Further description will be given hereinafter in conjunction with embodiments and with reference to accompanying drawings. However, the invention is not limited to the examples.
An alloy wire consisted of 49.1% Fe, 43.1% Co, 7.8% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 and 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire is 5 m/min, and a repeated twisting portion was composed of a forward twisting portion and an opposite twisting portion both with a length of 10 cm, and angular speeds of the two portions are 1200 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was parallel to an axis of the alloy wire and was linearly-distributed (as shown in
If a zero power consumption transducer made by the above material is driven by a symmetrical alternating magnetic field, the alloy wire will be magnetically switched if a magnetic induction of the driving field is 3 mT, as the driving field is within a range of 3-12 mT, the output amplitude of an inductive winding with 5000 turns is greater than 1.5 V.
An alloy wire consisted of 49.1% Fe, 43.1% Co, 7.8% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire is 2 m/min, and a repeated twisting portion is composed of a forward twisting portion and an opposite twisting portion both with a length of 6 cm, and angular speeds of the two portions are 1800 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was parallel to an axis of the alloy wire and was linearly-distributed (as shown in
An alloy wire consisted of 49.1% Fe, 43.1% Co, 7.8% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire was 0.5 m/min, and a repeated twisting portion was composed of a forward twisting portion with a length of 3 cm and an opposite twisting portion both with a length of 6 cm, and angular speeds of the two portions were 3000 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was spirally-distributed (as shown in
An alloy wire consisted of 35.4% Fe, 54.5% Co, 10.1% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire was 0.1 m/min, and a repeated twisting portion was composed of a forward twisting portion and an opposite twisting portion both with a length of 1 cm, and the angular speeds of the two portions were 500 loops/min. An easy magnetization direction of the bistable magnetic alloy wire was parallel to an axis of the alloy wire and was linearly-distributed (as shown in
An alloy wire consisted of 35.4% Fe, 54.5% Co, 10.1% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire was 2 m/min, and a repeated twisting portion was composed of a forward twisting portion and an opposite twisting portion both with a length of 6 cm, and angular speeds of the two portions were 1200 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was parallel to an axis of the alloy wire and linearly-distributed (as shown in
An alloy wire consisted of 35.4% Fe, 54.5% Co, 10.1%% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire was 0.5 m/min, and a repeated twisting portion was composed of a forward twisting portion with a length of 9 cm and an opposite twisting portion with a length of 6 cm, and angular speeds of the two portions were 2400 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was inverted-spirally-distributed (as shown in
Magnetism of the alloy wire is affected by factors such as the material the wire is made of and so on. Under the same chemical conditions, the thicker the alloy wire is (such as 0.3 mm vs. 0.25 mm), the better the magnetic properties will be.
As shown in
In one embodiment of the device, the winch 6 rotates around its axis; three wheels 61, 62, 63 with diameters of 10 mm are distributed in a direction of the axis of the winch 6, and a center of each wheel is centered on the axis of the winch 6. Holes 64 and 65 are disposed at both ends of the winch 6. The alloy wire 10 is passes through the winch 6 via the holes 64, 65. The alloy wire 10 in the winch 6 alternately passes the upper tangent point b and the lower tangent points a and c in a wave form. The upper tangent point b and the lower tangent points a and c are respectively located on the top and the bottom of the axis of the winch. The winch 6 rotates in the clockwise direction around its longitudinal axis in a movement direction of the alloy wire 10. Under the action of clockwise twisting forces, any one point on the alloy wire 10 is forwardly (and clockwisely) twisted for several times when passing between the tangent point a of the outer circle of the wheel 61 and the tangent point b of the outer circle of the wheel 62. Under the action of counterclockwise twisting forces, any one point on the alloy wire 10 is oppositely (counterclockwisely) twisted for the same times when being between the tangent point b of an outer circle of the wheel 62 and the tangent point c of an outer circle of the wheel 63. The force in the forward twisting portion is equal to the force in the opposite twisting portion, but the directions of the two forces are opposite. The forward twisting and the opposite twisting occur alternately, and therefore continuous and repeated twisting is implemented as the alloy wire uniformly passes through the winch. As shown in
As shown in
The number of the wheels can be an odd number greater than or equal to 3, for example, 3, 5, 7, 9, 11, and so on. An operating principle and a processing procedure for 5, 7, 9 and 11 wheels are similar to those for 3 wheels. The wheels can be symmetrically-distributed and centered by a wheel in the center. The distance between the anterior two wheels can be greater than that between every two wheels behind. The distance between anterior two wheels can be less than that between every two wheels behind. The distance between the tangent point of the outer circle of the first wheel and the axis of the winch can be greater than that between the tangent point of the outer circle of the second wheel and the axis of the winch. The distance between the tangent point of the outer circle of the first wheel and the axis of the winch can be less than that between the tangent point of the outer circle of the second wheel and the axis of the winch.
By way of adding or subtracting the number of the wheels, adjusting distances between wheels and the distance between the tangent point of the outer circle of a wheel and the axis of the winch, and/or adjusting the rotating speed of the winch and the drawing speed of the alloy wire, the twisting times of the alloy wire can be flexibly changed, and thus the deformation of the shell of the alloy wire can be precisely controlled.
This invention is not to be limited to the specific embodiments disclosed herein and modifications for various applications and other embodiments are intended to be included within the scope of the appended claims. While this invention has been described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification, and following claims.
All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application mentioned in this specification was specifically and individually indicated to be incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
200610086134.5 | Sep 2006 | CN | national |