Device and method for reducing crosstalk

Information

  • Patent Grant
  • 7794266
  • Patent Number
    7,794,266
  • Date Filed
    Thursday, September 13, 2007
    16 years ago
  • Date Issued
    Tuesday, September 14, 2010
    13 years ago
Abstract
A device and method for reducing crosstalk between wires is provided. The method includes spatially separating first and second sets of wires. A device is disposed relative to the first and second sets of wires to maintain the spatial separation. The method also comprises coupling pins to the first and second sets of wires. Additionally, the method includes covering the device with a connector housing.
Description
TECHNICAL FIELD

The present invention relates generally to electronic devices, such as medical devices, and more particularly to reducing crosstalk in such devices.


BACKGROUND

This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


Medical devices such as those used for monitoring a patient's vital sign or other physiologic variable, are commonly comprised of a patient-contacting signal transducer and a monitor that connects to the transducer, processes the signals, and provides information to the caregiver. Typically, the transducer is connected to the monitor with and interface cable that includes wires for conducting electrical signals.


An ideal cable and connector assembly for use in such medical devices would be immune to noise interference from external sources as well as crosstalk between wires within the cable and connector assembly. In reality, however, the manufacturing process of a cable and connector assembly includes steps that make the wires within a cable and connector assembly vulnerable to noise, such as capacitive and inductive crosstalk, wherein electrical signals in one wire or pair of wires may interfere or create noise on a nearby wire. The crosstalk may be detrimental to the operation of a medical device. For example, in pulse oximetry, the crosstalk can result in inaccurate readings of SpO2 values.


Cables are generally manufactured to limit the amount of external noise and inductive and capacitive crosstalk that can occur between wires. For example, the cables are bundled together with an electrically insulating protective coating and a conductive shield mesh to protect against environmental noise sources. Additionally, the cables may be made up of twisted wire pairs, commonly referred to as twisted pairs. As their name suggests, the twisted pairs are a pair of wires twisted together in a manner that results in each wire becoming exposed to the same or similar amounts noise elements such that the noise can be nearly or completely canceled out. A twisted pair may be surrounded by an electrically grounded conductive mesh shield to help eliminate noise interference from other wires within the cable bundle. Twisted pairs having the conductive mesh shield are referred to as shielded twisted pairs, while twisted pairs without the conductive mesh are referred to as unshielded twisted pairs. The cables used in medical devices such as pulse oximetry systems are commonly constructed with one or both types of twisted pairs, where multiple sets of wires are combined into a cable bundle. Electrical crosstalk can occur when signal wires electrically contact one another (a “short”), or come into close proximity to adjacent conductors.


In order to connect the wires to connector pins, the cable bundle must be stripped and the wires untwisted. Thus, in this section of the cables, the wires are unprotected and vulnerable to crosstalk interference. Furthermore, after the wires have been connected to connector pins and the pins are placed in a connector housing, even if the wires are initially pushed apart and spatially separated, additional handling and processing may push the wires together and increase the likelihood of crosstalk.


SUMMARY

Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.


In accordance with one aspect of the present invention, there is provided a medical device cable. In the examples used herein, the medical device is a pulse oximeter. The pulse oximeter cable comprises a first pair of wires, a second pair of wires and an insulative piece configured to maintain spatial separation between the first and second pairs of wires. Additionally, the cable comprises a connector housing formed over the insulative piece.


In accordance with another aspect of the present invention, there is provided a method of manufacturing an electrical cable comprising spatially separating a first set of wires from a second set of wires and disposing a device relative to the first and second sets of wires to maintain the spatial separation and coupling pins to the first and second sets of wires. Additionally, the method comprises covering the device with a connector housing.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain exemplary embodiments are described in the following detailed description and in reference to the drawings in which:



FIG. 1 illustrates an exemplary pulse oximetry system in accordance with an exemplary embodiment of the present invention;



FIG. 2 illustrates a pulse oximetry cable in accordance with an embodiment of the present invention;



FIG. 3 illustrates an insulative material with slots through which wires pass in accordance with an exemplary embodiment of the present invention;



FIG. 4 illustrates an insulative piece between wires in accordance with an alternative exemplary embodiment of the present invention;



FIG. 5 illustrates an electrically grounded conductive object between wires in accordance with an alternative exemplary embodiment of the present invention;



FIG. 6 illustrates an insulative block with pads and traces configured to spatially separate wires in accordance with an alternative exemplary embodiment of the present invention;



FIG. 7 illustrates placing an epoxy material on and in between wires in accordance with an alternative exemplary embodiment of the present invention;



FIG. 8 illustrates a cross-sectional view of the material of FIG. 7;



FIG. 9 illustrates a printed circuit board configured to spatially separate wires in accordance with an alternative exemplary embodiment of the present invention;



FIG. 10 illustrates an alternative embodiment for using a printed circuit board in accordance with an alternative exemplary embodiment of the present invention;



FIG. 11 illustrates top view of the printed circuit board of FIG. 10;



FIG. 12 illustrates a view of the bottom of the printed circuit board of FIG. 10; and



FIG. 13 is a flow chart depicting a technique for reducing crosstalk in accordance with an exemplary embodiment of the present invention.





DETAILED DESCRIPTION

One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


Turning initially to FIG. 1, an exemplary medical device, such as a pulse oximetry system, is illustrated and generally designated by the reference numeral 10. Pulse oximetry systems, such as system 10, calculate various physiological parameters by detecting electromagnetic radiation (light) that is scattered and absorbed by blood perfused tissue. The pulse oximeter system 10 has a main unit 12 which houses hardware and software configured to calculate various physiological parameters. The main unit 12 has a display 14 for displaying the calculated physiological parameters, such as oxygen saturation or pulse rate, to a caregiver or patient. The pulse oximetry system 10 also has a sensor unit 16, which may take various forms. As shown in FIG. 1, the sensor unit 16 may be configured to fit over a digit of a patient or a user. The sensor unit 16 is connected to the main unit 12 via a cable 18. The cable 18 may be coupled to main unit 12 using a connector housing 20. It is at the interface between the cable 18 and the pins 34 (shown in FIG. 2) of the connector housing 20 where noise interference in the form of crosstalk is most likely to occur.


A more detailed illustration of the cable 18 is shown in FIG. 2. Specifically, the cable 18 is shown having an outer jacket 22. The outer jacket 22 is a polymeric material jacket to hold the cable bundle together and to protect the wires from environmental factors. Under the outer jacket 22, the cable 18 has an outer shield 24 which may be configured to prevent electromagnetic interference from external sources. The outer shield 24 may be made up any type of shielding material, such as a metallic mesh, for example.


The cable 18, as shown in FIG. 2, has both emitter wires 26 and detector wires 28. Both the emitter wires 26 and the detector wires 28 are twisted pair wires. The wire pairs are twisted so that each wire is similarly exposed to any potential electromagnetic interference that reaches the wires. Because each of the wires is exposed to similar levels of interference, the interference can be reduced through circuit designs that cancel such common-mode signals.


The emitter wires 26 may comprise an unshielded twisted pair and the detector wires 28 may comprise a shielded twisted pair. As can be seen in FIG. 2, the detector wires 28 have a jacket 30, such as a polymeric coating for example, and an inner shield 32 similar to the outer shield 24 of the cable 18. The detector wires 28 are shielded electrically to prevent potential crosstalk from the emitter wires 26, as well as interference from environmental factors. Both the emitter wires 26 and the detector wires 28 are individually connected to respective pins 34 of a connector housing, such as connector housing 20.


During the manufacturing process, the outer jacket 22 is stripped from the cable 18, and the coating 30 of the detector wires 28 is stripped from the detector wires 28. The emitter wires 26 and detector wires 28 are then untwisted to facilitate connection of the emitter wires 26 and detector wires 28 to their respective pins 34. The detector wires 28, however, become vulnerable to a variety of noise-inducing influences, including inductive and capacitive crosstalk from the emitter wires 26 when they are unshielded and untwisted.


Initially, during the manufacturing process, the emitter wires 26 and the detector wires 28 are separated. The wires may be pulled apart by a worker or a machine may push a tool in between the pairs of wires to separate them. Unfortunately, after this initial separation, little may be done to maintain the separation of the wires.


Although workers may understand their specific role in the manufacturing process, they may not fully appreciate the importance of maintaining the separation between the wires and may fail to take precautions to maintain the separation of the wires. As such, the cables may be tossed into bins for transportation to different workstations, and the cables may be handled and manipulated by multiple workers and machines before the cables are fully assembled and ready for operation. In the bins, the cables may be compacted together or get tangled together. While being handled and manipulated by workers and machines, the wires may be pushed together. Therefore, at the end of the manufacturing process, there is a risk that the wires will no longer be separated, resulting in an increased susceptibility to crosstalk in the fully assembled cables.


To address this concern, an insulative material 36, as illustrated in FIG. 3, may be used to maintain spatial separation between the emitter wires 26 and detector wires 28 in order to prevent crosstalk. The insulative material 36 may be a silicon rubber, polymer, or other electrically non-conductive material. The insulative material 36 may have apertures 38, such as slots, through which the emitter wires 26 and detector wires 28 are passed during the manufacturing process. The wires may be coupled to the pins before or after being passed through the apertures 38. The apertures 38 of the insulative material 36 help ensure that the emitter wires 26 and detector wires 28 remain separated throughout the manufacturing process to prevent crosstalk.


After the emitter wires 26 and detector wires 28 have been positioned in the apertures 38, the insulative material 36 and a portion of the pins 34 and the wires 26 and 28 are encapsulated by the connector housing 20. An over-molding process (such as insert, injection, or transfer molding), or other means, may be implemented to form the connector housing 20. The connector housing 20 is formed over the insulative piece 36 so that the insulative piece 36 can continue to prevent the emitter and detector wires from moving closer to each other during the encapsulation process. By preserving the spatial separation, the insulative piece 36 helps the detector wires 28 to be less susceptible to crosstalk interference from the emitter wires 26.


In another embodiment, as illustrated in FIG. 4, an insulative piece 40, such as a piece of silicon rubber, polymer or other electrically non-conductive material, may be wedged or coupled between the emitter wires 26 and detector wires 28 to prevent electrical crosstalk. The insulative piece 40 is wedged or coupled between the emitter wires 26 and detector wires 28 by directing the wires into open ended apertures 42 located on opposite sides of the insulative piece 40. The insulative piece 40 is installed prior to the encapsulation process and prevents the emitter wires 26 and the detector wires 28 from moving into closer proximity of each other during the encapsulation process or handling prior during the manufacturing process. The encapsulation process forms the connector housing 20 over the insulative piece 40, as described above.


Alternatively, as illustrated in FIG. 5, a conductive object 50, such as a piece of copper, positioned between the emitter wires 26 and detector wires 28 can help reduce or eliminate crosstalk. The conductive object 50 is electrically grounded via the wire 52. The wire 52 may be formed by aggregating the wire mesh of the outer shield 24 to form a single wire, or comprise a separate drain or ground wire. The conductive object 50 is positioned between the emitter wires 26 and detector wires 28. It should be understood that the conductive object 50 may be implemented alone or in conjunction with insulative embodiments described herein. Specifically, for example, the conductive object 50 may be supported by the insulative material 36 of FIG. 3. The connector housing 20 would then be formed over the both conductive object 50 and the insulative material 36.


Turning to FIG. 6, yet another embodiment includes an insulative piece 60 with solder pads 62 and traces 64 and 66. The insulative piece 60 may be a resin glass composition, a polymer capable of withstanding the temperatures used in soldering, or other suitable material. As illustrated, the insulative piece 60 has solder pads 62 on one side to connect the emitter wires 26 and detector wires 28 to the insulative piece 60. The solder pads 62 are connected to electrically conductive traces 64 and 66 that run on the front side and backside of the insulative piece 60, respectively. Specifically, the traces 64, which are coupled to the detector wires 28, run on a front side of the insulative piece 60, while the traces 66, which are coupled to the emitter wires 26, run on a backside of the piece 60. Thus, the insulative piece 60 spatially separates the emitter traces 26 from the detector traces 28 to prevent crosstalk from occurring. Once the wires and pins are coupled to the insulative piece, the connector housing 20 may be formed over the insulative piece 60 through the encapsulation process.


Alternatively, an insulative material 70, such as epoxy resin or silicone, for example, may be used to maintain spatial separation of the detector wires 28 and the emitter wires 26, as illustrated in FIG. 7. The material 70 may be placed on and in between the wires 26 and 28 after the external coating has been removed and the wires 26 and 28 have been separated from each other. The material 70 may initially be a two-part gel that cures and hardens as the two parts interact. Once cured, the material 70 holds the wires in place to prevent the wires from coming into proximity of each other during the manufacturing process.


A cross-sectional view of the material 70 is illustrated in FIG. 8. As can be seen, the detector wires 28 are spatially separated from the emitter wires 26. The material 70 has a high dielectric constant to reduce capacitive effects, and, therefore, the emitter wires 26 and the detector wires are spatially and electrically isolated. The connector housing 20 may be formed over the material 70 through the encapsulation process after the material 70 has cured.


In another embodiment, a printed circuit board (PCB) 72 may also be used to maintain spatial separation between the emitter wires 26 and detector wires 28, as shown in FIG. 9. The PCB 72 may be a multi-layer PCB with solder pads or holes (not shown) for coupling the wires to the PCB 72. The solder pads or holes for coupling the emitter wires 26 to the PCB 72 may be located remotely from the solder pads or holes for coupling the detector wires 28 to the PCB 72. Vias and traces in and on the PCB 72 connect the emitter wires 26 and detector wires 28 to the proper pins. The connector housing 20 may be formed over the PCB 72.


An alternative embodiment using a PCB to prevent crosstalk is shown in FIG. 10. Specifically, FIG. 10 shows a side view of a PCB 74 positioned between a top layer and a bottom layer of pins 34. The PCB 74 is a two layer circuit board having traces, pads, and connection points for the connector pins 34 on both layers of the PCB 74. As can be seen by further referring to FIGS. 11 and 12, the detector contacts 76a-b are physically remote from the emitter contacts 78a-b. In addition, the inner shield wire 32 is soldered on the top layer 80 of the PCB 74 while the detector wires 28 are soldered on the bottom layer 82 of the PCB 74. The location of the detector wires 28 provide spatial separation from the emitter wires 26. The PCB 74 additionally shields the detector contacts 76a-b and emitter contacts 78a-b from the memory chip contacts. The inner shield 32 is routed to pin 6 by a trace 84. The connector housing 20 may be formed over the PCB 74. Wires 26 and 28 emanating from cable 18 may be kept short in length to prevent cross-talk. Use of the PCB provides an easier substrate to terminate the wires to during the manufacturing process than terminating the wires to the pins directly.


Turning to FIG. 13, a technique to prevent crosstalk in pulse oximetry cables in accordance with an exemplary embodiment of the present invention is illustrated as a flow chart and generally designated by the reference numeral 100. The technique 100 begins by stripping a cable, as indicated at block 102. The cable may be any cable used in medical devices, such as those used in pulse oximeters and may include multiple wires which are also stripped. Once stripped, the wires are vulnerable to potential noise-inducing influences, such as crosstalk from the other wires of the cable. Therefore, the stripping of the wires should be performed with the goal of preserving as much of the shield on the wires as possible.


After the wires are stripped, the wires are spatially separated from each other, as indicated at block 104. Specifically, sets of twisted pairs are separated from each other. The spatial separation of the wires may be done by a person or by a machine. Because the twisting of the wires is a noise cancellation technique, effort should be made to keep the pairs of wires twisted, insofar as it is practicable.


The spatial separation between the sets of wires is maintained by coupling or inserting a device between the sets of wires, as indicated at block 106. Specifically, the spatial separation may be maintained by implementing one of the embodiments described above, such as using a PCB to physically separate the emitter wires 26 from the detector wires 28, for example, or inserting an insulative object between the pairs of wires. The use of one of the above mentioned exemplary embodiments, or other device, precludes the pushing of the separated wires into closer proximity of each other during the over-molding process or other processing and handling that may occur during manufacture.


Connector pins are electrically coupled to the wires, as indicated by block 108. The connector pins may be connected to the wires either directly by soldering the wires to the pins or indirectly via traces on a PCB, as described above, depending on the particular embodiment being implemented. By physically separating the wires and preserving that separation, crosstalk between wires is greatly reduced, or eliminated. The elimination of crosstalk may increase the accuracy of the medical devices.


The techniques described herein for maintaining spatial separation of the signal wires during the cable termination process to reduce cross-talk have applicability in patient monitoring applications beyond pulse oximetry. With respect to devices that utilize photo-emitters and photo-detectors as described herein, such techniques can be utilized in devices intended to monitor other blood constituents such as carboxyhemoglobin, methemoglobin, total hemoglobin content, glucose, pH, water content and others. Reducing signal cross-talk is also of importance in bio-impedance measurements for evaluating physiologic variables such as tissue hydration, cardiac output or blood pressure.


The step of creating a cabling connector may not be restricted to over-molding processes. Pre-molded connector housing components may be assembled to contain the pins and cable. During assembly, wires may come into close proximity that results in cross-talk (noise). The techniques described above may be used to reduce the likelihood of this occurring by ensuring proper spatial separation during the assembly process.


Additionally, it should be understood, that although the figures and the associated discussion describe embodiments wherein the cable 18 comprises twisted pair wires, the techniques disclosed herein may be applicable to any type of cable. Indeed, the techniques disclosed herein may be implemented with a coaxial cable, for example.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims
  • 1. A method of manufacturing an electrical cable comprising: spatially separating a first set of wires from a second set of wires;disposing an insulative member relative to the first and second sets of wires to maintain complete spatial separation of the first and second set of wires as the first and second set of wires pass through the insulative member;coupling pins to the first and second sets of wires; andcompletely surrounding the insulative member with a separate connector housing.
  • 2. The method of claim 1, wherein disposing the insulative member comprises passing the first set of wires through a first aperture of the insulative member and passing the second set of wires through a second aperture of the insulative member.
  • 3. The method of claim 1, wherein disposing the insulative member comprises disposing the first set of wires in an first open ended aperture on a first side of the insulative member and disposing the second set of wires in a second open ended aperture on a second side of the insulative member.
  • 4. The method of claim 1, wherein disposing the insulative member comprises disposing a conductive piece in between the wires, the conductive piece being coupled to ground.
  • 5. The method of claim 1, wherein disposing the insulative member comprises disposing the wires in a dielectric gel and allowing the gel to cure while the wires are spatially separated.
  • 6. The method of claim 1, comprising stripping the cable to expose the first and second sets of wires.
  • 7. The method of claim 1, wherein completely surrounding the insulative member with a separate connector housing comprises an over-molding process.
  • 8. The method of claim 1, wherein completely surrounding the insulative member with a separate connector housing comprises an assembly of pre-configured components.
  • 9. The method of claim 1, comprising stripping internal electrical isolation insulation from the first set of wires.
  • 10. A method of manufacturing an electrical cable comprising: spatially separating a first set of wires from a second set of wires;disposing a device relative to the first and second sets of wires to maintain the spatial separation, wherein disposing the device comprises coupling the first and second sets of wires to the device, wherein the device comprises a printed circuit board;coupling pins to the first and second sets of wires; andcompletely surrounding the device with a separate connector housing.
  • 11. The method of claim 10, comprising coupling the pins to the printed circuit board to electrically couple the first and second sets of wires to the pins.
  • 12. The method of claim 11, wherein coupling the pins to the printed circuit board comprises inserting the printed circuit board in between the pins and soldering the pins to the printed circuit board.
  • 13. A method of manufacturing an electrical cable comprising: spatially separating a first set of wires from a second set of wires;disposing a device relative to the first and second sets of wires to maintain the spatial separation, wherein disposing the device comprises coupling the first and second sets of wires to an insulative object, the insulative object having a first set of conductive traces disposed on a first side of the insulative object and a second set of conductive traces disposed on a second side of the insulative object;coupling pins to the first and second sets of wires; andcompletely surrounding the device with a separate connector housing.
  • 14. A method of manufacturing a cable connector comprising: stripping internal electrical isolation insulation from a first set of wires of a cable;inserting the first set of wires through a first hole of an insulative member; andinserting a second set of wires of the cable through a second hole of an insulative member to completely spatially separate the first set of wires from the second set of wires as the first and second set of wires pass through the insulative member;coupling pins to the first and second sets of wires; andcompletely covering the insulative member with a separate connector housing.
  • 15. The method of claim 14, wherein completely covering the insulative member with a separate connector housing comprises an over-molding process.
  • 16. The method of claim 14, wherein stripping the internal electrical isolation insulation from a first set of wires comprises removing a metallic mesh surrounding the first pair of wires.
  • 17. The method of claim 14, comprising stripping insulation surrounding both the first and second sets of wires.
  • 18. The method of claim 17, wherein stripping insulation surrounding both the first and second sets of wires comprises removing a metallic mesh that surrounds both the first and second sets of wires.
PRIORITY CLAIM

This application is a divisional of U.S. application Ser. No. 11/540,376, filed on Sep. 29, 2006, and issued as U.S. Pat. No. 7,476,131 on Jan. 13, 2009.

US Referenced Citations (893)
Number Name Date Kind
3721813 Condon et al. Mar 1973 A
4586513 Hamaguri May 1986 A
4603700 Nichols et al. Aug 1986 A
4621643 New, Jr. et al. Nov 1986 A
4653498 New, Jr. et al. Mar 1987 A
4685464 Goldberger et al. Aug 1987 A
4694833 Hamaguri Sep 1987 A
4697593 Evans et al. Oct 1987 A
4700708 New, Jr. et al. Oct 1987 A
4714080 Edgar, Jr. et al. Dec 1987 A
4714341 Hamaguri et al. Dec 1987 A
4752240 Jagen et al. Jun 1988 A
4759369 Taylor Jul 1988 A
4770179 New, Jr. et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4776339 Schreiber Oct 1988 A
4781195 Martin Nov 1988 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hausman et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE33643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5035243 Muz Jul 1991 A
5040539 Schmitt et al. Aug 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5061207 Wright Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynksi Dec 1991 A
5078136 Stone et al. Jan 1992 A
5084327 Stengel Jan 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H001039 Tripp et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5158082 Jones Oct 1992 A
5170786 Thomas et al. Dec 1992 A
5188108 Secker et al. Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246002 Prosser Sep 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Freidman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Freidman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5323776 Blakely et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5465714 Scheuing Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE35122 Corenman et al. Dec 1995 E
5474065 Meathrel et al. Dec 1995 A
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483646 Uchikoga Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5511546 Hon Apr 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz et al. Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5599209 Belopolsky Feb 1997 A
5601447 Reed et al. Feb 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645060 Yorkey et al. Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
5724967 Venkatachalam Mar 1998 A
5727547 Levinson et al. Mar 1998 A
5731582 West Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743260 Chung et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5752914 DeLonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5766125 Aoyagi et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5774213 Trebino et al. Jun 1998 A
5776058 Levinson et al. Jul 1998 A
5776059 Kaestle Jul 1998 A
5779630 Fein et al. Jul 1998 A
5779631 Chance Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5782758 Ausec et al. Jul 1998 A
5786592 Hök Jul 1998 A
5790729 Pologe et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5795292 Lewis et al. Aug 1998 A
5797841 DeLonzor et al. Aug 1998 A
5800348 Kaestle Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5807248 Mills Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5813980 Levinson et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman et al. Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5871442 Madarasz et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6007368 Lorenz et al. Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6081742 Amano et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6116965 Arnett et al. Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6150951 Olejniczak Nov 2000 A
6151107 Schöllermann et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllerman et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6186836 Ezawa et al. Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6213952 Finarov et al. Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter et al. May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab et al. May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grimblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6263223 Sheperd et al. Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280256 Belopolsky et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6321100 Parker Nov 2001 B1
6325660 Diaz et al. Dec 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura et al. Mar 2002 B1
6354872 Lilienthal et al. Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377829 Al-Ali et al. Apr 2002 B1
6379175 Reede Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddar et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenster May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6419671 Lemberg Jul 2002 B1
6421549 Jacques Jul 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6434408 Heckel et al. Aug 2002 B1
6438399 Kurth Aug 2002 B1
6449501 Reuss Sep 2002 B1
6453183 Walker Sep 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6456862 Benni Sep 2002 B2
6461305 Schnall Oct 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6480729 Stone Nov 2002 B2
6490466 Fein et al. Dec 2002 B1
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6510331 Williams et al. Jan 2003 B1
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6546267 Sugiura et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6556852 Schulze et al. Apr 2003 B1
6560470 Pologe May 2003 B1
6564077 Mortara May 2003 B2
6564088 Soller et al. May 2003 B1
6571113 Fein et al. May 2003 B1
6571114 Koike et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587703 Cheng et al. Jul 2003 B2
6587704 Fine et al. Jul 2003 B1
6589172 Williams et al. Jul 2003 B2
6591122 Schmitt Jul 2003 B2
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6594512 Huang Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6597931 Cheng et al. Jul 2003 B1
6597933 Kiani et al. Jul 2003 B2
6600940 Fein et al. Jul 2003 B1
6606510 Swedlow et al. Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6606512 Muz et al. Aug 2003 B2
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6618602 Levin et al. Sep 2003 B2
6622034 Gorski et al. Sep 2003 B1
6628975 Fein et al. Sep 2003 B1
6631281 Kästle Oct 2003 B1
6643530 Diab et al. Nov 2003 B2
6643531 Katarow Nov 2003 B1
6647279 Pologe Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6650918 Terry Nov 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654623 Kästle Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6658277 Wassermann Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668182 Hubelbank Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6675031 Porges et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694160 Chin Feb 2004 B2
6697653 Hanna Feb 2004 B2
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6699199 Asada et al. Mar 2004 B2
6701170 Stetson Mar 2004 B2
6702752 Dekker Mar 2004 B2
6707257 Norris Mar 2004 B2
6708049 Berson et al. Mar 2004 B1
6709402 Dekker Mar 2004 B2
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719686 Coakley et al. Apr 2004 B2
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725074 Kästle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6731963 Finarov et al. May 2004 B2
6731967 Turcott May 2004 B1
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 O'Neil et al. Jun 2004 B2
6752658 Jones Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6760609 Jacques Jul 2004 B2
6760610 Tscupp et al. Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6763256 Kimball et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6791689 Weckström Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6793654 Lemberg Sep 2004 B2
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6802812 Walker et al. Oct 2004 B1
6805673 Dekker Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6821142 Rayev et al. Nov 2004 B1
6822564 Al-Ali Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6839659 Tarassenko et al. Jan 2005 B2
6842635 Parker Jan 2005 B1
6845256 Chin et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6850789 Schweitzer, Jr. et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6863652 Huang et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6879850 Kimball Apr 2005 B2
6882874 Huiku Apr 2005 B2
6889153 Dietiker May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6909912 Melker et al. Jun 2005 B2
6912413 Rantala et al. Jun 2005 B2
6916289 Schnall Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931269 Terry Aug 2005 B2
6932640 Sung Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939307 Dunlop Sep 2005 B1
6941162 Fudge et al. Sep 2005 B2
6947781 Asada et al. Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6963767 Rantala et al. Nov 2005 B2
6971580 DeLonzor et al. Dec 2005 B2
6983178 Fine et al. Jan 2006 B2
6985763 Boas et al. Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6990426 Yoon et al. Jan 2006 B2
6992751 Al-Ali Jan 2006 B2
6992772 Block et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6993372 Fine et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7006856 Baker, Jr. et al. Feb 2006 B2
7016715 Stetson Mar 2006 B2
7020507 Scharf et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7024235 Melker et al. Apr 2006 B2
7025728 Ito et al. Apr 2006 B2
7027849 Al-Ali et al. Apr 2006 B2
7027850 Wasserman Apr 2006 B2
7035697 Brown Apr 2006 B1
7039449 Al-Ali May 2006 B2
7043289 Fine et al. May 2006 B2
7047055 Boaz et al. May 2006 B2
7047056 Hannula et al. May 2006 B2
7060035 Wasserman et al. Jun 2006 B2
7062307 Norris et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7072701 Chen et al. Jul 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
7079880 Stetson Jul 2006 B2
7085597 Fein et al. Aug 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7117590 Koenig et al. Oct 2006 B2
7123950 Mannheimer Oct 2006 B2
7127278 Melker et al. Oct 2006 B2
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7133711 Chernoguz et al. Nov 2006 B2
7139599 Terry Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7162288 Nordstrom Jan 2007 B2
7190987 Lindekugel et al. Mar 2007 B2
7198778 Mannheimer et al. Apr 2007 B2
7209775 Bae et al. Apr 2007 B2
7210959 Teves May 2007 B1
7215984 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7236811 Schmitt Jun 2007 B2
7248910 Li et al. Jul 2007 B2
7249962 Milette et al. Jul 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7263395 Chan et al. Aug 2007 B2
7272426 Scmid Sep 2007 B2
7280858 Al-Ali et al. Oct 2007 B2
7295866 Al-Ali et al. Nov 2007 B2
7305262 Brodnick et al. Dec 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7377794 Al-Ali et al. May 2008 B2
7427165 Benaron et al. Sep 2008 B2
20010021803 Blank et al. Sep 2001 A1
20010051767 Williams et al. Dec 2001 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Sheperd et al. Mar 2002 A1
20020038078 Ito Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020068859 Knopp Jun 2002 A1
20020128544 Diab et al. Sep 2002 A1
20020133067 Jackson, III Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020173706 Takatani Nov 2002 A1
20020173709 Fine et al. Nov 2002 A1
20020190863 Lynn Dec 2002 A1
20020198442 Rantala et al. Dec 2002 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030073889 Keilbach et al. Apr 2003 A1
20030073890 Hanna Apr 2003 A1
20030100840 Sugiura et al. May 2003 A1
20030132495 Mills et al. Jul 2003 A1
20030135099 Al-Ali Jul 2003 A1
20030162414 Schulz et al. Aug 2003 A1
20030171662 O'Connor et al. Sep 2003 A1
20030176776 Huiku Sep 2003 A1
20030181799 Lindekugel et al. Sep 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030195402 Fein et al. Oct 2003 A1
20030197679 Ali et al. Oct 2003 A1
20030212316 Leiden et al. Nov 2003 A1
20030225323 Kiani et al. Dec 2003 A1
20030225337 Scharf et al. Dec 2003 A1
20030236452 Melker et al. Dec 2003 A1
20030236647 Yoon et al. Dec 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040010188 Wasserman et al. Jan 2004 A1
20040024297 Chen et al. Feb 2004 A1
20040024326 Yeo et al. Feb 2004 A1
20040034293 Kimball Feb 2004 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040039273 Terry Feb 2004 A1
20040054269 Rantala et al. Mar 2004 A1
20040054291 Schulz et al. Mar 2004 A1
20040059209 Al-Ali et al. Mar 2004 A1
20040059210 Stetson Mar 2004 A1
20040064020 Diab et al. Apr 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040087846 Wasserman May 2004 A1
20040092805 Yarita May 2004 A1
20040097797 Porges et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040107065 Al-Ali et al. Jun 2004 A1
20040116788 Chernoguz et al. Jun 2004 A1
20040116789 Boaz et al. Jun 2004 A1
20040117891 Hannula et al. Jun 2004 A1
20040122300 Boas et al. Jun 2004 A1
20040122302 Mason et al. Jun 2004 A1
20040133087 Ali et al. Jul 2004 A1
20040133088 Al-Ali et al. Jul 2004 A1
20040138538 Stetson Jul 2004 A1
20040138540 Baker, Jr. et al. Jul 2004 A1
20040143172 Fudge et al. Jul 2004 A1
20040147821 Al-Ali et al. Jul 2004 A1
20040147822 Al-Ali et al. Jul 2004 A1
20040147823 Kiani et al. Jul 2004 A1
20040147824 Diab et al. Jul 2004 A1
20040152965 Diab et al. Aug 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040158135 Baker, Jr. et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040171920 Mannheimer et al. Sep 2004 A1
20040171948 Terry Sep 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040181133 Al-Ali et al. Sep 2004 A1
20040181134 Baker, Jr. et al. Sep 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040199063 O'Neil et al. Oct 2004 A1
20040204636 Diab et al. Oct 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204865 Lee et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040215069 Mannheimer Oct 2004 A1
20040230107 Asada et al. Nov 2004 A1
20040230108 Melker et al. Nov 2004 A1
20040236196 Diab et al. Nov 2004 A1
20040242980 Kiani et al. Dec 2004 A1
20040249252 Fine et al. Dec 2004 A1
20040257557 Block et al. Dec 2004 A1
20040260161 Melker et al. Dec 2004 A1
20040267103 Li et al. Dec 2004 A1
20040267104 Hannula et al. Dec 2004 A1
20040267140 Ito et al. Dec 2004 A1
20050004479 Townsend et al. Jan 2005 A1
20050010092 Weber et al. Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050020894 Norris et al. Jan 2005 A1
20050033128 Ali et al. Feb 2005 A1
20050033129 Edgar, Jr. et al. Feb 2005 A1
20050043599 O'Mara Feb 2005 A1
20050043600 Diab et al. Feb 2005 A1
20050049470 Terry Mar 2005 A1
20050049471 Aceti Mar 2005 A1
20050075550 Lindekugel Apr 2005 A1
20050079772 DeLessert Apr 2005 A1
20050113651 Wood et al. May 2005 A1
20050113704 Lawson et al. May 2005 A1
20050177034 Beaumont Aug 2005 A1
20050197548 Dietiker Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050277819 Kiani et al. Dec 2005 A1
20050283059 Iyer et al. Dec 2005 A1
20060058594 Ishizuka et al. Mar 2006 A1
20060084852 Mason et al. Apr 2006 A1
20060089547 Sarussi Apr 2006 A1
20060106294 Maser et al. May 2006 A1
20060195028 Hannula et al. Aug 2006 A1
20060224058 Mannheimer Oct 2006 A1
20060241363 Al-Ali et al. Oct 2006 A1
20060247501 Ali Nov 2006 A1
20060258921 Addison et al. Nov 2006 A1
20060276700 O'Neil Dec 2006 A1
20070032710 Raridan et al. Feb 2007 A1
20070032712 Raridan et al. Feb 2007 A1
20070032715 Eghbal et al. Feb 2007 A1
20070073121 Hoarau et al. Mar 2007 A1
20070073125 Hoarau et al. Mar 2007 A1
20070073126 Raridan et al. Mar 2007 A1
20070073128 Hoarau et al. Mar 2007 A1
20070123783 Chang May 2007 A1
20070141869 McNeely et al. Jun 2007 A1
20070243730 Gladd et al. Oct 2007 A1
20080064940 Raridan Mar 2008 A1
20080071153 Al-Ali et al. Mar 2008 A1
20080081954 Meyer et al. Apr 2008 A1
20080255435 Al-Ali et al. Oct 2008 A1
Foreign Referenced Citations (9)
Number Date Country
3516338 Nov 1986 DE
3703458 Aug 1988 DE
0204259 Dec 1986 EP
0531631 Mar 1993 EP
7236625 Sep 1995 JP
2004159810 Jun 2004 JP
2004329406 Nov 2004 JP
2007117641 May 2007 JP
WO2005010568 Feb 2005 WO
Related Publications (1)
Number Date Country
20080081492 A1 Apr 2008 US
Divisions (1)
Number Date Country
Parent 11540376 Sep 2006 US
Child 11900853 US