A device and method for positioning a detonator within a perforating gun assembly is generally described.
Hydrocarbons, such as fossil fuels (e.g. oil) and natural gas, are extracted from underground wellbores extending deeply below the surface using complex machinery and explosive devices. Once the wellbore is established by placement of cases after drilling, a perforating gun assembly, or train or string of multiple perforating gun assemblies, are lowered into the wellbore, and positioned adjacent one or more hydrocarbon reservoirs in underground formations. The perforating gun has explosive charges, typically shaped, hollow or projectile charges, which are ignited to create holes in the casing and to blast through the formation so that the hydrocarbons can flow through the casing. Once the perforating gun(s) is properly positioned, a surface signal actuates an ignition of a fuse, which in turn initiates a detonating cord, which detonates the shaped charges to penetrate/perforate the casing and thereby allow formation fluids to flow through the perforations thus formed and into a production string. The surface signal typically travels from the surface along electrical wires that run from the surface to one or more detonators positioned within the perforating gun assembly.
Assembly of a perforating gun requires assembly of multiple parts, which typically include at least the following components: a housing or outer gun barrel within which is positioned an electrical wire for communicating from the surface to initiate ignition, a percussion initiator and/or a detonator, a detonating cord, one or more charges which are held in an inner tube, strip or carrying device and, where necessary, one or more boosters. Assembly typically includes threaded insertion of one component into another by screwing or twisting the components into place, optionally by use of a tandem adapter. Since the electrical wire must extend through much of the perforating gun assembly, it is easily twisted and crimped during assembly. In addition, when a wired detonator is used it must be manually connected to the electrical wire, which has lead to multiple problems. Due to the rotating assembly of parts, the wires can become torn, twisted and/or crimped/nicked, the wires may be inadvertently disconnected, or even mis-connected in error during assembly, not to mention the safety issues associated with physically and manually wiring live explosives.
According to the prior art and as shown in
What is needed is a detonator positioning device capable of positioning a wireless detonator including a spring-contact, single wire (not two or more wires as described above) connection within a perforating gun assembly, particularly a typical perforating gun assembly that has traditionally used a fully-wired detonator.
An embodiment provides a detonator positioning device for positioning a detonator in a perforating gun assembly. In an embodiment, the detonator positioning device is formed of a multi-part cylindrical body.
Another embodiment provides a perforating gun assembly including the detonator positioning device for positioning a wireless detonator.
Another embodiment provides a method of assembling the perforating gun assembly including a detonator positioning device and a detonator.
A more particular description will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments and are not therefore to be considered to be limiting of its scope, exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various features, aspects, and advantages of the embodiments will become more apparent from the following detailed description, along with the accompanying figures in which like numerals represent like components throughout the figures and text. The various described features are not necessarily drawn to scale, but are drawn to emphasize specific features relevant to embodiments.
Reference will now be made in detail to various embodiments. Each example is provided by way of explanation, and is not meant as a limitation and does not constitute a definition of all possible embodiments.
A detonator is provided that is capable of being positioned or placed into a perforating gun assembly is illustrated in
Now referring to
Only a portion of the perforating gun assembly 40 is depicted herein, including a perforating gun body or barrel or carrier or housing 42 for housing the various components of the assembly. Also shown is a distal end of a typical tandem seal adapter or tandem sub 44, in which a bulkhead assembly 46 is shown assembled within the perforating gun assembly 40. The tandem sub 44 is configured to seal inner components within the perforating gun housing 42 from the outside environment using sealing means. The tandem seal adapter 44 seals adjacent perforating gun assemblies (not shown) from each other, and houses the bulkhead assembly 46.
The bulkhead assembly 46 functions to relay a line-in contact-initiating pin 38 for wirelessly electrically contacting a line-in portion 20 of the detonator head 18 as described in greater detail hereinbelow. As shown in
The detonator shell 12 of the detonator 10 useful herein is configured as a housing or casing 11, typically a metallic housing, which houses at least a detonator head plug 14, a fuse head 15, an electronic circuit board 16 and explosive components. The fuse head 15 could be any device capable of converting an electric signal into an explosion. As shown in
The detonator head 18 extends from one end of the detonator shell 12, and includes more than one electrical contacting component including an electrically contactable line-in portion 20 and an electrically contactable line-out portion 22. According to one embodiment, the detonator head 18 may also include an electrically contactable ground portion 13 (not shown). In an embodiment, the detonator head 18 may be disk-shaped. In another embodiment, at least a portion of the detonator housing 11 is configured as the ground portion 13. The line-in portion 20, the line-out portion 22 and the ground portion 13 are configured to replace the wired connection of the prior art wired detonator 60 and to complete the electrical connection merely by contact with other electrical contacting components. In this way, the line-in portion 20 of the detonator 10 replaces the signal-in wire 61 of the wired detonator 60, the line-out portion 22 replaces the signal-out wire 60 and the ground portion 13 replaces the ground wire 63. Thus, when placed into a detonator positioning device 100 (see, for instance,
The detonator head 18 also includes an insulator 24, which is positioned between the line-in portion 20 and the line-out portion 22. The insulator 24 functions to electrically isolate the line-in portion 20 from the line-out portion 22. Insulation may also be positioned between other lines of the detonator head. As discussed above and in an embodiment, it is possible for all of the contacts to be configured as part of the detonator head 18 (not shown), as found, for instance, in a banana connector used in a headphone wire assembly in which the contacts are stacked longitudinally along a central axis of the connector, with the insulating portion situated between them.
In an embodiment, a capacitor 17 is positioned or otherwise assembled as part of the electronic circuit board 16. The capacitor 17 is configured to be discharged to initiate the detonator 10 upon receipt of a digital firing sequence via the ignition signal I, the ignition signal being electrically relayed directly through the line-in portion 20 and the line-out portion 22 of the detonator head 18. In a typical arrangement, a first digital code is transmitted down-hole to and received by the electronic circuit board. Once it is confirmed that the first digital code is the correct code for that specific detonator, an electronic gate is closed and the capacitor is charged. Then, as a safety feature, a second digital code is transmitted to and received by the electronic circuit board. The second digital code, which is also confirmed as the proper code for the particular detonator, closes a second gate, which in turn discharges the capacitor via the fuse head to initiate the detonation.
In an embodiment, the detonator 10 may be fluid disabled. “Fluid disabled” means that if the perforating gun has a leak and fluid enters the gun system then the detonator is disabled by the presence of the fluid and hence the explosive train is broken. This prevents a perforating gun from splitting open inside a well if it has a leak and plugging the wellbore, as the hardware would burst open. In an embodiment, the detonator 10 is a selective fluid disabled electronic (SFDE) detonator.
The detonator 10 according to an embodiment can be either an electric or an electronic detonator. In an electric detonator, a direct wire from the surface is electrically contactingly connected to the detonator and power is increased to directly initiate the fuse head. In an electronic detonator, circuitry of the electronic circuit board within the detonator is used to initiate the fuse head.
The detonator 10 may be immune to stray current or voltage and/or radiofrequency (RF) signals to avoid inadvertent firing of the perforating gun. Thus, the assembly is provided with means for ensuring immunity to stray current or voltage and/or RF signals, such that the detonator 10 is not initiated through random radio frequency signals, stray voltage or stray current. In other words, the detonator 10 is configured to avoid unintended initiation.
The detonator 10 is configured to be electrically contactingly received within the detonator positioning device 100, which is seated or positioned within the perforating gun assembly 40, without using a wired electrical connection to the detonator 10 itself, as shown in
In an embodiment and as shown in
With reference again in particular to
In an embodiment, a plurality of arms 150 extend toward the open end 113 of the cylindrical body 110 and at least partially enclose the enlarged bore portion 132 of the central bore 130. In this way, each of the plurality of arms 150 is adapted to retain, hold or otherwise embrace the detonator head 18 portion of the detonator 10 when the detonator 10 is positioned within the enlarged bore portion 132 of the central bore 130. Typically, the arms 150 are made of a flexible and resilient material that is capable of being bent or otherwise moved circumferentially outward, yet return to their original position once the movement force has been removed, (e.g. once the detonator is positioned within the detonator positioning device 100). Thus, the arms 150 will enclose and typically contact at least a peripheral surface of the head 18 of the detonator 10. Although the plurality of arms 150 are depicted as having four arms, it would be understood that more or less arms may be sufficient to perform the stated function, i.e., to retain the detonator head. For instance, the plurality of arms 150 could include 2, 3, 4, 5, 6, 7, 8 or more arms. As shown in
Although not shown, it is possible to provide a window or opening in the cylindrical body 110 of the detonator positioning device 100 to facilitate visual verification of proper seating of the detonating cord (not shown), once the detonating cord has been connected to the assembly through the passage 102.
Turning to the other end of the detonator positioning device 100, a plurality of legs 140 are adapted to assist in positioning the device 100 within the perforating gun assembly 40. In the embodiment shown in
Although the plurality of legs 140 are depicted as having four legs, it would be understood that more or less legs may be sufficient to perform the stated function, i.e., to position the detonator positioning device within a perforating gun assembly. For instance, the plurality of legs 140 could comprise 3, 4, 5, 6, 7, 8 or more legs. Having more legs (or arms as referenced above) means each individual leg/arm is ultimately thinner than if fewer legs/arms are used. Similarly, thinner legs/arms means the individual legs/arms are less rigid, so there will ultimately be a trade-off in number of legs/arms selected between rigidity and/or flexibility of the detonator positioning device and the ability to stabilize the detonator positioning device within the perforating gun assembly and/or retain the detonator head, as the case may be.
Further, in an embodiment, each of the plurality of arms 150 and the plurality of legs 140 are adapted to provide a snap fit upon insertion of the detonator 10 within the central bore 130 and insertion of the cylindrical body 110 within the perforating gun assembly 40.
As mentioned above, a third portion 124 may also be formed as a portion of the cylindrical body 110. As shown in
As stated above, the central bore 130 is adapted to receive and retain the detonator 10, wherein the central bore 130 extends from the open end 113 to the closed end 114 of the cylindrical body 110, and the enlarged bore portion 132 is positioned adjacent the open end 113. Thus, when the detonator 10 is positioned within the central bore 110 of the detonator positioning device 100, the detonator housing 11 extends along a length of the central bore 130, while the detonator head 18 is received within the enlarged bore portion 132.
In an embodiment, a line-out connector biasing member 25 is positioned or otherwise situated within the central bore 130 of the cylindrical body 110, at a base 134 of the enlarged bore portion 132, while a ground connector biasing member 28 is positioned or otherwise situated within the central bore 130 of the cylindrical body 110, at a base 136 of the central bore 130. Thus, the ground connector biasing member 28 is positioned within the central bore 130 between the detonator housing 11 of the detonator 10 and the closed end 114 of the cylindrical body 110. In addition, a terminal 26 is typically positioned adjacent the line-out connector biasing member 25.
In an embodiment, the terminal 26 is formed as a semi-round metallic material, with a slotted nipple 27 extending from an outer circumferential surface of the terminal 26. The slotted nipple 27 is adapted for connection to the single electrical line-out wire needed to complete the electrical connection for this assembly (not shown). Although a slotted nipple 27 is depicted, it will be understood by those of ordinary skill in the art that other mechanisms may be provided to create the electrical connection between the single wire and the terminal 26.
The line-out connector biasing member 25 and the ground connector biasing member 28 may be formed from a spring-like material for assisting in maintenance of physical and electrical contact between the line-in contact-initiating pin 38 extending from the bulkhead assembly 46, and may also be formed of materials suitable to facilitate electrical connectivity. Typically, these components are also metallic, that is to say they are formed from an electrically conductive metal material.
Once received within the central bore 130, therefore, the detonator 10 is electrically contactingly connected to the terminal 26 that is positioned between the line-out portion 22 of the detonating head 18 of the detonator 10 and the line-out connector biasing member 25. Thus, once the detonator 10 is positioned within the central bore 130, and the line-in contact-initiating pin 38 of the bulkhead assembly 46 makes contact with, and thus electrically contactably connects to the line-in portion 20 of the detonator head 18. The line-out connector biasing member 25 will thus compress, causing the line-out portion 22 of the detonator head 18 to electrically contactably connect with the terminal 26. The grounding connection will be discussed in more detail hereinbelow.
With reference to the closed end 114 of the detonator positioning device 100 and in an embodiment, a grounding strip or wire 29 is provided for completing the electrical connection and is also typically formed from an electrically conductive metal material. In an embodiment, the grounding strip 29 is embedded in the closed end 114 of the cylindrical body 110. As shown in the embodiment of
As mentioned above, and with particular reference to
Since the assembled cylindrical body 109 according to this embodiment requires assembly in the field, a plurality of couplers 170 are provided that are adapted for attaching the first part 111 of the assembled cylindrical body 109 to the second part 112 of the assembled cylindrical body 109. It would be understood by one of ordinary skill in the art that it is possible to attach the first part 111 to the second part 112 by any number of fasteners 172, including screws, bolts/nuts and the like that may be received in a socket or cavity 174 through threading, frictional fit and the like. As shown best in
In an embodiment, the first part 111 and the second part 112 may be configured as symmetrical or non-symmetrical halves.
According to an aspect the perforating gun assembly 40 and a method for assembling the perforating gun assembly 40 including a wireless detonator 10 and detonator positioning device 100 as described hereinabove is provided.
In an aspect, the method of assembling the perforating gun assembly 40 while using a semi-wired electrical connection includes at least the following steps: positioning the detonator positioning device 100 within the perforating gun assembly 40, the detonator positioning device 100 including the central bore 130; positioning the ground connector biasing member 28 at the base 136 of the central bore 130; positioning the line-out connector biasing member 25 at the base 134 of the enlarged portion 132 of the central bore 130; positioning the terminal 26 for receiving the single line-out wire adjacent the line-out connector biasing member 25; positioning the wireless detonator 10 within the central bore 130 such that the housing 11 of the detonator 10 extends along at least a portion of the central bore 130 and the ground portion 13 of the housing 11 electrically contacts the ground connector biasing member 28, and positioning the head 18 of the detonator 10 within the enlarged portion 132 of central bore 130 such that the line-out portion 22 of the detonator 10 electrically contacts the terminal 26, and the line-in contact-initiating pin 38 electrically contacts the line-in portion 20 of the detonator 10.
According to an aspect, the step of positioning the detonator positioning device 100 within the perforating gun assembly 40 includes positioning the detonator positioning device within a support member or end plate 180, as seen, for instance,
Turning to the embodiment found in
As used herein, “hold” means to enclose within bounds, to limit or hold back from movement or to keep in a certain position. The detonator positioning device 100 is positioned within the perforating gun assembly 40 and functions to receive and hold in place the detonator 10 according to an embodiment. In addition, the detonator positioning device 100 also functions to provide electrical contacting components for wirelessly-connectably electrically receiving the detonator 10, while providing for a single wired connection to the detonator positioning device 100 itself.
The components and methods illustrated are not limited to the specific embodiments described herein, but rather, features illustrated or described as part of one embodiment can be used on or in conjunction with other embodiments to yield yet a further embodiment. It is intended that the device and method include such modifications and variations. Further, steps described in the method may be utilized independently and separately from other steps described herein.
While the device and method have been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope contemplated. In addition, many modifications may be made to adapt a particular situation or material to the teachings found herein without departing from the essential scope thereof.
In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Furthermore, references to “one embodiment,” “some embodiments,” “an embodiment” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Terms such as “first,” “second,” “forward,” “rearward,” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.”
Advances in science and technology may make equivalents and substitutions possible that are not now contemplated by reason of the imprecision of language; these variations should be covered by the appended claims. This written description uses examples to disclose the device and method, including the best mode, and also to enable any person of ordinary skill in the art to practice the device and method, including making and using any devices or systems and performing any incorporated methods. The patentable scope thereof is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application is a continuation of U.S. application Ser. No. 15/117,228 filed Aug. 8, 2016, now U.S. Pat. No. 10,188,990 issued Jan. 29, 2019, which claims priority to PCT Application No. PCT/US2015/018906 filed Mar. 5, 2015, which claims the benefit of U.S. Provisional Application No. 61/949,939 filed Mar. 7, 2014, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1757288 | Bleecker | May 1930 | A |
2358466 | Miller | Sep 1944 | A |
2687092 | Duesing | Aug 1954 | A |
2889775 | Owen | Jun 1959 | A |
3116690 | Gillingham | Jan 1964 | A |
3170400 | Nelson | Feb 1965 | A |
3246707 | Bell | Apr 1966 | A |
3357355 | Roush | Dec 1967 | A |
3374735 | Moore | Mar 1968 | A |
3504723 | Cushman et al. | Apr 1970 | A |
3859921 | Stephenson | Jan 1975 | A |
4007790 | Henning | Feb 1977 | A |
4007796 | Boop | Feb 1977 | A |
4058061 | Mansur, Jr. et al. | Nov 1977 | A |
4100978 | Boop | Jul 1978 | A |
4182216 | DeCaro | Jan 1980 | A |
4491185 | McClure | Jan 1985 | A |
4496008 | Pottier et al. | Jan 1985 | A |
4574892 | Grigar et al. | Mar 1986 | A |
4598775 | Vann et al. | Jul 1986 | A |
4747201 | Donovan et al. | May 1988 | A |
4776393 | Forehand et al. | Oct 1988 | A |
4790383 | Savage et al. | Dec 1988 | A |
4889183 | Sommers et al. | Dec 1989 | A |
5027708 | Gonzalez et al. | Jul 1991 | A |
5052489 | Carisella et al. | Oct 1991 | A |
5060573 | Montgomery et al. | Oct 1991 | A |
5088413 | Huber et al. | Feb 1992 | A |
5105742 | Sumner | Apr 1992 | A |
5159145 | Carisella | Oct 1992 | A |
5237136 | Langston | Aug 1993 | A |
5322019 | Hyland | Jun 1994 | A |
5347929 | Lerche et al. | Sep 1994 | A |
5436791 | Turano et al. | Jul 1995 | A |
5703319 | Fritz et al. | Dec 1997 | A |
5775426 | Snider et al. | Jul 1998 | A |
5816343 | Markel et al. | Oct 1998 | A |
6006833 | Burleson et al. | Dec 1999 | A |
6012525 | Burleson et al. | Jan 2000 | A |
6085659 | Beukes et al. | Jul 2000 | A |
6112666 | Murray et al. | Sep 2000 | A |
6305287 | Capers et al. | Oct 2001 | B1 |
6354374 | Edwards et al. | Mar 2002 | B1 |
6418853 | Duguet et al. | Jul 2002 | B1 |
6651747 | Chen et al. | Nov 2003 | B2 |
6739265 | Badger et al. | May 2004 | B1 |
6742602 | Trotechaud | Jun 2004 | B2 |
7193527 | Hall et al. | Mar 2007 | B2 |
7278491 | Scott | Oct 2007 | B2 |
7347278 | Lerche et al. | Mar 2008 | B2 |
7461580 | Bell | Dec 2008 | B2 |
7568429 | Hummel et al. | Aug 2009 | B2 |
7762172 | Li et al. | Jul 2010 | B2 |
7762351 | Vidal | Jul 2010 | B2 |
7778006 | Stewart et al. | Aug 2010 | B2 |
7810430 | Chan et al. | Oct 2010 | B2 |
7823508 | Anderson | Nov 2010 | B2 |
7908970 | Jakaboski et al. | Mar 2011 | B1 |
7929270 | Hummel et al. | Apr 2011 | B2 |
8066083 | Hales et al. | Nov 2011 | B2 |
8069789 | Hummel | Dec 2011 | B2 |
8074737 | Hill et al. | Dec 2011 | B2 |
8157022 | Bertoja et al. | Apr 2012 | B2 |
8182212 | Parcell | May 2012 | B2 |
8256337 | Hill et al. | Sep 2012 | B2 |
8395878 | Stewart et al. | Mar 2013 | B2 |
8661978 | Backhus et al. | Mar 2014 | B2 |
8863665 | DeVries et al. | Oct 2014 | B2 |
8875787 | Tassaroli | Nov 2014 | B2 |
8881816 | Glenn et al. | Nov 2014 | B2 |
8943943 | Tassaroli | Feb 2015 | B2 |
9181790 | Mace et al. | Nov 2015 | B2 |
9494021 | Parks et al. | Nov 2016 | B2 |
9581422 | Preiss et al. | Feb 2017 | B2 |
9605937 | Eitschberger et al. | Mar 2017 | B2 |
9689223 | Schacherer et al. | Jun 2017 | B2 |
20020020320 | Lebaudy et al. | Feb 2002 | A1 |
20020062991 | Farrant et al. | May 2002 | A1 |
20030000411 | Cernocky et al. | Jan 2003 | A1 |
20030001753 | Cernocky et al. | Jan 2003 | A1 |
20050178282 | Brooks et al. | Aug 2005 | A1 |
20050194146 | Barker et al. | Sep 2005 | A1 |
20070158071 | Mooney, Jr. et al. | Jul 2007 | A1 |
20080149338 | Goodman et al. | Jun 2008 | A1 |
20080173204 | Anderson et al. | Jul 2008 | A1 |
20080264639 | Parrott et al. | Oct 2008 | A1 |
20090050322 | Hill et al. | Feb 2009 | A1 |
20100107917 | Moser | May 2010 | A1 |
20100230104 | Nolke et al. | Sep 2010 | A1 |
20120199031 | Lanclos | Aug 2012 | A1 |
20120242135 | Thomson et al. | Sep 2012 | A1 |
20120247769 | Schacherer et al. | Oct 2012 | A1 |
20120247771 | Black et al. | Oct 2012 | A1 |
20120298361 | Sampson | Nov 2012 | A1 |
20130008639 | Tassaroli | Jan 2013 | A1 |
20130118342 | Tassaroli | May 2013 | A1 |
20140053750 | Lownds | Feb 2014 | A1 |
20150226044 | Ursi et al. | Aug 2015 | A1 |
20160061572 | Eitschberger et al. | Mar 2016 | A1 |
20160168961 | Parks et al. | Jun 2016 | A1 |
20170030693 | Preiss et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
2821506 | Jan 2015 | CA |
85107897 | Sep 1986 | CN |
101397890 | Apr 2009 | CN |
201620848 | Nov 2010 | CN |
2633904 | Oct 2017 | RU |
WO-0159401 | Aug 2001 | WO |
WO-2009091422 | Jul 2009 | WO |
WO-2015006869 | Jan 2015 | WO |
Entry |
---|
Norwegan Industrial Property Office, Office Action for NO Patent App. No. 20160017, which is in the same family as U.S. Pat. No. 9,494,021, dated Jun. 15, 2017, 3 pgs. |
Norwegan Industrial Property Office, Search Report for NO Patent App. No. 20160017, which is in the same family as U.S. Pat. No. 9,494,021, dated Jun. 15, 2017, 2 pgs. |
FIIP, Search Report for RU App. No. 2016104882/03, which is in the same family as U.S. Pat. No. 9,494,021, dated Feb. 1, 2018, 11 pgs. |
GB Intellectual Property Office, Office Action for GB App No. GB 1717516.7, which is in the same family as U.S. Pat. No. 9,494,021, dated Feb. 27, 2018, 6 pgs. |
Dynaenergetics, Selective Perforating Switch, Product summary-from website, http:www.dynaenergetics.com/, Jul. 3, 2013, 2 pgs. |
Gilliat et al., New Select-Fire System, BakerHughes, Presentation 2013 Asia-Pacific Perforating Symposium, 2012, 16 pgs., https://perforators.org/ips-presentations/. |
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4B, Product Information, Dec. 16, 2011, 1 pg. |
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4S, Product Information, Dec. 16, 2011,1 pg. |
Dynaenergetics, Electronic Top Fire Detonator, Product Information Sheet, Jul. 30, 2013, 1 pg., www.dynaenergetics.com. |
Dynaenergetics, Gun Assembly, Products Summary Sheet, May 77, 2004, 1 pg., www.dynaenergetics.com. |
Dynaenergetics, Selective Perforating Switch, Product Information Sheet, May 27, 2011, 1 pg., www.dynaenergetics.com. |
PCT Written Opinion for PCT App. No. PCT/CA2014/050673, which is in the same family as U.S. Pat. No. 9,494,021, dated Oct. 9, 2014, 4 pgs. |
German Patent Office, Office Action for DE App. No. 10 2013109227.6, which is in the same family as U.S. Pat. No. 9,581,422, in German, dated May 22, 2014, pp. 5 & 7—list of references, 8 pgs. |
PCT Search Report and Written Opinion for PCT App No. PCT/EP2014/065752 which is in the same family as U.S. Pat. No. 9,605,937, dated May 4, 2015, 12 pgs. |
Dynaenergetics, Selective Perforating Switch, information downloaded from website, http:www.dynaenergetics.com/, Jul. 3, 2013, 2 pgs. |
International Search Report of International Application No. PCT/CA2014/050673,which is in the same family as U.S. Pat. No. 9,494,021, dated Oct. 9, 2014, 3 pgs. |
Hunting Titan, Wireline Top Fire Detonator Systems, Nov. 24, 2014, 1pg., http:www.hunting-intl.com/titan/perforating-guns-and-setting-tools/wireline-top-fire-detonator-systems. |
UK Examination Report of UK Application No. GB1600085.3, which is in the same family as U.S. Pat. No. 9,494,021, dated Mar. 9, 2016, 1 pg. |
SIPO, Search Report for CN App. No. 201480040456.9, which is in the same family as U.S. Pat. No. 9,494,021, dated Mar. 29, 2017, 15 pgs. |
GB Intellectual Property Office, Search Report for App. No. GB 1700625.5, which is in the same family as U.S. Pat. No. 9,494,021, dated Jul. 7, 2017, 5 pgs. |
SIPO, Office Action dated Jun. 27, 2018: See Office Action for CN App. No. 201580011132.7, which is in the same family as PCT App. No. W PCT/US2015/18906, 9 pgs. & 5 pgs. |
International Search Report and Written Opinion of International Application No. PCT/US2015/018906, which is in the same family as U.S. Appl. No. 15/117,228, dated Jul. 10, 2015, 12 pg. |
Intellectual Property India, Office Action of IN Application No. 201647004496, dated Jun. 7, 2019, which is in the same family as US Publication No. 20160168961, published Jun. 16, 2016, 6 pgs. |
Number | Date | Country | |
---|---|---|---|
20180318770 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
61949939 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15117228 | US | |
Child | 16026431 | US |