The mitral valve is a portion of the heart that is located between the chambers of the left atrium and the left ventricle. When the left ventricle contracts to pump blood throughout the body, the mitral valve closes to prevent the blood from being pumped back into the left atrium. In some patients, whether due to genetic malformation, disease or injury, the mitral valve fails to close properly causing a condition known as regurgitation, whereby blood is pumped into the atrium upon each contraction of the heart muscle. Regurgitation is a serious, often rapidly deteriorating, condition that reduces circulatory efficiency and must be corrected.
Two of the more common techniques for restoring the function of a damaged mitral valve are to surgically repair the valve, replace the valve with a mechanical valve, or to suture a flexible ring around the valve to support it. Each of these procedures is highly invasive because access to the heart is obtained through an opening in the patient's chest. Patients with mitral valve regurgitation are often relatively frail thereby increasing the risks associated with such an operation.
One less invasive approach for aiding the closure of the mitral valve involves the placement of a support structure in the cardiac sinus and vessel that passes adjacent the mitral valve. The support structure is designed to push the vessel and surrounding tissue against the valve to aid its closure. This technique has the advantage over other methods of mitral valve repair because it can be performed percutaneously without opening the chest wall. Examples of such devices are shown in U.S. patent application Ser. No. 10/003,910, “Focused Compression Mitral Valve Device and Method;” U.S. patent application Ser. No. 10/142,637, “Body Lumen Device Anchor, Device and Assembly;” U.S. patent application Ser. No. 10/331,143, “System and Method to Effect the Mitral Valve Annulus of a Heart;” and U.S. patent application Ser. No. 10/429,172, “Device and Method for Modifying the Shape of a Body Organ,” filed May 2, 2003. The disclosures of these patent applications are incorporated herein by reference.
The purpose of a support device in a lumen such as a vein or artery is to reshape a particular tissue area adjacent to the lumen. In order to be minimally invasive, the reshaping should be limited to the target tissue, such as the mitral valve annulus, and any reshaping of other tissue adjacent to the lumen should be minimized or avoided. For example, to treat mitral valve regurgitation, the device is placed in the coronary sinus to reshape the mitral valve annulus. Care should be taken to minimize the reshaping of other adjacent tissue, such as nearby arteries. See, e.g., the following applications (the disclosures of which are incorporated herein by reference): U.S. patent application Ser. No. 09/855,945, “Mitral Valve Therapy Device, System and Method” (published Nov. 14, 2002, as U.S. 2002/0169504 A1); U.S. patent application Ser. No. 09/855,946, “Mitral Valve Therapy Assembly and Method” (published Nov. 14, 2002, as U.S. 2002/0169502 A1). It is also advisable to monitor cardiac perfusion during and after such mitral valve regurgitation therapy. See, e.g., U.S. patent application Ser. No. 10/366,585, “Method of Implanting a Mitral Valve Therapy Device,” the disclosure of which is incorporated herein by reference.
One aspect of the invention is a tissue shaping device adapted to be deployed in a lumen to modify the shape of target tissue adjacent to the lumen. In one embodiment the device includes first and second anchors; a connector disposed between the first and second anchors; and a focal deflector disposed between the first and second anchors and may be adapted to extend away from the lumen axis and toward the target tissue and/or away from the lumen axis and away from the target tissue when the device is deployed in the lumen. The focal deflector may have an expandable portion that is, e.g., self-expanding or expandable through the application of an actuation force. The device may also have a lock to lock the focal deflector in an expanded configuration.
In some embodiments the focal deflector is integral with the connector. For example, the focal deflector may be a bend in the connector, such as a bend that extends away from the lumen axis and toward the target tissue. The focal deflector may include a local change to the linear shape of the connector, such as a portion of increased curve of the curved line of the connector. The focal deflector may also include a flattened portion of the connector.
In some embodiments the focal deflector includes an expandable anchor and possibly a portion integral with the connector and adapted to extend away from the lumen axis and toward the target tissue when the device is deployed in the lumen.
Another aspect of the invention is a method of modifying target tissue shape. The method includes the steps of providing a tissue shaping device comprising proximal and distal anchors, a connector disposed between the proximal and distal anchors, and a focal deflector; placing the tissue shaping device in a lumen adjacent the target tissue; applying a shaping force from the focal deflector against a lumen wall to modify the shape of the target tissue; and expanding the proximal and distal anchors to anchor the device in the lumen. In some embodiments the expanding step includes the steps of expanding the distal anchor to anchor within the lumen; applying a proximally directed force on the device; and expanding the proximal anchor while applying the proximally directed force.
In some embodiments, the placing step includes the step of orienting the focal deflector away from the lumen axis and toward the target tissue. In other embodiments, the placing step includes the step of orienting the focal deflector away from the lumen axis and away from the target tissue.
The applying step may include the step of expanding the focal deflector, such as by applying an actuation force to the focal deflector. The focal deflector may also be locked in its expanded configuration. In some embodiments the applying and expanding steps may include expanding the distal anchor to anchor within the lumen; applying a proximally directed force on the device; expanding the focal deflector while applying the proximally directed force; applying a proximally directed force on the device after expanding the focal deflector; and expanding the proximal anchor while applying the proximally directed force of the previous step.
Yet another aspect of the invention is a tissue shaping device adapted to be deployed in a lumen to modify the shape of target tissue adjacent to the lumen. In some embodiments the device includes an expandable anchor; a focal deflector; a connector disposed between the anchor and the focal deflector; and a tail extending from the focal deflector away from the anchor. The focal deflector may include an expandable portion. In some embodiments, the focal deflector is adapted to extend away from the lumen axis and away from the target tissue when the device is deployed in the lumen.
One application for the device of this invention is in the treatment of mitral valve regurgitation. The invention will be described in further detail below with reference to the drawings.
Tissue shaping devices that apply force to a localized, discrete portion of the vessel wall surrounding a lumen have been described. See, e.g., U.S. patent application Ser. No. 10/003,910, “Focused Compression Mitral Valve Device and Method,” which describes the use of such devices disposed in the coronary sinus to treat mitral valve regurgitation. Other therapies deploy one or more rigid devices in the lumen to change the shape of the lumen and adjacent tissue. See, e.g., Lashinski et al. U.S. patent application Ser. No. 10/066,302 (published as U.S. 2002/0151961 A1); Taylor et al. U.S. patent application Ser. No. 10/068,264 (published as U.S. 2002/0183835 A1); Liddicoat et al. U.S. patent application Ser. No. 10/112,354 (published as U.S. 2002/0183838 A1); the disclosures of which are incorporated herein by reference. Still other tissue shaping devices utilize an “anchor and cinch” method to modify tissue adjacent a lumen, i.e., by anchoring a distal anchor, placing a proximally-directed force on a connector extending proximally from the distal anchor, and anchoring a proximal anchor before ceasing the proximally directed force to maintain the device's configuration and the reshaping of the tissue.
The present invention provides a device disposed in a lumen to reshape tissue adjacent to the lumen that includes a focal deflector tissue reshaper, two anchors and an optional connector to help maintain the position of the focal tissue reshaper within the lumen. The use of a focal deflector tissue reshaper aimed at target tissue adjacent to the lumen minimizes the risk of adverse consequences from altering the shape of non-target tissue adjacent to other parts of the lumen. The anchors and/or connector may also be used to help reshape the target tissue.
As shown in
Device 10 is delivered via a catheter to the treatment site within the lumen in a collapsed or unexpanded configuration. After expelling device 10 from the catheter at the treatment site (either by advancing the device distally out of the end of the catheter or by moving the end of the catheter proximally while maintaining the device stationary), the device's anchors begin to self-expand. At the proximal end of each anchor is an eyelet 20 and 22. Advancing eyelets 20 and 22 distally over corresponding lock bumps 24 and 26 further expands and locks the anchors 12 and 14 in an expanded configuration. Further details of the construction, delivery and deployment of such anchors may be found in U.S. patent application Ser. No. 10/142,637, “Body Lumen Device Anchor, Device and Assembly;” U.S. patent application Ser. No. 10/331,143, “System and Method to Effect the Mitral Valve Annulus of a Heart;” and U.S. patent application Ser. No. 10/429,172, “Device and Method for Modifying the Shape of a Body Organ,” filed May 2, 2003. It should be understood that other anchor designs could be used without departing from the invention.
Device 10 has a focal deflector 28 facing away from the anchors 12 and 14 and toward the mitral valve annulus. In this embodiment, focal deflector 28 is formed as a bend in the connector 15. As shown in
Because of the action of focal deflector 28, the desired reshaping of the mitral valve annulus may be achieved with less cinching than other device designs or even with no cinching. Thus, the anchors do not need to anchor as tightly and may be expanded less, thereby minimizing the reshaping of non-target tissue adjacent the anchors. In addition, with less or no cinching, any undesirable effect on non-target tissue adjacent the connector is also minimized. On the other hand, should reshaping adjacent to the anchors and/or connector be desired, such reshaping can be achieved through a combination of expansion of the anchors and cinching of the connector between them. The cinching is performed as with prior devices: by anchoring a distal anchor, placing a proximally-directed force on a connector extending proximally from the distal anchor, and anchoring a proximal anchor before ceasing the proximally directed force to maintain the device's configuration and the reshaping of the tissue.
In use, device 40 is delivered via catheter to the treatment site in a collapsed or unexpanded configuration. Device 40 is then deployed by expelling it from the catheter and expanding it within a lumen in a position and orientation that places focal deflector 48 against the lumen's vessel wall adjacent to the target tissue to modify the shape of the target tissue. While the device may also be cinched to provide additional reshaping, the amount of cinching required will be less, thereby minimizing the reshaping of any non-target tissue adjacent the lumen by the connector. In addition, as with the previous embodiment, anchors 42 and 44 do not need to be expanded as much, thereby minimizing the reshaping of the non-target tissue adjacent to the anchors.
A focal deflector 58 is disposed on connector 56. In this embodiment, focal deflector 58 has substantially the same design as anchors 52 and 54. Focal deflector 58 is formed from wire (preferably made from a shape memory material such as nitinol) and has a figure 8 configuration when expanded. A crimp 62 attaches the wire to the connector 56. The anchors and focal deflector are delivered via a catheter to the appropriate site within the lumen in an unexpanded configuration, then expanded to a deployed configuration through the application of actuation forces delivered by catheters or other known tools. Like the anchors, focal deflector 58 may be locked in its expanded configuration by advancing an eyelet 60 over a lock bump 61.
As shown in
Because it can be expanded and locked like an anchor, the focal deflector 58 of
The focal deflector shown in the embodiment of
As shown in
As in the other embodiments, because of the action of focal deflector 78, the desired reshaping of the mitral valve annulus may be achieved with less or even with no cinching. Thus, the anchors do not need to anchor as tightly and may be expanded less, thereby minimizing the reshaping of non-target tissue adjacent the anchors. In addition, with less or no cinching, the effect on non-target tissue adjacent the connector is also minimized.
As with other embodiments, device 90 may be delivered via a catheter and deployed in the coronary sinus to treat mitral valve regurgitation by reshaping the tissue adjacent to focal deflector 98. The device is in a deformed and unexpanded state within the catheter, and self-expands and reforms into the shape shown in
Because of the action of focal deflector 98, the desired reshaping of the mitral valve annulus may be achieved with less or even with no cinching. Thus, the anchors 92 and 94 do not need to anchor as tightly and may be expanded less, thereby minimizing the reshaping of non-target tissue adjacent the anchors. In addition, with less or no cinching, the effect on non-target tissue adjacent the connector is also minimized. Furthermore, because focal deflector 98 is formed similar to an anchor, the presence of focal deflector 98 enables a user to cinch the distal and proximal portions of device 90 with different cinching forces.
The embodiment of
As in the other embodiments, device 110 may be delivered via a catheter and deployed in the coronary sinus to treat mitral valve regurgitation by reshaping the tissue adjacent to focal deflector 114. The device is in a deformed and unexpanded state within the catheter, and self-expands and reforms into the shape shown in
Element 114 of device 110 in
Other modifications of the device are within the scope of the invention. For example, the anchors may be of some other design known in the art. In addition, the focal deflector may have some other shape designed to make the desired change in the target tissue.
This application claims the benefit of U.S. Provisional Application No. 60/476,693, filed Jun. 5, 2003, which application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3974526 | Dardik et al. | Aug 1976 | A |
3995623 | Blake et al. | Dec 1976 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4164046 | Cooley | Aug 1979 | A |
4485816 | Krumme | Dec 1984 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4588395 | Lemelson | May 1986 | A |
4830023 | de Toledo et al. | May 1989 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5099838 | Bardy | Mar 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5250071 | Palermo | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5265601 | Mehra | Nov 1993 | A |
5350420 | Cosgrove et al. | Sep 1994 | A |
5433727 | Sideris | Jul 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5449373 | Pinchasik et al. | Sep 1995 | A |
5454365 | Bonutti | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5474557 | Mai | Dec 1995 | A |
5507295 | Skidmore | Apr 1996 | A |
5507802 | Imran | Apr 1996 | A |
5514161 | Limousin | May 1996 | A |
5554177 | Kieval et al. | Sep 1996 | A |
5562698 | Parker | Oct 1996 | A |
5575818 | Pinchuk | Nov 1996 | A |
5584867 | Limousin et al. | Dec 1996 | A |
5601600 | Ton | Feb 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5676671 | Inoue | Oct 1997 | A |
5733325 | Robinson et al. | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5752969 | Cunci et al. | May 1998 | A |
5800519 | Sandock | Sep 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5836882 | Frazin | Nov 1998 | A |
5871501 | Leschinsky et al. | Feb 1999 | A |
5891193 | Robinson et al. | Apr 1999 | A |
5895391 | Farnholtz | Apr 1999 | A |
5899882 | Waksman et al. | May 1999 | A |
5908404 | Elliott | Jun 1999 | A |
5928258 | Khan et al. | Jul 1999 | A |
5935161 | Robinson et al. | Aug 1999 | A |
5954761 | Machek et al. | Sep 1999 | A |
5961481 | Serman et al. | Oct 1999 | A |
5961545 | Lentz et al. | Oct 1999 | A |
5978705 | KenKnight et al. | Nov 1999 | A |
5984944 | Forber | Nov 1999 | A |
6007519 | Rosselli | Dec 1999 | A |
6015402 | Sahota | Jan 2000 | A |
6022371 | Killion | Feb 2000 | A |
6027517 | Crocker et al. | Feb 2000 | A |
6053900 | Brown et al. | Apr 2000 | A |
6056775 | Borghi et al. | May 2000 | A |
6077295 | Limon et al. | Jun 2000 | A |
6077297 | Robinson et al. | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6086611 | Duffy et al. | Jul 2000 | A |
6096064 | Routh | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6099552 | Adams | Aug 2000 | A |
6129755 | Mathis et al. | Oct 2000 | A |
6171320 | Monassevitch | Jan 2001 | B1 |
6183512 | Howanec et al. | Feb 2001 | B1 |
6190406 | Duerig et al. | Feb 2001 | B1 |
6200336 | Pavcnik et al. | Mar 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6228098 | Kayan et al. | May 2001 | B1 |
6241757 | An et al. | Jun 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6275730 | KenKnight et al. | Aug 2001 | B1 |
6312446 | Huebsch et al. | Nov 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6342067 | Mathis et al. | Jan 2002 | B1 |
6345198 | Mouchawar et al. | Feb 2002 | B1 |
6352553 | van der Burg et al. | Mar 2002 | B1 |
6352561 | Leopold et al. | Mar 2002 | B1 |
6358195 | Green et al. | Mar 2002 | B1 |
6395017 | Dwyer et al. | May 2002 | B1 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6442427 | Boute et al. | Aug 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6503271 | Duerig et al. | Jan 2003 | B2 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6562067 | Mathis | May 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6589208 | Ewers et al. | Jul 2003 | B2 |
6599314 | Mathis et al. | Jul 2003 | B2 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6623521 | Steinke et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629994 | Gomez et al. | Oct 2003 | B2 |
6643546 | Mathis et al. | Nov 2003 | B2 |
6648881 | KenKnight et al. | Nov 2003 | B2 |
6652538 | Kayan et al. | Nov 2003 | B2 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6676702 | Mathis | Jan 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6709425 | Gambale et al. | Mar 2004 | B2 |
6716158 | Raman et al. | Apr 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6721598 | Helland et al. | Apr 2004 | B1 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6733521 | Chobotov et al. | May 2004 | B2 |
6743219 | Dwyer et al. | Jun 2004 | B1 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6773446 | Dwyer et al. | Aug 2004 | B1 |
6776784 | Ginn | Aug 2004 | B2 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6793673 | Kowalsky et al. | Sep 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6800090 | Alferness et al. | Oct 2004 | B2 |
6805128 | Pless et al. | Oct 2004 | B1 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6824562 | Mathis et al. | Nov 2004 | B2 |
6827690 | Bardy | Dec 2004 | B2 |
6881220 | Edwin et al. | Apr 2005 | B2 |
6899734 | Castro et al. | May 2005 | B2 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6935404 | Duerig et al. | Aug 2005 | B2 |
6964683 | Kowalsky et al. | Nov 2005 | B2 |
6966926 | Mathis | Nov 2005 | B2 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7175653 | Gaber | Feb 2007 | B2 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010041899 | Foster | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20010049558 | Liddicoat et al. | Dec 2001 | A1 |
20020016628 | Langberg et al. | Feb 2002 | A1 |
20020042621 | Liddicoat et al. | Apr 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020049468 | Streeter et al. | Apr 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020065554 | Streeter | May 2002 | A1 |
20020087173 | Alferness et al. | Jul 2002 | A1 |
20020095167 | Liddicoat et al. | Jul 2002 | A1 |
20020103533 | Langberg et al. | Aug 2002 | A1 |
20020138044 | Streeter et al. | Sep 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020161377 | Rabkin | Oct 2002 | A1 |
20020183837 | Streeter et al. | Dec 2002 | A1 |
20020183838 | Liddicoat et al. | Dec 2002 | A1 |
20020183841 | Cohn et al. | Dec 2002 | A1 |
20020188170 | Santamore et al. | Dec 2002 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030069636 | Solem et al. | Apr 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078654 | Taylor et al. | Apr 2003 | A1 |
20030083538 | Adams et al. | May 2003 | A1 |
20030083613 | Schaer | May 2003 | A1 |
20030088305 | Van Schie et al. | May 2003 | A1 |
20030130730 | Cohn et al. | Jul 2003 | A1 |
20030135267 | Solem et al. | Jul 2003 | A1 |
20030144697 | Mathis et al. | Jul 2003 | A1 |
20030171776 | Adams et al. | Sep 2003 | A1 |
20030225454 | Mathis et al. | Dec 2003 | A1 |
20030236569 | Mathis et al. | Dec 2003 | A1 |
20040010305 | Alferness et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040039443 | Solem et al. | Feb 2004 | A1 |
20040073302 | Rourke et al. | Apr 2004 | A1 |
20040098116 | Callas et al. | May 2004 | A1 |
20040102839 | Cohn et al. | May 2004 | A1 |
20040102840 | Solem et al. | May 2004 | A1 |
20040111095 | Gordon et al. | Jun 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133240 | Adams et al. | Jul 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040148019 | Vidlund et al. | Jul 2004 | A1 |
20040148020 | Vidlund et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040153147 | Mathis | Aug 2004 | A1 |
20040158321 | Reuter et al. | Aug 2004 | A1 |
20040176840 | Langberg | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040193260 | Alferness et al. | Sep 2004 | A1 |
20040220654 | Mathis et al. | Nov 2004 | A1 |
20040220657 | Nieminen et al. | Nov 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040260342 | Vargas et al. | Dec 2004 | A1 |
20050004667 | Swinford et al. | Jan 2005 | A1 |
20050021121 | Reuter et al. | Jan 2005 | A1 |
20050027351 | Reuter et al. | Feb 2005 | A1 |
20050027353 | Alferness et al. | Feb 2005 | A1 |
20050033419 | Alferness et al. | Feb 2005 | A1 |
20050038507 | Alferness et al. | Feb 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050065598 | Mathis et al. | Mar 2005 | A1 |
20050096666 | Gordon et al. | May 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050107810 | Morales et al. | May 2005 | A1 |
20050119673 | Gordon et al. | Jun 2005 | A1 |
20050137449 | Nieminen et al. | Jun 2005 | A1 |
20050137450 | Aronson et al. | Jun 2005 | A1 |
20050137451 | Gordon et al. | Jun 2005 | A1 |
20050137685 | Nieminen et al. | Jun 2005 | A1 |
20050149179 | Mathis et al. | Jul 2005 | A1 |
20050149180 | Mathis et al. | Jul 2005 | A1 |
20050149182 | Alferness et al. | Jul 2005 | A1 |
20050187619 | Mathis et al. | Aug 2005 | A1 |
20050197692 | Pai et al. | Sep 2005 | A1 |
20050197693 | Pai et al. | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050209690 | Mathis et al. | Sep 2005 | A1 |
20050216077 | Mathis et al. | Sep 2005 | A1 |
20050261704 | Mathis | Nov 2005 | A1 |
20050272969 | Alferness et al. | Dec 2005 | A1 |
20060020335 | Kowalsky et al. | Jan 2006 | A1 |
20060030882 | Adams et al. | Feb 2006 | A1 |
20060041305 | Lauterjung | Feb 2006 | A1 |
20060116758 | Swinford et al. | Jun 2006 | A1 |
20060142854 | Alferness et al. | Jun 2006 | A1 |
20060161169 | Nieminen et al. | Jul 2006 | A1 |
20060167544 | Nieminen et al. | Jul 2006 | A1 |
20060173536 | Mathis et al. | Aug 2006 | A1 |
20060191121 | Gordon et al. | Aug 2006 | A1 |
20060271174 | Nieminen et al. | Nov 2006 | A1 |
20060276891 | Nieminen et al. | Dec 2006 | A1 |
20070055293 | Alferness et al. | Mar 2007 | A1 |
20070066879 | Mathis et al. | Mar 2007 | A1 |
20080140191 | Mathis et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
0893133 | Jan 1999 | EP |
0903110 | Mar 1999 | EP |
0968688 | Jan 2000 | EP |
1050274 | Nov 2000 | EP |
1095634 | May 2001 | EP |
0741604 | Dec 1955 | GB |
2754067 | Mar 1998 | JP |
2000-308652 | Nov 2000 | JP |
2001-503291 | Mar 2001 | JP |
2003-503101 | Jan 2003 | JP |
2003-521310 | Jul 2003 | JP |
WO 9856435 | Dec 1998 | WO |
WO 0044313 | Aug 2000 | WO |
WO 0060995 | Oct 2000 | WO |
WO 0074603 | Dec 2000 | WO |
WO 0100111 | Jan 2001 | WO |
WO 0119292 | Mar 2001 | WO |
WO 0150985 | Jul 2001 | WO |
WO 0154618 | Aug 2001 | WO |
WO 0187180 | Nov 2001 | WO |
WO 0200099 | Jan 2002 | WO |
WO 0201999 | Jan 2002 | WO |
WO 0205888 | Jan 2002 | WO |
WO 0219951 | Mar 2002 | WO |
WO 0234118 | May 2002 | WO |
WO 0247539 | Jun 2002 | WO |
WO 02053206 | Jul 2002 | WO |
WO 02060352 | Aug 2002 | WO |
WO 02062263 | Aug 2002 | WO |
WO 02062270 | Aug 2002 | WO |
WO 02062408 | Aug 2002 | WO |
WO 02076284 | Oct 2002 | WO |
WO 02078576 | Oct 2002 | WO |
WO 02096275 | Dec 2002 | WO |
WO 03015611 | Feb 2003 | WO |
WO 03037171 | May 2003 | WO |
WO 03049647 | Jun 2003 | WO |
WO 03049648 | Jun 2003 | WO |
WO 03055417 | Jul 2003 | WO |
WO 03059198 | Jul 2003 | WO |
WO 03063735 | Aug 2003 | WO |
WO 2004045463 | Jun 2004 | WO |
WO 2004084746 | Oct 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050010240 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60476693 | Jun 2003 | US |