focused Compression Mitral Valve Device and Method;” U.S. patent application Ser. No. 10/142,637, “Body Lumen Device Anchor, Device and Assembly;” U.S. patent application Ser. No. 10/331,143, “System and Method to Effect the Mitral Valve Annulus of a Heart;” and U.S. patent application Ser. No. 10/429,172, “Device and Method for Modifying the Shape of a Body Organ,” filed May 2, 2003. The disclosures of these patent applications are incorporated herein by reference.
The purpose of a support device in a lumen such as a vein or artery is to reshape a particular tissue area adjacent to the lumen. In order to be minimally invasive, the reshaping should be limited to the target tissue, such as the mitral valve annulus, and any reshaping of other tissue adjacent to the lumen should be minimized or avoided. For example, to treat mitral valve regurgitation, the device is placed in the coronary sinus to reshape the mitral valve annulus. Care should be taken to minimize the reshaping of other adjacent tissue, such as nearby arteries. See, e.g., the following applications (the disclosures of which are incorporated herein by reference): U.S. patent application Ser. No. 09/855,945, “Mitral Valve Therapy Device, System and Method” (published Nov. 14, 2002, as US 2002/0169504 A1); U.S. patent application Ser. No. 09/855,946, “Mitral Valve Therapy Assembly and Method” (published Nov. 14, 2002, as US 2002/0169502 A1). It is also advisable to monitor cardiac perfusion during and after such mitral valve regurgitation therapy. See, e.g., U.S. patent application Ser. No. 10/366,585, “Method of Implanting a Mitral Valve Therapy Device,” the disclosure of which is incorporated herein by reference.
The invention is a device for modifying the shape of tissue adjacent to a body lumen. One application for the device of this invention is in the treatment of mitral valve regurgitation.
One aspect of the invention is a tissue shaping device with a reshaping element and an anchor adapted to anchor the device in a lumen, the anchor having a wire adapted to contact a wall of the lumen with an anchoring force when the device is deployed in the lumen and one or more force distribution elements adapted to distribute the anchoring force more along a first anchoring axis than along a second anchoring axis, which may be substantially perpendicular to the first anchoring axis. In some embodiments, the wire is formed in a substantially figure 8 shape. In some embodiments, the force distribution element(s) may be a loop formed in the wire. The anchor may include a wire fastener, and the force distribution element may be configured so that the second anchoring axis passes through the wire fastener. The device may also have a second anchor adapted to anchor the device in the lumen, with the reshaping element extending between the two anchors.
Another aspect of the invention provides a method of deploying a tissue shaping device in a lumen, the tissue shaping device having an anchor and a reshaping element. The method may include the steps of placing the anchor in contact with a wall of the lumen to exert an anchoring force on the lumen wall; and distributing the anchoring force more along a first anchoring axis than along a second anchoring axis, such as by using at least one force distributor associated with (e.g., integral with) the anchor to distribute the anchoring force. In embodiments in which the anchor includes a wire, the placing step may include the step of placing the wire in contact with the lumen wall. In embodiments in which the anchor also includes a wire fastener, the distributing step may include the step of distributing the anchoring force more along an anchoring axis that does not pass through the wire fastener than along an anchoring axis that passes through the wire fastener. For example, the method may include the step of distributing the anchoring force more along an axis substantially perpendicular to the anchoring axis that passes through the wire fastener than along the axis passing through the wire fastener.
In some embodiments of the method, the placing step may include the step of exerting the anchoring force on the lumen wall substantially around an inner circumference of a section of the lumen. In aspect of these embodiments in which the anchor includes a wire and a wire fastener, the placing step may include the step of placing the wire and the wire fastener in contact with the lumen wall. The method may also include the step of placing a second anchor in contact with a wall of the lumen.
Other aspects of the invention will be apparent from the following detailed description and drawings.
Anchor 10 performs its anchoring function by placing an outwardly directed force on the vessel wall 16 surrounding the lumen. As shown in
A device 24 such as that shown in
It may be desirable to minimize the outwardly directed force beneath and directly above crimps 14, such as to minimize the compression of any arteries beneath or directly above crimps 14. Loops 18 distribute the anchors' outwardly directed force so that less force is directed beneath and directly above crimps 14.
The anchor design of this invention may be used with other devices as well.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/712,546, “Tissue Shaping Device With Conformable Anchors,” filed Dec. 19, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 10/429,172, “Device and Method for Modifying the Shape of a Body Organ,” filed May 2, 2003, both of which are incorporated herein by reference. This application also claims the benefit of U.S. Provisional Application No. 60/476,695, filed Jun. 5, 2003, which application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60476695 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10712546 | Nov 2003 | US |
Child | 10845474 | May 2004 | US |
Parent | 10429172 | May 2003 | US |
Child | 10712546 | Nov 2003 | US |