DEVICE AND METHOD FOR MOLDING BISTABLE MAGNETIC ALLOY WIRE

Abstract
Taught herein is a method for molding a bistable magnetic alloy wire, comprising: processing an alloy wire by heat treatment; and processing the alloy wire by cold treatment of mechanical twisting, the mechanical twisting being a repeated twisting in a continuous state. Also taught herein is a device for molding a bistable magnetic alloy wire.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a device for molding a bistable magnetic alloy wire according to one embodiment of the invention;



FIG. 2 is a schematic diagram illustrating a linearly-distributed easy magnetization direction parallel to an axis of the alloy wire as a forward and an opposite torque are the same in magnitude;



FIG. 3 is a schematic diagram illustrating a spirally-distributed easy magnetization direction of the alloy wire as the forward torque is larger than the directionally-opposite torque; and



FIG. 4 is a schematic diagram illustrating an inverted-spirally-distributed easy magnetization direction of the alloy wire as the forward torque is smaller than the directionally-opposite torque.





DETAILED DESCRIPTION OF THE INVENTION

Further description will be given hereinafter in conjunction with embodiments and with reference to accompanying drawings. However, the invention is not limited to the examples.


EXAMPLE 1

An alloy wire consisted of 49.1% Fe, 43.1% Co, 7.8% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 and 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire is 5 m/min, and a repeated twisting portion was composed of a forward twisting portion and an opposite twisting portion both with a length of 10 cm, and angular speeds of the two portions are 1200 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was parallel to an axis of the alloy wire and was linearly-distributed (as shown in FIG. 2).


If a zero power consumption transducer made by the above material is driven by a symmetrical alternating magnetic field, the alloy wire will be magnetically switched if a magnetic induction of the driving field is 3 mT, as the driving field is within a range of 3-12 mT, the output amplitude of an inductive winding with 5000 turns is greater than 1.5 V.


EXAMPLE 2

An alloy wire consisted of 49.1% Fe, 43.1% Co, 7.8% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire is 2 m/min, and a repeated twisting portion is composed of a forward twisting portion and an opposite twisting portion both with a length of 6 cm, and angular speeds of the two portions are 1800 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was parallel to an axis of the alloy wire and was linearly-distributed (as shown in FIG. 2). If a zero power consumption transducer made by the above material is driven by a symmetrical alternating magnetic field, the alloy wire will be magnetically switched if a magnetic induction of the driving field is 3.5 mT, as the driving field is within a range of 4-12 mT, an output amplitude of an inductive winding with 5000 turns will be 2-3V.


EXAMPLE 3

An alloy wire consisted of 49.1% Fe, 43.1% Co, 7.8% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire was 0.5 m/min, and a repeated twisting portion was composed of a forward twisting portion with a length of 3 cm and an opposite twisting portion both with a length of 6 cm, and angular speeds of the two portions were 3000 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was spirally-distributed (as shown in FIG. 3). If a zero power consumption transducer made by the above material is driven by a symmetrical alternating magnetic field, the alloy wire will be magnetically switched if a magnetic induction of the driving field is 4.5 mT, as the driving field is within a range of 5-12 mT, an output amplitude of an inductive winding with 5000 turns will be 2V.


EXAMPLE 4

An alloy wire consisted of 35.4% Fe, 54.5% Co, 10.1% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire was 0.1 m/min, and a repeated twisting portion was composed of a forward twisting portion and an opposite twisting portion both with a length of 1 cm, and the angular speeds of the two portions were 500 loops/min. An easy magnetization direction of the bistable magnetic alloy wire was parallel to an axis of the alloy wire and was linearly-distributed (as shown in FIG. 2). If a zero power consumption transducer made by the above material is driven by a symmetrical alternating magnetic field, the alloy wire will be magnetically switched if a magnetic induction of the driving field is 2 mT, as the driving field is within a range of 3-12 mT, an output amplitude of an inductive winding with 5000 turns will be 2-3V.


EXAMPLE 5

An alloy wire consisted of 35.4% Fe, 54.5% Co, 10.1% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire was 2 m/min, and a repeated twisting portion was composed of a forward twisting portion and an opposite twisting portion both with a length of 6 cm, and angular speeds of the two portions were 1200 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was parallel to an axis of the alloy wire and linearly-distributed (as shown in FIG. 2). If a zero power consumption transducer made by the above material is driven by a symmetrical alternating magnetic field, the alloy wire will be magnetically switched if a magnetic induction of the driving field is 1.8 mT, as the driving field is within a range of 3-12 mT, an output amplitude of an inductive winding with 5000 turns will be greater than 3V.


EXAMPLE 6

An alloy wire consisted of 35.4% Fe, 54.5% Co, 10.1%% V, and a diameter of the alloy wire was 0.25 millimeters. Firstly, the alloy wire was continually processed for 5 times by heat treatment (i.e. being heated up firstly and then being cooled down by air) using a radiant-type furnace, at a heat processing temperature of between 500 to 1000° C. Then, the alloy wire was processed by cold treatment of mechanical twisting: a moving speed of the alloy wire was 0.5 m/min, and a repeated twisting portion was composed of a forward twisting portion with a length of 9 cm and an opposite twisting portion with a length of 6 cm, and angular speeds of the two portions were 2400 loops/min. The easy magnetization direction of the bistable magnetic alloy wire was inverted-spirally-distributed (as shown in FIG. 4). If a zero power consumption transducer made by the above material is driven by a symmetrical alternating magnetic field, the alloy wire will be magnetically switched if a magnetic induction of the driving field is 3.5 mT, as the driving field is within a range of 4-12 mT, an output amplitude of an inductive winding with 5000 turns will be greater than 3V.


Magnetism of the alloy wire is affected by factors such as the material the wire is made of and so on. Under the same chemical conditions, the thicker the alloy wire is (such as 0.3 mm vs. 0.25 mm), the better the magnetic properties will be.


As shown in FIG. 1, a device for molding a bistable magnetic wire of the invention comprises a feed reel 1, a feed roller 2, a furnace 7, a positioning roller 3, a receiving roller 4 and a receiving reel 5. A winch 6 for passing through the alloy wire 10 is disposed between the positioning roller 3 and the receiving roller 4, and rotates around an axis thereof. At least three wheels 61, 62, and 63 are distributed along an axis of the winch 6. The alloy wire 10 passes a lower tangent point a of the outer circle of the wheel 61, an upper tangent point b of the outer circle of the wheel 62, and a lower tangent point c of the outer circle of the wheel 63 in the form of a wave. The lower tangent points a and c, and the upper tangent point b are located at the top and the bottom of the axis of the winch, respectively.


In one embodiment of the device, the winch 6 rotates around its axis; three wheels 61, 62, 63 with diameters of 10 mm are distributed in a direction of the axis of the winch 6, and a center of each wheel is centered on the axis of the winch 6. Holes 64 and 65 are disposed at both ends of the winch 6. The alloy wire 10 is passes through the winch 6 via the holes 64, 65. The alloy wire 10 in the winch 6 alternately passes the upper tangent point b and the lower tangent points a and c in a wave form. The upper tangent point b and the lower tangent points a and c are respectively located on the top and the bottom of the axis of the winch. The winch 6 rotates in the clockwise direction around its longitudinal axis in a movement direction of the alloy wire 10. Under the action of clockwise twisting forces, any one point on the alloy wire 10 is forwardly (and clockwisely) twisted for several times when passing between the tangent point a of the outer circle of the wheel 61 and the tangent point b of the outer circle of the wheel 62. Under the action of counterclockwise twisting forces, any one point on the alloy wire 10 is oppositely (counterclockwisely) twisted for the same times when being between the tangent point b of an outer circle of the wheel 62 and the tangent point c of an outer circle of the wheel 63. The force in the forward twisting portion is equal to the force in the opposite twisting portion, but the directions of the two forces are opposite. The forward twisting and the opposite twisting occur alternately, and therefore continuous and repeated twisting is implemented as the alloy wire uniformly passes through the winch. As shown in FIG. 2, since a forward torque and an opposite torque are the same. the easy magnetization direction of the deformed alloy wire is linearly-distributed and parallel to the longitudinal axis of the alloy wire.


As shown in FIGS. 3 and 4, in certain situations, the easy magnetization direction is spirally-distributed or inverted-spirally-distributed. This can be done by increasing or decreasing the distance between the wheels 61 and 62 (such as in Examples 3 and 6), or by increasing or decreasing the distance between the tangent point a of the outer circle of the first wheel 61 and the axis of the winch. If the distance between the tangent point a of the outer circle of the wheel 61 and the axis of the winch needs to be increased, it is only required to move the center of the wheel 61 downwards a certain distance (such as, e.g., 3 mm). If the distance between the tangent point a of the outer circle of the wheel 61 and the axis of the winch needs to be decreased, it is only required to move the center of the wheel 61 upwards for a certain distance (such as, e.g., 2 mm).


The number of the wheels can be an odd number greater than or equal to 3, for example, 3, 5, 7, 9, 11, and so on. An operating principle and a processing procedure for 5, 7, 9 and 11 wheels are similar to those for 3 wheels. The wheels can be symmetrically-distributed and centered by a wheel in the center. The distance between the anterior two wheels can be greater than that between every two wheels behind. The distance between anterior two wheels can be less than that between every two wheels behind. The distance between the tangent point of the outer circle of the first wheel and the axis of the winch can be greater than that between the tangent point of the outer circle of the second wheel and the axis of the winch. The distance between the tangent point of the outer circle of the first wheel and the axis of the winch can be less than that between the tangent point of the outer circle of the second wheel and the axis of the winch.


By way of adding or subtracting the number of the wheels, adjusting distances between wheels and the distance between the tangent point of the outer circle of a wheel and the axis of the winch, and/or adjusting the rotating speed of the winch and the drawing speed of the alloy wire, the twisting times of the alloy wire can be flexibly changed, and thus the deformation of the shell of the alloy wire can be precisely controlled.


This invention is not to be limited to the specific embodiments disclosed herein and modifications for various applications and other embodiments are intended to be included within the scope of the appended claims. While this invention has been described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification, and following claims.


All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application mentioned in this specification was specifically and individually indicated to be incorporated by reference.

Claims
  • 1. A method for molding a bistable magnetic alloy wire, comprising: (a) processing an alloy wire by heat treatment; and(b) processing said alloy wire by cold treatment of mechanical twisting;
  • 2. The method of claim 1, wherein any one point on said alloy wire moving forward experiences alternative forward twisting and reverse twisting.
  • 3. The method of claim 2, wherein, said alloy wire moves uniformly forward at a linear speed of between 0.1 m/min and 5 m/min;said alloy wire is being twisted at an angular speed of between 500 loops/min and 3000 loops/min; andsaid alloy wire is being forward twisted while passing a linear distance of between 1 cm and 10 cm and is being reverse twisted while passing a linear distance of between 1 cm and 10 cm.
  • 4. A device for molding a bistable magnetic alloy wire, comprising: a feed reel;a feed roller;a furnace;a positioning roller;a receiving roller; anda receiving reel;
  • 5. The device of claim 4, wherein diameters of the wheels are the same, and centers thereof are disposed on the axis of said winch.
  • 6. The device of claim 4, wherein said wheels are distributed at equidistance with respect to each other.
  • 7. The device of claim 4, wherein the number of the wheels is odd.
  • 8. The device of claim 7, wherein the wheels are symmetrically-distributed and centered around a center wheel.
  • 9. The device of claim 4, wherein a distance between two anterior wheels is greater than that between every two behind wheels.
  • 10. The device of claim 4, wherein a distance between anterior two wheels is less than that between every two behind wheels.
  • 11. The device of claim 4, wherein a distance between a tangent point of an outer circle of a first wheel and the axis of said winch is greater than that between a tangent point of an outer circle of a second wheel and the axis of said winch.
  • 12. The device of claim 4, wherein a distance between a tangent point of an outer circle of a first wheel and the axis of said winch is less than that between a tangent point of an outer circle of a second wheel and the axis of said winch.
Priority Claims (1)
Number Date Country Kind
200610086134.5 Sep 2006 CN national