In the art of heating, ventilating and air conditioning (HVAC) equipment, there is an ever increasing utilization of electronic based or configured controls. The use of microprocessors for monitoring the status of an HVAC system and certain operating conditions, effecting control over operation of the HVAC system and for the storage of suitable system identification information has become increasingly common. However, one problem associated with the use of microprocessor based air conditioning system controls is the difficulty in obtaining accurate information concerning the operation and performance of the air conditioning equipment. Still further, control systems have been developed which have the capability to transmit information to remote locations via various types of data transmission equipment. However, human observation of operation of air conditioning equipment is, typically, a major source of information and known types of controls typically require external devices which must be connected to a microprocessor control board, for example, and require an interface and a computer to retrieve desired information. Such methods are cumbersome, expensive and difficult to implement.
Accordingly, with the increasing sophistication of air conditioning systems equipped with electronic controls, there has been a need to develop an information storage device which is removable from the control system processor so that information regarding, for example, the operation of air conditioning equipment may be analyzed and so that suitable control functions may be modified, as needed, by personnel servicing the air conditioning equipment. Moreover, there has also been a need to provide so-called generic controllers or control systems for air conditioning equipment which may be programmed or provided with operating parameters after completion of manufacture and even after installation of such equipment. It is to these ends that the present invention has been developed.
The present invention provides an information storage device or module for use in conjunction with HVAC equipment and a method of storing and retrieving information using or implementing such a device.
In accordance with one aspect of the present invention an information storage and retrieval device or module is provided which is operable to store a relatively large amount of information in a unit of compact physical size and which may be connected to a control system for a unit of HVAC equipment, hereinafter referred to as air conditioning equipment. By provision of a suitable port on the control system, such as on a circuit board of the control unit microprocessor, information may be automatically transferred to the device or transferred from the device or module. Accordingly, the device can be retrieved at a selected time and the information may be used, as needed, by servicing personnel.
Another aspect of the invention includes the provision of a device or module which may be releasably and operably connected to a control system for an air conditioning unit for retrieving information concerning the operating status and operating parameters of the unit and also for use in performing upgrades or modifications to the operating parameters of the control system.
Still further, the invention provides an information storage and retrieval device which may be utilized with air conditioning equipment wherein the control system for the air conditioning equipment, with respect to each particular unit or equipment, may be produced as a generic system and then “personalized” by using the device to input to the system controller such information as system model number, serial number, and specific data which can be utilized in operating the system.
The information storage device may be utilized to update existing so-called generic control systems from time to time in the field so that existing equipment has access to the latest processes and control features. The device or module may incorporate an EEPROM memory unit on a circuit board with a connector so that it can exchange data with a control board or microprocessor forming part of a control system for a particular unit of air conditioning equipment. Model specific data may be transferred to the control system and program files or upgrades to a basic program residing on the control system can be provided utilizing the so-called “personality module” or device of the present invention. Of course, control of information such as historical data including, for example, the number of operating cycles of the air conditioning equipment can be stored on the so-called personality module for future use and diagnostic work.
Still further, the device of the present invention can be utilized with respect to calibration data for parameters such as operating pressures and temperatures required for efficient, continuous and reduced hazard system operation. Such an arrangement allows the use of control system elements, such a thermistors or pressure transducers, in conjunction with air conditioning equipment instead of specialized switches having unique calibrations of temperature or pressure. Such an improvement simplifies the manufacturing process for air conditioning equipment and reduces the amount of information gathering, such as bar code scanning, of each of the components of the equipment at the point of manufacture.
In accordance with yet another aspect of the present invention, the aforementioned information storage personality module or device may contain information concerning the air flow characteristics for or calibration information of a particular type of air conditioning equipment on which it is installed and which may be specially programmed for laboratory use. Such devices may contain override data or instructional programming for nonstandard operating conditions, for example. Moreover, a so-called functional parts list may be carried on the information storage module or device as part of the information stored therein which would reduce the amount of documentation used in manufacturing, shipping and servicing a unit of air conditioning equipment, for example.
The aforementioned personality module or device may be of a particular shape which is easily recognizable and allows it to be inserted correctly in a matching connector part for connecting the device to the control system or control board of the equipment with which the device is to be used. The shape of the personality module or device is also such that the correct side to be connected to the control system can be detected by personnel manipulating and being able to feel the configuration of the device. The device may have features including a tether for maintaining it attached to the air conditioning equipment in which it is installed and matched, for example.
Those skilled in the art will further appreciate the advantages and superior features of the invention upon reading the detailed description which follows in conjunction with the drawings.
In the description which follows like elements are marked throughout the specification and drawing with the same reference numerals, respectively. Certain elements and/or features may be shown in schematic form in the interest of clarity and conciseness.
Referring to
A preferred control system for the apparatus 10, indicated generally by numeral 50, includes a microprocessor 52 and additional control elements to be described. Microprocessor 52 is operably connected to the thermostat 48 via signal conductors, including conductors 54, 56, 58, 60 and 62 which, respectively, may provide signals to the microprocessor including a first stage call for heat, a second stage call for heat, a first cooling stage call, a continuous fan operating mode signal, and possibly, a heat pump operating signal. The apparatus 10 illustrated, typically includes a vapor compression compressor and condenser unit, not shown, operably connected to the evaporator or cooling coil 28 and possibly configured for either air cooling operation only or heat pump operation. Those skilled in the art will recognize that, in a typical air conditioning apparatus, multiple sources of heat may or may not be available. However, for convenience in describing the invention in this application the apparatus 10 has been shown to include at least one source of cooling effect, namely, the heat exchanger 28, and single or multiple sources of heating which could include the heat exchanger 28, includes the combustion furnace 30 and could include the electric heater 32. Alternatively, multiple stages of electric heating could be incorporated in the apparatus 10 in place of the combustion furnace 30.
Accordingly, for the particular configuration of the apparatus 10, as illustrated, the control system 50 typically includes a motor control relay 64,
As further shown in
Device 82 may be disconnected from controller 52 and connected to a processor 90,
As mentioned previously, the module or device 82 may be programmed at the manufacturing location of the apparatus 10 to store information concerning the specific model of the apparatus. Examples of data stored in the memories 86, 88 are the apparatus model and serial number, air flow data, and a list of specific part numbers for replaceable parts that are specific to the particular apparatus with which the module 82 is associated. The information stored in the module or device 82 that is necessary for operation of the apparatus 10 is transferred into one or more memories 52a and/or 52b,
Accordingly, data necessary for operation of the apparatus 10 and its control system 50, when transferred into the memories 52a and/or 52b, allows normal operation of the apparatus in the event the module 82 is removed or becomes unreadable. Normally, at power-up of the control system 50, the controller or processor 52 compares locally stored memory data in the memory 52a and/or 52b with the data stored in the memory 86 and/or 88. The system 50 may be programmed to accept valid data from device 82 which would supersede any locally stored data in the controller 52.
Referring now to
Accordingly, the module or device 82 enables the obtaining of accurate information about the operation and performance of HVAC equipment, such as the apparatus 10 and the module may be easily connected to and disconnected from the control system 50 via the connector 84a, 84b. Moreover, data or information may also be transferred via a LITE PORT connector, such as connector 89,
Moreover, as mentioned previously, equipment or apparatus model specific data may be transferred to the controller 52, upon energization of the controller 52 and upon energization of the apparatus 10 and its control system 50. Accordingly, generic control components, such as the controller 52, may be provided when the equipment or apparatus 10 is manufactured and prepared for placement in service.
Still further, the apparatus 10 may be provided with sensors, such as the sensors 36 and 38, rather than pressure responsive or temperature responsive switches, and operating parameters for a particular apparatus 10 may be placed in the memory of module 82 and then transferred to the controller 52 for a particular model of apparatus 10 whereby the calibration of pressure and temperature conditions required for continuous operation can be stored on the module and transferred to the controller on a model by model basis. In this way also, the module 82 may be programmed for laboratory usage in selecting nonstandard airflow parameters and control override capabilities. As mentioned previously, a parts list for each apparatus 10, including descriptions for various replacement parts, may be programmed into the module 82 to reduce the amount of paper documents used in shipping documentation or literature associated with each apparatus.
Those skilled in the art will recognize that the fabrication and operation of the apparatus 10, its control system 50 and the module or device 82 may be carried out based on the description herein and information available to and known to those skilled in the art. Although a preferred embodiment of the invention has been described in detail those skilled in the art will also recognize that various substitutions and modifications may be made to the specific embodiment described without departing from the scope and spirit of the appended claims.