Device and method for regulating pressure in a heart chamber

Information

  • Patent Grant
  • 12005214
  • Patent Number
    12,005,214
  • Date Filed
    Monday, May 4, 2020
    4 years ago
  • Date Issued
    Tuesday, June 11, 2024
    6 months ago
Abstract
A device for regulating blood pressure in a heart chamber is provided. The device includes a shunt positionable within a septum of the heart. The shunt is designed for enabling blood flow between a loft heart chamber and a right heart chamber, wherein the flow rate capacity of the device is mostly a function of pressure in the left heart chamber.
Description
FIELD

The present invention relates to a device which can be used to regulate pressure in a heart chamber. Specifically, the present invention relates to a device which can be used to lower a blood pressure in a left atrium in response to an increase in left atrial pressure and to a method of utilizing such a device in treatment of congestive heart failure related conditions such as Pulmonary Edema and decompensated heart failure caused by elevated pressures in a left side chamber of a heart.


BACKGROUND OF THE INVENTION

Congestive heart failure (CHF) is a condition in which the blood pumping function of the heart is inadequate to meet the needs of body tissue. CHF is one of the most common causes of hospitalization and mortality in Western society.


CHF results from a weakening or stiffening of the heart muscle most commonly caused by myocardial ischemia (due to, for example, myocardial infarction) or cardiomyopathy (e.g. myocarditis, amyloidosis). Such weakening or stiffening leads to reduced cardiac output, an increase in cardiac filling pressures, and fluid accumulation. Congestive heart failure (CHF) is generally classified as systolic heart failure (SHF) or diastolic heart failure (DHF).


In SHF, the pumping action of the heart is reduced or weakened. A common clinical measurement is the ejection fraction (EF) which is a function of the volume of blood ejected out of the left ventricle (stroke volume), divided by the maximum volume remaining in the left ventricle at the end of diastole or relaxation phase. A normal ejection fraction is greater than 50%. Systolic heart failure has a decreased ejection fraction of less than 50%. A patient with SHF may usually have a larger left ventricle because of phenomena called cardiac remodeling aimed to maintain adequate stroke-volume. This pathophysiological mechanism is associated with increased atrial pressure and left ventricular filling pressure.


In DHF, the heart can contract normally but is stiff, or less compliant, when it is relaxing and filling with blood. This impedes blood filling into the heart and produces backup into the lungs resulting in pulmonary venous hypertension and lung edema. Diastolic heart failure is more common in patients older than 75 years, especially in women with high blood pressure. In diastolic heart failure, the ejection fraction is normal.


CHF can be managed via a pharmacological approach which utilizes vasodilators for reducing the workload of the heart by reducing systemic vascular resistance and/or diuretics which prevent fluid accumulation and edema formation, and reduce cardiac filling pressure.


In more severe cases of CHF, assist devices, such as mechanical pumps can be used to reduce the load on the heart by performing all or part of the pumping function normally done by the heart. Temporary assist devices and intra-aortic balloons may be helpful. Cardiac transplantation and chronic left ventricular assist device (LVAD) implants may often be used as last resort. However, all the assist devices currently used are intended for improving pumping capacity of the heart and increasing cardiac output to levels compatible with normal life and are typically used to sustain the patient while a donor heart for transplantation becomes available. There are also a number of pacing devices used to treat CHF. Mechanical devices enable propulsion of significant amounts of blood (liters/min) but are limited by a need for a power supply, relatively large pumps and possibility of hemolysis and infection are all of concern.


Surgical approaches such as dynamic cardiomyoplasty or the Batista partial left ventriculectomy are used in severe cases, as is heart transplantation, although the latter is highly invasive and limited by the availability of donor hearts.


Although present treatment approaches can be used to manage CHF, there remains a need for a device for treating CHF which is devoid of the above described limitations of prior art devices.


SUMMARY OF THE INVENTION

According to one aspect of the present invention there is provided device for regulating blood pressure in a heart chamber comprising a shunt being positionable across the septum of the heart, specifically in the fossa ovalis, the shunt being for enabling blood flow between a left heart chamber and a right heart chamber, wherein a flow rate capacity of the device is a function of pressure difference between the left atrium and the right atrium.


In congestive heart failure the elevation in the left atrial pressure is higher than the elevation in the right atrial pressure and therefore the flow rate capacity is mainly regulated by the left atrial pressure changes.


In left heart failure, elevation of right heart pressure is also a function of left heart pressure. When the left atrium pressure rises neuro-hormonal compensatory mechanisms cause more endothelin secretion and less NO. This mechanism constricts the blood vessels and raises the right pulmonary artery pressure. If it wouldn't have occurred there would have been no flow across the pulmonary circulation. Therefore even though the flow across the present device is solely dependent on the pressure gradient between the left and right atrium it is correct to assume that its all a function of the left atrium pressure.


According to further features in preferred embodiments of the invention described below, the flow rate capacity of the device increases by 0.1-1.5 L/min when the average pressure in the left heart chamber is greater than 20 mmHg.


According to still further features in the described preferred embodiments the flow rate capacity of the device is 0.1-0.3 l/min when the average pressure in the left heart chamber is less than 20 mmHg.


According to still further features in the described preferred embodiments the device further comprises a valve for regulating flow through the shunt, wherein the valve increases a flow rate capacity of the device in response to an increase in pressure in the left heart chamber thus creating an increase in the differential pressure between the left and the right atria.


According to still further features in the described preferred embodiments the valve is a tissue valve.


According to still further features in the described preferred embodiments the tissue valve is a pericardium tissue valve.


According to still further features in the described preferred embodiments the pericardium tissue is derived from a Porcine, Equine, or Bovine source.


According to still further features in the described preferred embodiments a fluid conduit of the shunt increases in cross section area with the increase in pressure in the left heart chamber


According to still further features in the described preferred embodiments the device further comprises anchoring elements for attaching the device to the septum.


According to still further features in the described preferred embodiments the device further comprises anchoring elements for attaching the device to the septum.


According to still further features in the described preferred embodiments the device is diabolo-shaped such that the device only contacts tissue forming the opening in the septum and not tissue surrounding the opening.


According to still further features in the described preferred embodiments the diabolo shape does not allow migration of the valve through the septum.


According to another aspect of the present invention there is provided a method of assessing the hemodynamic condition of a subject comprising implanting the present device in the subject and determining flow through, or valve leaflet angle of, the device, the flow through or leaflet angle being indicative of left atrial pressure.


According to still further features in the described preferred embodiments, determining is effected via an imaging approach such as ultrasound, fluoroscopy, MRI and the like.


The present invention successfully addresses the shortcomings of the presently known configurations by providing a device which can more accurately compensate for a disordered hemodynamic state of a heart of a CHF patient and which can be implanted using minimally invasive approaches.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


In the drawings:



FIGS. 1A-B illustrate a side view (FIG. 1A) and a frontal view (FIG. 1B) of a device for regulating pressure in a heart chamber constructed according to one embodiment the present invention and showing the valve component in the closed position.



FIGS. 2A-B illustrate a side view (FIG. 2A) and a frontal view (FIG. 2B) of the device of FIGS. 1A-B showing the valve component in the open position.



FIG. 3 illustrates a side view of a device for regulating pressure in a heart chamber constructed according to another embodiment the present invention.



FIGS. 4A-D illustrate side (FIGS. 4A, 4C) and frontal (FIGS. 4B, 4D) views of another embodiment of the present device in closed (FIGS. 4A-4B) and open (FIGS. 4C-4D) positions.



FIG. 5A-D illustrate isometric views of a diabolo shaped device of the present invention. FIG. 5A separately illustrates the device body and valve substructures, while FIGS. 5B-5D illustrate the assembled device. The valve is shown in a closed position in FIGS. 5B-SC, and in an open position in FIG. 5D.



FIGS. 6A-6B illustrate the diabolo-shaped device of the present invention as a bare wire frame (FIG. 6A) and a PTFE/Pericard-covered wire frame (FIG. 6B).



FIG. 7 is a curve illustrating a stroke volume—left ventricle end diastolic (LVED) pressure relationship in a failing and non-falling heart.



FIG. 8 is a curve illustrating a left ventricle end diastolic (LVED) pressure—left ventricle (LV) output relationship in patients classified according to the severity of the condition. Class I (Mild)—no limitation of physical activity. Ordinary physical activity does not cause undue fatigue, palpitation, or dyspnea (shortness of breath). Class II (Mild)—slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in fatigue, palpitation, or dyspnea. Class III (Moderate)—marked limitation of physical activity. Comfortable at rest, but less than ordinary activity causes fatigue, palpitation, or dyspnea. Class IV (Severe)—unable to carry out any physical activity without discomfort. Symptoms of cardiac insufficiency at rest. If any physical activity is undertaken, discomfort is increased.



FIGS. 9A-9B illustrate the effect of a left atrium-right atrium pressure differential on leaflet opening angle (FIG. 9A) and flow rate (FIG. 9B).





DETAILED DESCRIPTION

The present invention is of a device and method which can be used to regulate pressure in a heart chamber. Specifically, the present invention can be used to treat elevated chamber pressures present in a patient suffering from CHF or having a Patent Foremen Ovale (PFO) or an Atrial Septal Defect (ASD) that requires repair and prevention of embolization from right to left atriums but is preferably left with residual flow between atriums so as not to traumatize heart hemodynamics.


The present device can also be used to determine the pressure in the left atrium and thus assist in defining the exact clinical condition of the patient which can be used to alter/adjust patient medication and help stabilize hemodynamics.


The principles and operation of the present invention may be better understood with reference to the drawings and accompanying descriptions.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


CHF is one of the most common causes of hospitalization and mortality in Western society. At present, CHF is treated using pharmaceutical, mechanical or surgical approaches.


In an attempt to traverse the limitations of prior art approaches. Applicant has devised a novel minimally invasive approach for reducing the disordered hemodynamics associated with CHF. Such an approach, which is described in US 20020173742 and 20070282157, the entire contents of each of which are incorporated herein by reference, utilizes a device which includes a shunt which is positioned between heart atria and enables blood flow between the left and right atria. The device includes an adjustable flow regulation mechanism which is configured for regulating the flow of blood through the shunt in relation to a pressure differential between the chambers.


While reducing the present invention to practice, the present inventors have continued to experiment and model this approach and have surprisingly discovered that disorders or conditions which result from abnormal heart hemodynamics, such as those characterizing CHF, can be treated by regulating blood flow between heart chambers mostly as a function of left chamber pressure.


Thus according to one aspect of the present invention there is provided a device for regulating blood pressure in a heart chamber, such as a ventricle or an atria.


As is further described hereinbelow, the present device can be used in human subjects suffering from CHF as well as in subjects which have septal defects but are not candidates for complete septal closure.


The device includes a shunt which preferably includes a valve for controlling flow through the shunt. The device is positionable within a septum of the heart and is configured for enabling blood flow between a left heart chamber and a right heart chamber. The device is configured such that a flow rate capacity thereof is a function of (blood) pressure gradient between the left and right atria. Because the right atria pressure is mostly affected from the left atria pressure, flow regulation is mainly governed by the left atria pressure.


In a normal heart, beating at around 70 bpm, the stroke volume needed to maintain normal CO (Cardiac output) is between 60 ml-100 ml. When the preload, after-load and contractility are normal, the pressures needed to achieve this CO values are as described in Table 1 below. In CHF the Hemodynamic parameters change (Table 1) because in order to maximize CO the heart needs higher pressures to either overcome the higher after-load or lower contractility or damaged preload.









TABLE 1







Ranges of heart parameters in normal and CHF heart









Parameter
Normal Range
CHF Range














Right Atrial Pressure (RAP)
2-6
mmHg
6-15
mmHg


Right Ventricular Pressure
15-25
mmHg
20-40
mmHg


(RVP)






Left Atrial Pressure (LAP)
6-12
mmHg
15-30
mmHg


Left Ventricular Pressure
6-120
mmHg
20-220
mmHg


Cardiac Output (CO)
4.0-8.0
l/min
2-6
l/min


Stroke Volume (SV)
60-100
ml/beat
30-80
ml/beat









Thus, reduction of left chamber blood pressure, and in particular left atrial pressure (LAP), can be used to offset abnormal hemodynamics characterizing CHF and other heart pathologies and thereby treat conditions associated therewith. For example, the present invention can be used to treat pulmonary edema associated with CHF. Pulmonary edema, which is the most severe manifestation of CHF, develops when an imbalance in the heart pumping function causes an increase in lung fluid secondary to leakage from pulmonary capillaries into the interstitium and alveoli of the lung.


As is described in detail in Example 1 of the Examples section which follows, the present device can be used to alleviate such an imbalance by regulating flow from the left atrium to the right atrium (through a septum). The flow capacity of the present device changes mainly due to changes in left atrial pressure and as a result, flow from the left atrium to the right atrium is mainly a function of the left atrial pressure.


The insight gained by the present inventors from experimenting with various device configurations and modeling blood flow between heart chambers, has led to the formulation of several design parameters:


(i) Changes in left chamber pressure directly affect flow capacity (thus volume) through the device thereby resulting in LA decompression and prevention of pulmonary congestion.


(ii) In situation where peak left chamber pressure exceeds a predetermined amount, pressure is lowered by increased flow capacity in the device, for example, in cases where LAP exceeds 25 mmHg, increased flow capacity decreases LAP by 3-6 mmHg.


(iii) The flow capacity of the present device gradually changes starting at left atrial pressure (LAP) of about 15 mmHg and reaches full capacity at an LAP of 25 mmHg. The device can be designed with characteristics that are patient dependent i.e. if a patient is screened and found to be at pulmonary Edema risk at 20 mmHg then the device is configured for reaching full flow capacity at 20 mmHg.


(iv) The flow capacity of the present device starts to change when the pressure gradient across the septum is between 5 mmHg-10 mmHg. Up to 5 mmhg the valve of the present device remains substantially closed. Between 5-10 mmHg the valve slightly opens and flow of up to 0.5 l/min is supported. At gradients between 10-20 mmHg the flow across the valve rapidly increases as a function of the opening of the leaflets. The flow reaches 1.5 l/min at 20 mmHg. Above 20 mmHg the valve is fully open and the flow is defined by the narrow part of the lumen of the device (in the diabolo configuration, the narrow portion can be between 4-6 mm depending on the configuration).


(v) The device is patient specific i.e. in patients where the pressure gradients are very high the valve will be built such that the min opening gradient will be higher than in those patients where the gradients are lower. For example: if the patient has a mean LA gradient of 16 mmHg and mean RA pressure of 8 mmhg the valve will be assembled with the parameters described in (iv). If however, the mean LA pressure is 23 mmHg and the mean RA pressure is 8 mmHg the minimal valve opening will be at 10 mmhg and full opening will only occur at the 25 mmHg gradient.


(vi) The device is designed to allow constant flow regardless of left chamber pressure to maintain its patency over time. Constant flow refers to a flow during each heart cycle. However in each cycle, if the mean left atrial pressure is below 20 mmHg, flow will only occur during the V-Wave of the atria. The V-Wave of the atria occurs at the end of the atria's diastole. CHF patients, especially those having mitral regurgitation, have V-Waves characterized by very high pressure that can reach up to 40 mmHg for up to 150 ms of each heart beat. The rest of the cycle the left atrium pressure drops. In such patients, the present device will enable flow that maintains the patency of the device only for a short duration (less than 15%) of each cycle, and thus the flow across the valve of the present device will be less than 0.3 L/min and there will be negligible effect on the cardiac output.


(vii) A diameter of a shunt (conduit) of the device changes from 0-6 mm as a function of the pressure changes to prevent large volume flow when left chamber pressure is below a predetermined threshold (e.g. when LAP is below 25 mmHg).


(viii) The device is configured to prevent right chamber blood from entering the left chamber under elevated right chamber pressure conditions where RAP is higher than LAP. Selecting a shunt length of above 10 mm prevents RA blood from reaching the Left Atrium also during onset of slightly higher RA-LA pressure gradient. Another feature that disables right to left shunting is the valve that is normally closed when pressures in the right atrium are slightly higher than in the left atrium. In CHF caused by left heart failure there are almost no cases where there is a higher right atrium pressure. Therefore prevention of flow in pressures gradients of less than 5 mmHg eliminates the risk of right to left shunting in CHF patients.


(ix) When left chamber pressure is below a predetermined threshold (e.g. below 25 mmHg in the LA), the device is designed to minimize CO reduction to less than 0.1 l/min.


(x) A reduced flow capacity under pressures that are below a predetermined threshold ensures that the device prevents RV overload, and maintains Qp/Qs<1.3.


(xi) The Device can also be designed to allow controlled tissue growth (up to 1 mm thickness) to become inert over time but not to lead to occlusion by excessive growth in or around the shunt.


To enable such functionality, the present device is an intra-septal implant which is attached to a septum separating two heart chambers (e.g. left atria from right atria or left ventricle from right ventricle). The device includes a shunt and optionally a valve having an opening capable of changing its diameter mainly as a function of the left chamber pressure.


The present device is preferably designed having a 5 mm opening diameter following implantation and tissue ingrowths. The device is configured for maintaining constant flow through the V-wave portion of each heart cycle at about 0.1-0.3 l/min. The maximum opening diameter of the shunt/valve is preferably 5 mm to enable an approximate maximum flow capacity of 1.5 l/min.


The device of the present invention or a portion thereof (e.g. valve) is preferably constructed from a laser cut tube to a shape of a stent, covered by ePTFE to create a shunt and a tissue valve at the left atria's end (Pericardium equine, Bovine, Porcine between 0.1 mm-0.5 mm tissue thickness) which is sutured or welded to the frame. To enable percutaneous delivery, the present device can preferably be collapsed to an overall diameter of less than 15F


Embodiments of the device of the present invention suitable for use in regulating left atrial pressure are illustrated in FIGS. 1a-3. It will be appreciated that although the following describes use of the present device in regulating LAP, alternative uses in regulating LVP, RAP or RVP are also envisaged by the present inventors.



FIGS. 1A-1B illustrate one embodiment of the present device which is referred to herein as device 10. FIGS. 1A-1B illustrate a cross sectional view (FIG. 1A) or a frontal view (FIG. 1B) of device 10 in a configuration in which flow capacity is at a minimum.


Device 10 includes a shunt 12 which serves as a conduit for blood flow between a left chamber (LC) and a right chamber (RC). Shunt 12 is configured as a tube having a diameter (D) selected from a range of 3-10 mm. Shunt 12 can be constructed from a polymer such as silicone, ePTFE, or Dacron via extrusion or molding or from an alloy (e.g. titanium, NITINOL, Cobalt Chromium and the like). It can also be constructed from tissue derived from vein grafts or pericardium. In any case, shunt 12 preferably includes a tissue outer structure and potentially an inner polymer cover. The tubular frame of shunt 12 can be constructed by cutting a tube or by wrapping a wire over a mandrel and covering the resultant tubular structure with animal tissue (e.g. pericardium derived from bovine, equine or porcine tissue), PTFE or Dacron which is sutured or welded to the frame. Since walls 14 contact blood as it flows through shunt 12, such walls can be coated or impregnated with carbon, heparin and endothelial cells. Such coating can be used to reduce drag and prevent blood coagulation and formation of clots and to promote controlled tissue growth. Alternatively, walls 14 can be textured or provided with fine electropolished smooth metal surfaces in order to increase laminar flow and decrease turbulence.


Shunt 12 is selected having a length (L) of 10-20 mm and a wall 14 thickness of 0.1-0.5 mm.


Device 10 further includes anchoring elements 16 which serve to anchor shunt 12 to septum 18. Anchoring elements are designed for anchoring septal tissue. The device will be implanted in the septum preferably in the Fossa Ovalis were the wall thickness is between 0.2-1 mm. In that respect, septal anchoring is preferably effected by expanding the diameter of shunt 12 at least 2 mm larger than the Transeptal puncture diameter used for implantation. This expansion will give the radial stiffness needed to hold the implant in place. Furthermore anchoring elements 16 are configured for applying axial pressure against the septum to thereby add friction that will prevent relative movement between device 10 and the septum. Such pressure is achieved by the shape of device 10 when in position. Anchoring elements 16 can be constructed from a NITINOL wire mesh or a Polymer (e.g. Dacron, ePTFE) sutured to the wire. Anchoring elements 16 are configured with an elastic force directed towards each other such that when device 10 is positioned, anchoring elements 16 apply opposing inward forces to the septal tissue.


Since implantation of device 10 within the septum will lead to tissue growth around device 10 in response to injury, anchoring elements 16 and shunt 12 are designed to compensate for such tissue growth. For example, device 10 or any of its components can be seeded with endothelial cells or coated with heparin or impregnated with carbon in order to controlled tissue growth and prevent clot formation.


Shunt 12 is designed such that tissue ingrowth will not be excessive. Ends of shunt 12 protrude from the septal plane to minimize rapid tissue growth. Device 10 is also designed to minimize an effect on atrial flow in order not to cause hemolysis. In that respect, ends of shunt 12 do not protrude by more than 7 mm into opposing Atria and in addition the surfaces of shunt 12 exposed to flow are preferably rounded.


In the embodiment shown in FIGS. 1A-2B, device 10 also includes a valve 20 which functions in regulating flow through shunt 12. In this embodiment, the flow capacity of shunt 12 is fixed, however, flow therethrough is regulated by a diameter of opening 22 of valve 20 and as such the overall flow capacity of device 10 falls within a preset range (e.g. 0.2-1.5 l/min).


Valve 20 can be constructed having any configuration capable of supporting baseline (minimal) flow when in a closed position (Shown in FIGS. 1A-1B) while being capable of a gradual or binary response to left chamber pressure which exceeds a predetermined threshold (e.g. above 25 mmHg in left atrium). Valve 20 includes a frame 24 which is constructed from a polymer or an alloy (e.g. NITINOL) with overstretched polymer or tissue (as described above for shunt 12). Valve 20 can be attached to shunt 12 or constructed as an extension thereof (contiguous).


Construction of device 10 of FIGS. 1A-2B is described in detail in Example 2 of the Examples section which follows.


Opening 22 in valve 20 is formed in front wall 26 of valve 20. In the case of valve 20 constructed from frame 24 and covering of a polymeric material or tissue, opening 22 can be constructed by overlapping leaflets of polymer or tissue. The valve can be cut from one or three leaflets that are sutured or welded to their commisures in the closed position of the valve thus leaving a slack that once stretched leads to enlargement of opening 22.


A binary response configuration of valve 20 assumes one of two states, a closed state (FIGS. 1a-b) which supports flow of 0.1-0.5 l/min or an open state (FIGS. 2A-2B) which supports flow of 0.5-1.2 l/min. Such a binary configuration can be constructed by, for example, designing frame 24 to be capable of assuming one of two states in response to pressure applied to front (26) or side (28) walls of valve 20. The frame of valve 20 includes NITINOL commisures that under predetermined forces (few grams) are able to rotate inwards. This is achieved by a designing such commisures with a preset bending response.


A gradual response configuration of valve 20 includes a frame 24 or walls 26 or 28 that are configured capable of changing conformation in response to pressure elevation in a gradual or stepwise manner. In such cases, diameter of opening 22 of valve 20 can increase from 1-3 mm (closed state) in increments of, for example, 1 mm in response to changes in pressure of 5 mmHg.


In the configuration shown in FIGS. 1A-2B, valve 20 is capable of a gradual opening response to increases left chamber pressure. Such gradual response is enabled by use of arms 30 forming a part of frame 24. As is shown in FIGS. 2A-2B, pressure applied to front walls 26 of valve 20 rotates arms 30 inward (towards shunt 12) thereby increasing diameter of opening 22. In such a configuration, a rise in pressure of 5-10 mmHg (over a threshold, e.g. 25 mmHg in the LA), translates to an increase of 5-10 grams of force on walls 26 and rotation of arms 30 45 degrees inward. In a preferred configuration of device 10, rotation of arms 30 45 degrees inward results in an increase diameter in opening 22 from 3 to 5 mm.



FIG. 3 illustrates another embodiment of device 10. In this embodiment flow through shunt 12 is controlled by a sail-like element 40 which is disposed completely in the left Atrium. When the pressure in the LA rises above a predetermined threshold elements 42 are pushed towards the Septum. This movement pulls valve flaps 42 outward (in the direction of arrows 44) thereby increasing flow through shunt 12.


Although the above described embodiments of device 10 are presently preferred, additional embodiments of device 10 which can provide the functionality described herein are also envisaged. Any configuration which can be used to increase flow in shunt 12 as a function of Left chamber pressure increase can be used with the present invention. This includes a shunt 12 designed with a collapsible conduit (e.g. fabricated from soft, pliable silicone), which is forced open by pressure changes.


Device 10 of the present invention can be configured to support any flow capacity of therapeutic value and be capable of any response profile to increasing or decreasing chamber pressures. Preferably, device 10 supports a minimal flow capacity of 0.1-0.3 and a maximal flow capacity of 0.6-1.2 l/min under increased left chamber pressure. In cases of atrial implantation and conditions characterizing SHF, device 10 supports a flow capacity of 0.1-0.5 l/min at LAP of less than or equal to 25 mmHg and a flow capacity of 0.6-1.2 l/min at LAP greater than 25 mmHg. In cases of atrial implantation and conditions characterizing DHF, device 10 supports a flow capacity of 0.1-0.3 l/min at LAP of less than or equal to 25 mmHg and a flow capacity of 0.5-1.2 l/min at LAP greater than 25 mmHg. Such a pressure versus shunt diameter curve is not linear but is preferably exponential.



FIGS. 4A-4D illustrate yet another embodiments of device 10 of the present invention. The configuration exemplified by this embodiment is responsive (in as far as changes to flow capacity) to either LA-RA pressure differential or to left atrial pressure only as is the case with the configurations described above. In this configuration, valve 20 can fully close under low a pressure differential lower than a predetermined threshold or under LA pressure lower than a threshold. Such complete closure prevents any flow from the LA to the RA.


Components of device 10 are as described above. Valve 20 includes front walls 26 (leaflets) that are sutured to arms 30 (commisures). Arms 30 can be constructed from NITINOL which at a pressure differential higher than 8 mmHg (i.e. the pressure difference between the right and left sides of walls 26 as shown in FIG. 4a) will elastically deform in the direction of the RA to thereby open valve 20 and enable blood flow from the LA to the RA. Such opening of valve 20 can be gradual up to a maximum achieved at a pressure differential of 10 mmHg. Likewise when the pressure differential decreases to below 5 mmHg, valve 20 will close completely.


Valve 20 of this embodiment of device 10 opens and closes with each heart cycle as a response to an RA-LA pressure differential.


Such a pressure differential fluctuates between diastolic and systolic phases of each heart cycle. In chronic CHF patients, peak LA pressure is below 25 mmHg and thus the LA-RA pressure differential is around 5 mmHg in the diastolic phase and 10 mmHg in the systolic phase. Valve 20 is designed to start opening (Increasing flow capacity through shunt 12) at a pressure differential higher than 5 mmHg. As a result, in chronic CHF, shunt 12 will support maximal flow capacity at the systolic phase of each heart cycle and minimal flow capacity at the diastolic phase. This will result in a net flow (LA to RA) of less than 0.3 l/min.


During acute stages when the LA pressure is higher than 25 mmHg, valve 20 will be fully open, this will result in a net flow (LA to RA) of 1.5 l/min thereby decreasing the LA pressure by 5 mmHg.



FIGS. 5A-5D illustrate yet another configuration of device 10 of the present invention. In this configuration, shunt 12 is housed in a diabolo-shaped body which is constructed from an alloy such as stainless steel or NITINOL using methods well known in the art of stent making. A diabolo-shaped body is advantageous for septal anchoring and the prescribed function of device 10. A diabolo shape ensures that a device 10 positioned within a septum opening is trapped therein due to the fact that the region of minimal diameter of device 10 (indicated by 13 in FIGS. 5A-SD) traverses the septal opening while the larger diameter ends flank the opening and do not contact the tissue. This anchoring configuration also minimizes irritation to septal tissue since contact between device 10 and the tissue is minimized. Since the larger diameter ends (15 in FIGS. 5A-SD) of device 10 flank the septal opening and cannot move through the opening therein, device 10 is essentially trapped and secured within the opening. In addition, such trapping (passive anchoring) ensures that device 10 remains in position during septal wall movement, dilation of the septal opening and flow of blood through shunt 12 while accommodating such movement without applying forces to the septal tissue which might result in tissue damage.


The configuration of device 10 depicted in FIGS. 5A-5D also includes a valve 20 which is constructed from elastic arms 30 which can be separately connected to the body of device 10 (FIGS. 5C-5D) by way of welding, suturing, or interconnected at ends thereof into a single structure as shown in FIGS. SA-5B). Arms 30 can be covered with tissue or PTFE membranes (not shown) in a manner similar to that described above. Arms 30 can move between a closed position (as shown in FIGS. 5B-SC) which minimizes or blocks flow and one or more open positions (FIG. 5D) which support flow at predetermined flow rates according to a pressure or a pressure differential at valve 20 (The force of bending each arm until it reaches the stent is 5 grams). In this respect, valve 20 of this device 10 configuration functions in a manner similar to valve 20 described above with reference to alternative device 10 configurations.


Device 10 is delivered via a standard trans-septal puncture procedure. A trans-septal puncture is made as described below and a 12-16 F sheath is inserted into the septal opening from the RA venous system from the inferior vena Cava side. Device 10 is fed into the distal end of the sheath (protruding into the LA) via a tapered loader and pushed into the sheath to the point where the LA side of device 10 protrudes from the distal side of the sheath. The LA side of device 10 is then expanded (by pushing the valve into the LA). The sheath, with the device, is then pulled into the RA to the point where the expanded LA side of device 10 contacts the septum. In this position the sheath is pulled back (in the direction of the RA) exposing the RA side of device 10 and locking it within the septum. The Loader and sheath are then removed.


In the expanded configuration, device 10 is about 13 mm in length, with a minimal diameter of 4-8 mm (at 13) and a maximal diameter of 10-16 mm (at 15). In the compressed (deliverable) configuration, device 10 is 10-18 mm in length and 3-6 mm in diameter.


As is mentioned hereinabove, different patients may exhibit slightly different hemodynamic parameters (e.g. different left atrial pressure). Thus, to meet the needs of different patients, device 10 can be configured as part of a kit which includes several variants of device 10, each having slightly different characteristics (such as device 10 length, diameter of shunt 12, pressure threshold for increasing opening 22 of valve 20 and the like). Such a kit enables a physician to match a patient with the most suitable variant of device prior to implantation.


Alternatively, device 10 can be configured modifiable post implantation. Such a configuration of device 10 can include elements which can be adjusted post implantation to thereby modify device 10 characteristics to match the hemodynamic profile of the patient.


One example of such a configuration can include a device 10 which can have a shunt 12 conduit which can be expanded to a predetermined diameter suing a balloon catheter.


Preferred flow parameters of device 10 of the present invention are described in detail in Example 1 of the Examples section which follows.


As is mentioned hereinabove, device 10 of the present invention can be utilized in treatment of CHF as well as other disorders. In the case of CHF, device 10 is preferably positioned in a septum between atria using a minimally invasive delivery system.


Thus, according to another aspect of the present invention there is provided a system for regulating pressure in a heart chamber.


The system includes a delivery catheter capable of delivering device 10 to a heart septum and a sheath, a push-rod, a transeptal puncture device and haemostatic valves


Implantation of device 10 is effected via transfemoral approach. A catheter is delivered through a sheath placed through the femoral vein and up into the Vena Cava into the RA. A transeptal puncture device is deployed from the delivery catheter and the middle of the Fossa Ovalis of the septum is controllably punctured and then dilated via a balloon catheter to 7 mm (switched through the sheath). A pressure transducer catheter is then used to collect hemodynamic parameters from the left and right atria over at least one complete heart cycle to thereby derive patient-specific parameters such as left atrial pressure during diastole and systole and the like. These parameters will enable selection of a device 10 having characteristics (e.g. flow capacity of shunt in the closed and folly open positions, length of device 10) which best match the needs of the patient.


The device 10 selected is then loaded onto a delivery catheter and delivered to the septum. Device 10 is pushed out of the access sheath and into the LA using the push-rod deployed from the delivery catheter, such positioning deploys the anchoring elements on the RA side. The catheter is then retracted to position the device in place in the LA and deploy the anchoring elements at the LA side.


Such transplantation of device 10 of the present invention through a septum of a subject can be used to treat CHF-related conditions as well as be used in cases of septal or atrial defects which cannot be effectively treated via standard approaches.


The present device can also be used to determine the pressure in the left atrium and thus assist in assessing the clinical condition of the patient. Such an assessment can be used to adjust the medication given to the patient and help stabilize the patient's hemodynamic condition.


Left atrial pressures can be determined by visualizing, using imaging modality such as echo ultrasound, an angle of the leaflets of the valve of the present device or by quantifying the flow across the valve. The angles of the leaflets or the flow across the valve will correlate to a specific pressure gradient between the left and right atrium thus correlate to the pressure in the left atrium. By quantifying the pressure in the left atrium the physician can adjust the medications given to the patient and help in stabilizing the hemodynamic condition of the patient and prevent edema. Example 4 of the Examples section which follows provides further detail with respect to leaflet angle and flow measurements calculations.


As used herein the term “about” refers to ±10%.


Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.


EXAMPLES

Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.


Example 1
Flow Calculations

The present inventors have calculated the flow needed to reduce left atrial pressure (LAP) to below 25 mmHg. For the purpose of calculations it was assumed that under SHF and DHF, the LAP minimum and maximum pressures are the same (12 mmHg & 28 mmHg respectively). In order to treat these conditions, LAP must be reduced by 3-5 mmHg.


The following parameters were taken into consideration:


(i) SHF cardiac output (CO)—2.5-4 l/min heart rate (HR)=75 (ii) DHF CO=3-5.5 l/min HR=70. In SHF one can assume a linear correlation between LA pressure and volume (Pstatic fluid=ρgh), and thus one can calculate the following:


In SHF: LAP—16 mmHg. Filling volume—50 cc each cycle. Reducing LAP by 3-5 mmHg i.e. 3 5/16=20%-30% requires 20%-30% less blood i.e. 10 cc-16 cc of blood each heart beat which translates to ˜0.75 l/min to 1.2 l/min LA-RA flow in SHF [10 cc & 16 cc×75 (HR)]


To find an optimal shunt diameter, one can use Bernouli's equation and assume no viscosity due to the short length of the shunt (few mm at narrowest diameter):






Q
=

CeE



π


D
2
2


4





2


(


P
1

-

P
2


)


ρ








Where Q (Flow)=1.2 l/min, C (Discharge Cocfficient)=0.7, e (expansion)=NA (for gasses only), P1-P2 (LAP-RAP after shunting)=6 mmHg, and ρ=1.05 gr/cm3.


A shunt diameter of 4 mm supports a flow capacity of 0.75 l/min, and a 3 mmHg reduction in LAP, a shunt diameter of 5.5 mm supports a flow capacity of 1.3 l/min & and a 5 mmHg reduction in LAP.


Once the shunt is positioned, the first few heart cycles will enable 1 l/min flow until the pressure is below 25 mmHg. When the shunt supports 1 l/min one can expect ˜0.3 l/min CO reduction. This is because of the compensatory mechanisms in CHF.


Both in SHF and DHF the heart is working on the plateau of the Starling curve. The additional pressure is not correlated to additional stroke volume (FIG. 7). The additional volume is translated to high pressures and edema. Therefore by slightly reducing the filling volumes there will be a decrease in the pressure but not in the stroke volume.


These Figures (the right one for DHF and the left for SHF patients) show the correlation between end diastolic volumes (pressures) and stroke volume in heart failure patients. It teaches us that in heart failure patients the high pressures are not correlated with stroke volume (Cardiac output). Therefore if we will shunt a certain amount of blood away from the left ventricle we will not reduce the cardiac output both in DHF and SHF patients.


By designing a shunt which changes in flow capacity as a function of LAP, the shunt diameter can reduce to 3 mm when LAP is below 25 mmHg. Under such conditions, Q will be ˜0.35 V/min and the overall CO reduction is 0.35×0.6/2-0.1 l/min in DHF and slightly less than 0.1 l/min in SHF (including compensation mechanisms).


Utilizing the parameters above to design a shunt ensures that during onset of Pulmonary Edema (PE), the shunt will open to 4 mm-5.5 mm and decrease LAP by 3 mmHg-5 mmHg. LA to RA flow will be 0.75 l/min-1 l/min. Under non-PE conditions, the shunt will remain patent just in the Atria's V-Wave and although the opening will be maximal it will only be for a short duration of 150 ms. As a result, LA-RA flow will be 0.3 l/min. the CO reduction will be less than 0.1 l/min


Example 2
Construction and Deployment of One Embodiment of the Present Device

A device similar to the one illustrated in FIGS. 1A-2B is manufactured as follows. A NITINOL tube having a diameter of 5 mm, a length of 18 mm and a wall thickness of 0.25 mm is laser cut to create a tubular wire frame. The tubular frame is electro-polished and cleaned and then heat treated to set its final shape on a mandrel. The internal and external surfaces of the frame are wrapped with ePTFE. Valve leaflets are die cut from 0.25 mm thick bovine pericardium tissue and sutured to form a partially open leaflet valve which is then sutured onto the tubular frame over the fabric at the funnel opening. The resultant device is packed until use under sterile conditions. Prior to transplantation, the device is unpacked and collapsed by hand or by a crimping tool to a final diameter of less than 13F, the collapsed device is loaded into a catheter and placed in front of a pusher rod fitted into the catheter. The device is then positioned as described hereinabove.


Example 3
Construction and Testing of a Diabolo-Shaped Device

A diabolo-shaped configuration of the present device was constructed by laser cutting a stent from Nitinol tubing and shaping the cut stent into a Diabolo by using a mandrel and applying 530° C. for 12 minutes. Bars for forming the valve arms were laser cut from a 0.0.09 mm thick Nitinol sheet and the bars were shaped using a mandrel. The shaped bars were then welded to the diabolo-shaped stent at three points encircling an opening of the stent. The bare wire frame form of the device is shown in FIG. 6A.


The stent was then covered with ePTFE impregnated with carbon and Pericard leaflets were sutured to the three bars and the circumference of the stent around the three bars (FIG. 6B). The finished device was then sterilized and collapsed for loading into a sheath.


The device shown in FIG. 6B was tested using the flow chamber described below to simulate the fluid pressures present in heart chambers. The device performed as specified i.e. when the valve was subjected to water pressure equivalent to a column of water >10 cm, the valve arms flexed inward and the valve opened to allow water flow at 0.5 l/min. Water pressure equivalent to a column of water <10 cm did not open the valve and thus did not result in any net water flow through the conduit (shunt) of the device.


Example 4
Leaflet Angle and Flow as a Function of Pressure Differentials

The present device was subjected to several pressure differentials using a flow chamber. Briefly, a two chambered device mimicking the left and right atria was constructed from plate Plexiglas. The device was positioned through a membrane separating the two chambers and water was pumped into the left chamber to generate a pressure gradient between the left and right chambers. Once the valve opened under the pressure of the water in the left chamber, water flowed into the right chamber and the flow rate was measured via a flow meter positioned on an output line connected to the bottom of the right chamber. The leaflet angle was determined by photographing the valve under the different pressure gradient conditions. Flow rates and leaflet angles were measured at several different pressure points from a first pressure at which the valve initially opens to a final pressure at which the valve was fully open. Leaflet angle and flow values obtained from six pressure differentials points were used to plot graphs (FIGS. 9A-9B).


Table 2 below exemplifies calculations of the leaflet angle at a 25 mmHg pressure differential.















TABLE 2










% of







% of
original




X
Y

Diameter
Length





















Diameter
6.24
1.09
6.334485
100

angle


Arrow1
1.4
1.09
1.774289
28.00999
0.819125
35.00266


Arrow2
1.14
0.37
1.198541
18.92089
0.738749
42.37504


Arrow3
0.66
1.43
1.57496
24.86327
0.791299
37.69297








38.35689









As is shown by the FIGS. 9A-9B, a specific pressure differential (ΔP) can be correlated to a leaflet angle and a flow rate range.


Using the graph of FIG. 9A, a physician imaging the present device can convert an observed leaflet angle to a pressure differential. Alternatively, using the graph of FIG. 9B, a physician can translate an observed flow rate into a pressure differential. If desired, both graphs can be used to translate a leaflet angle to a flow rate and vise versa.


Therefore determining the leaflets angle or flow rate via, for example, imaging can provide a physician with an indication of pressure differential and as a result the pressure in the left atrium at any point in the heart cycle.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

Claims
  • 1. A shunt for regulating blood pressure between a patient's left atrium and right atrium, the shunt comprising: a shunt conduit configured to be implanted at an atrial septum of the patient to dilate an opening in the atrial septum, the shunt conduit having an outer surface along a length greater than a thickness of the atrial septum, the shunt conduit configured to transition between a collapsed state suitable for percutaneous delivery and an expanded state when deployed across the patient's atrial septum such that the shunt conduit has a smallest diameter where the outer surface traverses the atrial septum and has a larger diameter at the outer surface where an end region of the shunt conduit extends into an atrium, wherein the shunt conduit has a diabolo shape and is configured to be collapsible after implantation.
  • 2. The shunt of claim 1, further comprising an anchor configured to anchor the shunt conduit to the atrial septum when deployed.
  • 3. The shunt of claim 1, wherein a flow rate capacity of the shunt conduit increases with an increase in pressure of the left atrium.
  • 4. The shunt of claim 1, wherein the shunt conduit is configured to be expanded to a predetermined diameter using a balloon catheter.
  • 5. The shunt of claim 1, wherein the diabolo shape of the shunt conduit is configured to prevent migration of the shunt conduit through the atrial septum when deployed.
  • 6. The shunt of claim 1, wherein the shunt conduit is coated with expanded-polytetrafluoroethylene (ePTFE).
  • 7. The shunt of claim 1, wherein the length of the shunt conduit is greater than twice the thickness of the atrial septum.
  • 8. The shunt of claim 1, wherein the shunt conduit comprises a plurality of sinusoidal rings interconnected by a plurality of struts.
  • 9. The shunt of claim 8, wherein the sinusoidal rings and struts further define a neck where the outer surface traverses the atrial septum between conical sections of the shunt conduit.
  • 10. The shunt of claim 9, wherein the neck is between 4 and 6 mm in diameter.
  • 11. The shunt of claim 1, wherein the shunt conduit is constructed from a nitinol frame.
  • 12. The shunt of claim 1, wherein the shunt conduit defines a neck where the outer surface traverses the atrial septum between conical sections.
  • 13. The shunt of claim 12, wherein the neck and the conical sections are collapsible.
  • 14. The shunt of claim 12, wherein the neck is between 4 and 6 mm in diameter.
  • 15. A method for regulating blood pressure between a patient's left atrium and right atrium, the method comprising: implanting a shunt conduit at an atrial septum of the patient to dilate an opening in the atrial septum, the shunt conduit having an outer surface along a length greater than a thickness of the atrial septum, the shunt conduit configured to transition between a collapsed state suitable for percutaneous delivery and an expanded state when deployed across the patient's atrial septum such that the shunt conduit has a smallest diameter where the outer surface traverses the atrial septum and has a larger diameter at the outer surface where an end region of the shunt conduit extends into an atrium, wherein the shunt conduit has a diabolo shape and is configured to be collapsible after implantation.
  • 16. The method of claim 15, further comprising expanding the shunt conduit to a predetermined diameter using a balloon catheter.
  • 17. The method of claim 15, wherein the shunt conduit defines a neck where the outer surface traverses the atrial septum between conical sections.
  • 18. The method of claim 17, wherein the neck and the conical sections are collapsible.
  • 19. The method of claim 17, wherein the neck is between 4 and 6 mm in diameter.
  • 20. The method of claim 15, further comprising shunting blood through the atrial septum via the shunt conduit to treat heart failure.
  • 21. The shunt of claim 1, wherein the end region of the shunt conduit, when implanted in the expanded state, is configured to be disposed in the atrium and to not contact the atrial septum.
  • 22. The shunt of claim 21, wherein the shunt conduit further comprises a second end region at an opposing end of the shunt conduit and having a larger diameter when deployed than the smallest diameter, wherein the second end region of the shunt conduit, when implanted in the expanded state, is configured to be disposed in an opposing atrium and to not contact the atrial septum.
  • 23. The method of claim 15, wherein the end region of the shunt conduit, when implanted in the expanded state, is disposed in the atrium and does not contact the atrial septum.
  • 24. The method of claim 23, wherein the shunt conduit further comprises a second end region at an opposing end of the shunt conduit and having a larger diameter when deployed than the smallest diameter, wherein the second end region of the shunt conduit, when implanted in the expanded state, is disposed in an opposing atrium and does not contact the atrial septum.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/650,783, filed Jul. 14, 2017, now U.S. Pat. No. 10,639,459, which is a divisional application of U.S. patent application Ser. No. 14/227,982, filed Mar. 27, 2014, now U.S. Pat. No. 9,707,382, which is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 13/108,880, filed May 16, 2011, now U.S. Pat. No. 8,696,611, which is a continuation under 35 U.S.C. § 120 of International Patent Application No. PCT/IL2010/000354, filed May 4, 2010 and entitled “Device and Method for Regulating Pressure in a Heart Chamber,” which claims the benefit of U.S. Provisional Patent Application No. 61/175,073, filed May 4, 2009, and U.S. Provisional Patent Application No. 61/240,667, filed Sep. 9, 2009, the entire contents of each of which are incorporated by reference herein.

US Referenced Citations (567)
Number Name Date Kind
3852334 Dusza et al. Dec 1974 A
3874388 King et al. Apr 1975 A
3952334 Bokros et al. Apr 1976 A
4364395 Redmond et al. Dec 1982 A
4484955 Hochstein Nov 1984 A
4601309 Chang Jul 1986 A
4617932 Kornberg Oct 1986 A
4662355 Pieronne et al. May 1987 A
4665906 Jervis May 1987 A
4705507 Boyles Nov 1987 A
4836204 Landymore et al. Jun 1989 A
4979955 Smith Dec 1990 A
4988339 Vadher Jan 1991 A
4995857 Arnold Feb 1991 A
5035702 Taheri Jul 1991 A
5035706 Giantureo et al. Jul 1991 A
5037427 Harada et al. Aug 1991 A
5089005 Harada Feb 1992 A
5186431 Tamari Feb 1993 A
5197978 Hess Mar 1993 A
5234447 Kaster et al. Aug 1993 A
5267940 Moulder Dec 1993 A
5290227 Pasque Mar 1994 A
5312341 Turi May 1994 A
5326374 Ilbawi et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5334217 Das Aug 1994 A
5378239 Termin et al. Jan 1995 A
5409019 Wilk Apr 1995 A
5429144 Wilk Jul 1995 A
5500015 Deac Mar 1996 A
5531759 Kensey et al. Jul 1996 A
5545210 Hess et al. Aug 1996 A
5556386 Todd Sep 1996 A
5578008 Hara Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5597377 Aldea Jan 1997 A
5645559 Hachtman et al. Jul 1997 A
5655548 Nelson et al. Aug 1997 A
5662711 Douglas Sep 1997 A
5702412 Popov et al. Dec 1997 A
5725552 Kotula et al. Mar 1998 A
5741324 Glastra Apr 1998 A
5749880 Banas et al. May 1998 A
5779716 Cano et al. Jul 1998 A
5795307 Krueger Aug 1998 A
5810836 Hussein et al. Sep 1998 A
5824062 Patke et al. Oct 1998 A
5824071 Nelson et al. Oct 1998 A
5846261 Kotula et al. Dec 1998 A
5910144 Hayashi Jun 1999 A
5916193 Stevens et al. Jun 1999 A
5941850 Shah et al. Aug 1999 A
5957949 Leonhardt et al. Sep 1999 A
5990379 Gregory Nov 1999 A
6007544 Kim Dec 1999 A
6027518 Gaber Feb 2000 A
6039755 Edwin et al. Mar 2000 A
6039759 Carpentier et al. Mar 2000 A
6086610 Duerig et al. Jul 2000 A
6111520 Allen et al. Aug 2000 A
6117159 Huebsch et al. Sep 2000 A
6120534 Ruiz Sep 2000 A
6124523 Banas et al. Sep 2000 A
6126686 Badylak et al. Oct 2000 A
6165188 Saadat et al. Dec 2000 A
6210318 Lederman Apr 2001 B1
6214029 Thill et al. Apr 2001 B1
6214039 Banas et al. Apr 2001 B1
6217541 Yu Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6231587 Makower May 2001 B1
6242762 Brown et al. Jun 2001 B1
6245099 Edwin et al. Jun 2001 B1
6254564 Wilk et al. Jul 2001 B1
6260552 Mortier et al. Jul 2001 B1
6264684 Banas et al. Jul 2001 B1
6270515 Linden et al. Aug 2001 B1
6270526 Cox Aug 2001 B1
6277078 Porat et al. Aug 2001 B1
6278379 Allen et al. Aug 2001 B1
6290728 Phelps et al. Sep 2001 B1
6302892 Wilk Oct 2001 B1
6306141 Jervis Oct 2001 B1
6328699 Eigler et al. Dec 2001 B1
6344022 Jarvik Feb 2002 B1
6358277 Duran Mar 2002 B1
6391036 Berg et al. May 2002 B1
6398803 Layne et al. Jun 2002 B1
6406422 Landesberg Jun 2002 B1
6447539 Nelson et al. Sep 2002 B1
6451051 Drasler et al. Sep 2002 B2
6458153 Bailey et al. Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6475136 Forsell Nov 2002 B1
6478776 Rosenman et al. Nov 2002 B1
6485507 Walak et al. Nov 2002 B1
6488702 Besselink Dec 2002 B1
6491705 Gifford, III et al. Dec 2002 B2
6527698 Kung et al. Mar 2003 B1
6544208 Ethier et al. Apr 2003 B2
6547814 Edwin et al. Apr 2003 B2
6562066 Martin May 2003 B1
6572652 Shaknovich Jun 2003 B2
6579314 Lombardi et al. Jun 2003 B1
6589198 Soltanpour et al. Jul 2003 B1
6616675 Evard et al. Sep 2003 B1
6632169 Korakianitis et al. Oct 2003 B2
6638303 Campbell Oct 2003 B1
6641610 Wolf et al. Nov 2003 B2
6645220 Huter et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6685664 Levin et al. Feb 2004 B2
6712836 Berg et al. Mar 2004 B1
6740115 Lombardi et al. May 2004 B2
6758858 McCrea et al. Jul 2004 B2
6764507 Shanley et al. Jul 2004 B2
6770087 Layne et al. Aug 2004 B2
6797217 McCrea et al. Sep 2004 B2
6890350 Walak May 2005 B1
6923829 Boyle et al. Aug 2005 B2
6970742 Mann et al. Nov 2005 B2
7001409 Amplatz Feb 2006 B2
7004966 Edwin et al. Feb 2006 B2
7025777 Moore Apr 2006 B2
7060150 Banas et al. Jun 2006 B2
7083640 Lombardi et al. Aug 2006 B2
7115095 Eigler et al. Oct 2006 B2
7118600 Dua et al. Oct 2006 B2
7137953 Eigler et al. Nov 2006 B2
7147604 Allen et al. Dec 2006 B1
7149587 Wardle et al. Dec 2006 B2
7169160 Middleman et al. Jan 2007 B1
7169172 Levine et al. Jan 2007 B2
7195594 Eigler et al. Mar 2007 B2
7208010 Shanley et al. Apr 2007 B2
7226558 Nieman et al. Jun 2007 B2
7245117 Joy et al. Jul 2007 B1
7294115 Wilk Nov 2007 B1
7306756 Edwin et al. Dec 2007 B2
7402899 Whiting et al. Jul 2008 B1
7439723 Allen et al. Oct 2008 B2
7468071 Edwin et al. Dec 2008 B2
7483743 Mann et al. Jan 2009 B2
7498799 Allen et al. Mar 2009 B2
7509169 Eigler et al. Mar 2009 B2
7550978 Joy et al. Jun 2009 B2
7578899 Edwin et al. Aug 2009 B2
7590449 Mann et al. Sep 2009 B2
7615010 Najafi et al. Nov 2009 B1
7621879 Eigler et al. Nov 2009 B2
7679355 Allen et al. Mar 2010 B2
7717854 Mann et al. May 2010 B2
7794473 Tessmer et al. Sep 2010 B2
7839153 Joy et al. Nov 2010 B2
7842083 Shanley et al. Nov 2010 B2
7854172 O'Brien et al. Dec 2010 B2
7862513 Eigler et al. Jan 2011 B2
7914639 Layne et al. Mar 2011 B2
7939000 Edwin et al. May 2011 B2
7988724 Salahieh et al. Aug 2011 B2
7993383 Hartley et al. Aug 2011 B2
8012194 Edwin et al. Sep 2011 B2
8016877 Seguin et al. Sep 2011 B2
8021420 Dolan Sep 2011 B2
8025625 Allen Sep 2011 B2
8025668 McCartney Sep 2011 B2
8043360 McNamara et al. Oct 2011 B2
8070708 Rottenberg et al. Dec 2011 B2
8091556 Keren et al. Jan 2012 B2
8096959 Stewart et al. Jan 2012 B2
8137605 McCrea et al. Mar 2012 B2
8142363 Eigler et al. Mar 2012 B1
8147545 Avior Apr 2012 B2
8157852 Bloom et al. Apr 2012 B2
8157860 McNamara et al. Apr 2012 B2
8157940 Edwin et al. Apr 2012 B2
8158041 Colone Apr 2012 B2
8187321 Shanley et al. May 2012 B2
8202313 Shanley et al. Jun 2012 B2
8206435 Shanley et al. Jun 2012 B2
8216398 Bledsoe et al. Jul 2012 B2
8235916 Whiting et al. Aug 2012 B2
8235933 Keren et al. Aug 2012 B2
8246677 Ryan Aug 2012 B2
8287589 Otto et al. Oct 2012 B2
8298150 Mann et al. Oct 2012 B2
8298244 Garcia et al. Oct 2012 B2
8303511 Eigler et al. Nov 2012 B2
8313524 Edwin et al. Nov 2012 B2
8328751 Keren et al. Dec 2012 B2
8337650 Edwin et al. Dec 2012 B2
8348996 Tuval et al. Jan 2013 B2
8357193 Phan et al. Jan 2013 B2
8398708 Meiri et al. Mar 2013 B2
8460366 Rowe Jun 2013 B2
8468667 Straubinger et al. Jun 2013 B2
8480594 Eigler et al. Jul 2013 B2
8579966 Seguin et al. Nov 2013 B2
8597225 Kapadia Dec 2013 B2
8617337 Layne et al. Dec 2013 B2
8617441 Edwin et al. Dec 2013 B2
8652284 Bogert et al. Feb 2014 B2
8665086 Miller et al. Mar 2014 B2
8696611 Nitzan et al. Apr 2014 B2
8790241 Edwin et al. Jul 2014 B2
8882697 Celermajer et al. Nov 2014 B2
8882798 Schwab et al. Nov 2014 B2
8911489 Ben-Muvhar Dec 2014 B2
9005155 Sugimoto Apr 2015 B2
9034034 Nitzan et al. May 2015 B2
9055917 Mann et al. Jun 2015 B2
9060696 Eigler et al. Jun 2015 B2
9067050 Gallagher et al. Jun 2015 B2
9205236 McNamara et al. Dec 2015 B2
9220429 Nabutovsky et al. Dec 2015 B2
9358371 McNamara et al. Jun 2016 B2
9393115 Tabor et al. Jul 2016 B2
9456812 Finch et al. Oct 2016 B2
9622895 Cohen et al. Apr 2017 B2
9629715 Nitzan et al. Apr 2017 B2
9681948 Levi et al. Jun 2017 B2
9707382 Nitzan et al. Jul 2017 B2
9713696 Yacoby et al. Jul 2017 B2
9724499 Rottenberg et al. Aug 2017 B2
9757107 McNamara et al. Sep 2017 B2
9789294 Taft et al. Oct 2017 B2
9918677 Eigler et al. Mar 2018 B2
9943670 Keren et al. Apr 2018 B2
9980815 Nitzan et al. May 2018 B2
10045766 McNamara et al. Aug 2018 B2
10047421 Khan et al. Aug 2018 B2
10076403 Eigler et al. Sep 2018 B1
10105103 Goldshtein et al. Oct 2018 B2
10111741 Michalak Oct 2018 B2
10207087 Keren et al. Feb 2019 B2
10207807 Moran et al. Feb 2019 B2
10251740 Eigler et al. Apr 2019 B2
10251750 Alexander et al. Apr 2019 B2
10265169 Desrosiers et al. Apr 2019 B2
10299687 Nabutovsky et al. May 2019 B2
10357357 Levi et al. Jul 2019 B2
10368981 Nitzan et al. Aug 2019 B2
10463490 Rottenberg et al. Nov 2019 B2
10478594 Yacoby et al. Nov 2019 B2
10548725 Alkhatib et al. Feb 2020 B2
10561423 Sharma Feb 2020 B2
10583002 Lane et al. Mar 2020 B2
10639459 Nitzan et al. May 2020 B2
10828151 Nitzan et al. Nov 2020 B2
10835394 Nae et al. Nov 2020 B2
10898698 Eigler et al. Jan 2021 B1
10912645 Rottenberg et al. Feb 2021 B2
10925706 Eigler et al. Feb 2021 B2
10940296 Keren Mar 2021 B2
11109988 Rosen et al. Sep 2021 B2
11135054 Nitzan et al. Oct 2021 B2
11234702 Eigler et al. Feb 2022 B1
11253353 Levi et al. Feb 2022 B2
11255379 Baskin et al. Feb 2022 B2
11291807 Eigler et al. Apr 2022 B2
11304831 Nae et al. Apr 2022 B2
11382747 Rottenberg et al. Jul 2022 B2
11458287 Eigler et al. Oct 2022 B2
11497631 Rosen et al. Nov 2022 B2
11607327 Nae et al. Mar 2023 B2
11612385 Nae et al. Mar 2023 B2
11690976 Yacoby et al. Jul 2023 B2
11813386 Nae et al. Nov 2023 B2
20010007956 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20020051730 Bodnar et al. May 2002 A1
20020099431 Armstrong et al. Jul 2002 A1
20020120277 Hauschild et al. Aug 2002 A1
20020165479 Wilk Nov 2002 A1
20020165606 Wolf et al. Nov 2002 A1
20020169371 Gilderdale Nov 2002 A1
20020169377 Khairkhahan et al. Nov 2002 A1
20020173742 Keren et al. Nov 2002 A1
20020183628 Reich et al. Dec 2002 A1
20030028213 Thill et al. Feb 2003 A1
20030045902 Weadock Mar 2003 A1
20030100920 Akin et al. May 2003 A1
20030125798 Martin Jul 2003 A1
20030136417 Fonseca et al. Jul 2003 A1
20030139819 Beer et al. Jul 2003 A1
20030176914 Rabkin et al. Sep 2003 A1
20030209835 Chun et al. Nov 2003 A1
20030216679 Wolf et al. Nov 2003 A1
20030216803 Ledergerber Nov 2003 A1
20040010219 McCusker et al. Jan 2004 A1
20040016514 Nien Jan 2004 A1
20040073242 Chanduszko Apr 2004 A1
20040077988 Tweden et al. Apr 2004 A1
20040088045 Cox May 2004 A1
20040093075 Kuehne May 2004 A1
20040102797 Golden et al. May 2004 A1
20040116999 Ledergerber Jun 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040147869 Wolf et al. Jul 2004 A1
20040147871 Burnett Jul 2004 A1
20040147886 Bonni Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040162514 Alferness et al. Aug 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040210190 Kohler et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040225352 Osborne et al. Nov 2004 A1
20050003327 Elian et al. Jan 2005 A1
20050033327 Gainor et al. Feb 2005 A1
20050033351 Newton Feb 2005 A1
20050065589 Schneider et al. Mar 2005 A1
20050125032 Whisenant et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050148925 Rottenberg Jul 2005 A1
20050165344 Dobak, III Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050267524 Chanduszko Dec 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050288596 Eigler et al. Dec 2005 A1
20050288706 Widomski et al. Dec 2005 A1
20050288786 Chanduszko Dec 2005 A1
20060009800 Christianson et al. Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060052821 Abbott et al. Mar 2006 A1
20060111660 Wolf et al. May 2006 A1
20060111704 Brenneman et al. May 2006 A1
20060116710 Corcoran et al. Jun 2006 A1
20060122522 Chavan et al. Jun 2006 A1
20060122647 Callaghan et al. Jun 2006 A1
20060167541 Lattouf Jul 2006 A1
20060184231 Rucker Aug 2006 A1
20060212110 Osborne et al. Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060256611 Bednorz et al. Nov 2006 A1
20060282157 Hill et al. Dec 2006 A1
20070010852 Blaeser et al. Jan 2007 A1
20070021739 Weber Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070073337 Abbott et al. Mar 2007 A1
20070129756 Abbott et al. Jun 2007 A1
20070191863 De Juan, Jr. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070249985 Brenneman et al. Oct 2007 A1
20070276413 Nobles Nov 2007 A1
20070276414 Nobles Nov 2007 A1
20070282157 Rottenberg et al. Dec 2007 A1
20070299384 Faul et al. Dec 2007 A1
20080034836 Eigler et al. Feb 2008 A1
20080086205 Gordy et al. Apr 2008 A1
20080125861 Webler et al. May 2008 A1
20080171944 Brenneman et al. Jul 2008 A1
20080177300 Mas et al. Jul 2008 A1
20080243081 Nance et al. Oct 2008 A1
20080262602 Wilk et al. Oct 2008 A1
20080264102 Berra Oct 2008 A1
20080319525 Tieu et al. Dec 2008 A1
20090030499 Bebb et al. Jan 2009 A1
20090054976 Tuval et al. Feb 2009 A1
20090125104 Hoffman May 2009 A1
20090149947 Frohwitter Jun 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100004740 Seguin et al. Jan 2010 A1
20100022940 Thompson Jan 2010 A1
20100057192 Celermajer Mar 2010 A1
20100069836 Satake Mar 2010 A1
20100070022 Kuehling Mar 2010 A1
20100081867 Fishler et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100121434 Paul et al. May 2010 A1
20100179590 Fortson et al. Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100249491 Farnan et al. Sep 2010 A1
20100249909 McNamara et al. Sep 2010 A1
20100249910 McNamara et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100256548 McNamara et al. Oct 2010 A1
20100256753 McNamara et al. Oct 2010 A1
20100298755 McNamara et al. Nov 2010 A1
20100324652 Aurilia et al. Dec 2010 A1
20110022057 Eigler et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110054515 Bridgeman et al. Mar 2011 A1
20110071623 Finch et al. Mar 2011 A1
20110071624 Finch et al. Mar 2011 A1
20110093059 Fischell Apr 2011 A1
20110152923 Fox Jun 2011 A1
20110190874 Celermajer et al. Aug 2011 A1
20110218479 Rottenberg et al. Sep 2011 A1
20110218480 Rottenberg et al. Sep 2011 A1
20110218481 Rottenberg et al. Sep 2011 A1
20110251675 Dwork Oct 2011 A1
20110257723 McNamara Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264203 Dwork et al. Oct 2011 A1
20110276086 Al-Qbandi et al. Nov 2011 A1
20110295182 Finch et al. Dec 2011 A1
20110295183 Finch et al. Dec 2011 A1
20110295362 Finch et al. Dec 2011 A1
20110295366 Finch et al. Dec 2011 A1
20110306916 Nitzan et al. Dec 2011 A1
20110319806 Wardle Dec 2011 A1
20120022507 Najafi et al. Jan 2012 A1
20120022633 Olson et al. Jan 2012 A1
20120035590 Whiting et al. Feb 2012 A1
20120041422 Whiting et al. Feb 2012 A1
20120046528 Eigler et al. Feb 2012 A1
20120046739 Von Oepen et al. Feb 2012 A1
20120053686 McNamara et al. Mar 2012 A1
20120071918 Amin et al. Mar 2012 A1
20120130301 McNamara et al. May 2012 A1
20120165928 Nitzan et al. Jun 2012 A1
20120179172 Paul, Jr. et al. Jul 2012 A1
20120190991 Bornzin et al. Jul 2012 A1
20120265296 McNamara et al. Oct 2012 A1
20120271277 Fischell et al. Oct 2012 A1
20120271398 Essinger et al. Oct 2012 A1
20120289882 McNamara et al. Nov 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20130030521 Nitzan et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130096965 Pappas et al. Apr 2013 A1
20130138145 Von Oepen May 2013 A1
20130178783 McNamara et al. Jul 2013 A1
20130178784 McNamara et al. Jul 2013 A1
20130184633 McNamara et al. Jul 2013 A1
20130184634 McNamara et al. Jul 2013 A1
20130197423 Keren et al. Aug 2013 A1
20130197547 Fukuoka et al. Aug 2013 A1
20130197629 Gainor et al. Aug 2013 A1
20130204175 Sugimoto Aug 2013 A1
20130231737 McNamara et al. Sep 2013 A1
20130261531 Gallagher et al. Oct 2013 A1
20130281988 Magnin et al. Oct 2013 A1
20130304192 Chanduszko Nov 2013 A1
20130331864 Jelich et al. Dec 2013 A1
20140012181 Sugimoto et al. Jan 2014 A1
20140012303 Heipl Jan 2014 A1
20140012368 Sugimoto et al. Jan 2014 A1
20140012369 Murry, III et al. Jan 2014 A1
20140067037 Fargahi Mar 2014 A1
20140094904 Salahieh et al. Apr 2014 A1
20140128795 Keren et al. May 2014 A1
20140128796 Keren et al. May 2014 A1
20140163449 Rottenberg et al. Jun 2014 A1
20140194971 McNamara Jul 2014 A1
20140213959 Nitzan et al. Jul 2014 A1
20140222144 Eberhardt et al. Aug 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140257167 Celermajer Sep 2014 A1
20140275916 Nabutovsky et al. Sep 2014 A1
20140277045 Fazio et al. Sep 2014 A1
20140277054 McNamara et al. Sep 2014 A1
20140303710 Zhang et al. Oct 2014 A1
20140350565 Yacoby et al. Nov 2014 A1
20140350658 Benary et al. Nov 2014 A1
20140350661 Schaeffer Nov 2014 A1
20140350669 Gillespie et al. Nov 2014 A1
20140357946 Golden et al. Dec 2014 A1
20140364941 Edmiston et al. Dec 2014 A1
20150005810 Center et al. Jan 2015 A1
20150034217 Vad Feb 2015 A1
20150039084 Levi et al. Feb 2015 A1
20150066140 Quadri et al. Mar 2015 A1
20150073539 Geiger et al. Mar 2015 A1
20150112383 Sherman et al. Apr 2015 A1
20150119796 Finch Apr 2015 A1
20150127093 Hosmer et al. May 2015 A1
20150142049 Delgado et al. May 2015 A1
20150148731 McNamara et al. May 2015 A1
20150148896 Karapetian et al. May 2015 A1
20150157455 Hoang et al. Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150182334 Bourang et al. Jul 2015 A1
20150190229 Seguin Jul 2015 A1
20150196383 Johnson Jul 2015 A1
20150201998 Roy et al. Jul 2015 A1
20150209143 Duffy et al. Jul 2015 A1
20150230924 Miller et al. Aug 2015 A1
20150238314 Bortlein et al. Aug 2015 A1
20150245908 Nitzan et al. Sep 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150282790 Quinn et al. Oct 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150313599 Johnson et al. Nov 2015 A1
20150335801 Farnan et al. Nov 2015 A1
20150359556 Vardi Dec 2015 A1
20160007924 Eigler et al. Jan 2016 A1
20160022423 McNamara et al. Jan 2016 A1
20160022970 Forcucci et al. Jan 2016 A1
20160045311 McCann et al. Feb 2016 A1
20160073907 Nabutovsky et al. Mar 2016 A1
20160120550 McNamara et al. May 2016 A1
20160129260 Mann et al. May 2016 A1
20160157862 Hernandez et al. Jun 2016 A1
20160166381 Sugimoto et al. Jun 2016 A1
20160184561 McNamara et al. Jun 2016 A9
20160206423 O'Connor et al. Jul 2016 A1
20160213467 Backus et al. Jul 2016 A1
20160220360 Lin et al. Aug 2016 A1
20160220365 Backus et al. Aug 2016 A1
20160262878 Backus et al. Sep 2016 A1
20160262879 Meiri et al. Sep 2016 A1
20160287386 Alon et al. Oct 2016 A1
20160296325 Edelman et al. Oct 2016 A1
20160361167 Tuval et al. Dec 2016 A1
20160361184 Tabor et al. Dec 2016 A1
20170035435 Amin et al. Feb 2017 A1
20170056171 Cooper et al. Mar 2017 A1
20170112624 Patel Apr 2017 A1
20170113026 Finch Apr 2017 A1
20170128705 Forcucci et al. May 2017 A1
20170135685 McNamara et al. May 2017 A9
20170165062 Rothstein Jun 2017 A1
20170165532 Khan et al. Jun 2017 A1
20170216025 Nitzan et al. Aug 2017 A1
20170224323 Rowe et al. Aug 2017 A1
20170224444 Viecilli et al. Aug 2017 A1
20170231766 Hariton et al. Aug 2017 A1
20170273790 Vettukattil et al. Sep 2017 A1
20170281339 Levi et al. Oct 2017 A1
20170312486 Nitzan et al. Nov 2017 A1
20170319823 Yacoby et al. Nov 2017 A1
20170325956 Rottenberg et al. Nov 2017 A1
20170340460 Rosen et al. Nov 2017 A1
20170348100 Lane et al. Dec 2017 A1
20180028314 Ekvall et al. Feb 2018 A1
20180099128 McNamara et al. Apr 2018 A9
20180104053 Alkhatib et al. Apr 2018 A1
20180110609 Ehnes et al. Apr 2018 A1
20180125630 Hynes et al. May 2018 A1
20180130988 Nishikawa et al. May 2018 A1
20180243071 Eigler et al. Aug 2018 A1
20180256865 Finch et al. Sep 2018 A1
20180263766 Nitzan et al. Sep 2018 A1
20180280667 Keren Oct 2018 A1
20180280668 Alaswad Oct 2018 A1
20180344994 Karavany et al. Dec 2018 A1
20190000327 Doan et al. Jan 2019 A1
20190008628 Eigler et al. Jan 2019 A1
20190015103 Sharma Jan 2019 A1
20190015188 Eigler et al. Jan 2019 A1
20190021861 Finch Jan 2019 A1
20190083076 Alanbaei Mar 2019 A1
20190110911 Nae et al. Apr 2019 A1
20190239754 Nabutovsky et al. Aug 2019 A1
20190254814 Nitzan et al. Aug 2019 A1
20190262118 Eigler et al. Aug 2019 A1
20190328513 Levi et al. Oct 2019 A1
20190336163 McNamara et al. Nov 2019 A1
20200060825 Rottenberg et al. Feb 2020 A1
20200078196 Rosen et al. Mar 2020 A1
20200078558 Yacoby et al. Mar 2020 A1
20200085600 Schwartz et al. Mar 2020 A1
20200197178 Vecchio Jun 2020 A1
20200261705 Nitzan et al. Aug 2020 A1
20200315599 Nae et al. Oct 2020 A1
20200368505 Nae et al. Nov 2020 A1
20210022507 Williams Jan 2021 A1
20210052378 Nitzan et al. Feb 2021 A1
20210100665 Nae et al. Apr 2021 A1
20210121179 Ben-David et al. Apr 2021 A1
20220008014 Rowe et al. Jan 2022 A1
20220211361 Rolando et al. Jul 2022 A1
20220304803 Guyenot et al. Sep 2022 A1
Foreign Referenced Citations (58)
Number Date Country
2003291117 Apr 2009 AU
2378920 Feb 2001 CA
101505680 Aug 2009 CN
105555204 May 2016 CN
108451569 Aug 2018 CN
1987777 Nov 2008 EP
2238933 Oct 2010 EP
2305321 Apr 2011 EP
1965842 Nov 2011 EP
3400907 Nov 2018 EP
2827153 Jan 2003 FR
WO-9531945 Nov 1995 WO
WO-9702850 Jan 1997 WO
WO-9727898 Aug 1997 WO
WO-9960941 Dec 1999 WO
WO-0044311 Aug 2000 WO
WO-0050100 Aug 2000 WO
WO-0110314 Feb 2001 WO
WO-0126585 Apr 2001 WO
WO-0191828 Dec 2001 WO
WO-0226281 Apr 2002 WO
WO-02071974 Sep 2002 WO
WO-02087473 Nov 2002 WO
WO-03053495 Jul 2003 WO
WO-2005027752 Mar 2005 WO
WO-2005074367 Aug 2005 WO
WO-2006127765 Nov 2006 WO
WO-2007083288 Jul 2007 WO
WO-2008055301 May 2008 WO
WO-2008070797 Jun 2008 WO
WO-2009029261 Mar 2009 WO
WO-2010128501 Nov 2010 WO
WO-2010129089 Nov 2010 WO
WO-2010139771 Dec 2010 WO
WO-2010139771 Jan 2011 WO
WO-2011062858 May 2011 WO
WO-2013096965 Jun 2013 WO
WO-2013172474 Nov 2013 WO
WO-2016178171 Nov 2016 WO
WO-2017118920 Jul 2017 WO
WO-2018158747 Sep 2018 WO
WO-2019015617 Jan 2019 WO
WO-2019085841 May 2019 WO
WO-2019109013 Jun 2019 WO
WO-2019142152 Jul 2019 WO
WO-2019179447 Sep 2019 WO
WO-2019218072 Nov 2019 WO
WO-2020206062 Oct 2020 WO
WO-2020257530 Dec 2020 WO
WO-2021050589 Mar 2021 WO
WO-2021113670 Jun 2021 WO
WO-2021212011 Oct 2021 WO
WO-2021224736 Nov 2021 WO
WO-2022046921 Mar 2022 WO
WO-2022076601 Apr 2022 WO
WO-2022091018 May 2022 WO
WO-2022091019 May 2022 WO
WO-2022103973 May 2022 WO
Non-Patent Literature Citations (236)
Entry
U.S. Appl. No. 09/839,643 / U.S. Pat. No. 8,091,556, filed Apr. 20, 2001 / Jan. 10, 2012.
U.S. Appl. No. 10/597,666 / U.S. Pat. No. 8,070,708, filed Jun. 20, 2007 / Dec. 6, 2011.
U.S. Appl. No. 12/223,080 / U.S. Pat. No. 9,681,948, filed Jul. 16, 2014 / Jun. 20, 2017.
U.S. Appl. No. 13/107,832 / U.S. Pat. No. 8,235,933, filed May 13, 2011 / Aug. 7, 2012.
U.S. Appl. No. 13/107,843 / U.S. Pat. No. 8,328,751, filed May 13, 2011 / Dec. 11, 2012.
U.S. Appl. No. 13/108,672 / U.S. Pat. No. 9,724,499, filed May 16, 2011 / Aug. 8, 2017.
U.S. Appl. No. 13/108,698, filed Jun. 16, 2011.
U.S. Appl. No. 13/108,850, filed May 16, 2011.
U.S. Appl. No. 13/108,880 / U.S. Pat. No. 8,696,611, filed May 16, 2011 / Apr. 15, 2014.
U.S. Appl. No. 13/193,309 / U.S. Pat. No. 9,629,715, filed Jul. 28, 2011 / Apr. 25, 2017.
U.S. Appl. No. 13/193,335 / U.S. Pat. No. 9,034,034, filed Jul. 28, 2011 / May 19, 2015.
U.S. Appl. No. 13/708,794 / U.S. Pat. No. 9,943,670, filed Dec. 7, 2012 / Apr. 17, 2018.
U.S. Appl. No. 14/154,080 / U.S. Pat. No. 10,207,807, filed Jan. 13, 2014 / Feb. 19, 2019.
U.S. Appl. No. 14/154,088, filed Jan. 13, 2014.
U.S. Appl. No. 14/154,093, filed Jan. 13, 2014.
U.S. Appl. No. 14/227,982 / U.S. Pat. No. 9,707,382, filed Mar. 27, 2014 / Jul. 18, 2017.
U.S. Appl. No. 14/282,615 / U.S. Pat. No. 9,713,696, filed May 20, 2014 / Jul. 25, 2017.
U.S. Appl. No. 14/712,801 / U.S. Pat. No. 9,980,815, filed May 14, 2015 / May 29, 2018.
U.S. Appl. No. 15/449,834 / U.S. Pat. No. 10,076,403, filed Mar. 3, 2017 / Sep. 18, 2018.
U.S. Appl. No. 15/492,852 / U.S. Pat. No. 10,368,981, filed Apr. 20, 2017 / Aug. 6, 2019.
U.S. Appl. No. 15/570,752, filed Oct. 31, 2017.
U.S. Appl. No. 15/608,948, filed May 30, 2017.
U.S. Appl. No. 15/624,314 / U.S. Pat. No. 10,357,357, filed Jun. 15, 2017 / Jul. 23, 2019.
U.S. Appl. No. 15/650,783 / U.S. Pat. No. 10,639,459, filed Jul. 14, 2017 / May 5, 2020.
U.S. Appl. No. 15/656,936 / U.S. Pat. No. 10,478,594, filed Jul. 21, 2017 / Nov. 19, 2019.
U.S. Appl. No. 15/668,622 / U.S. Pat. No. 10,463,490, filed Aug. 3, 2017 / Nov. 5, 2019.
U.S. Appl. No. 15/798,250, filed Oct. 30, 2017.
U.S. Appl. No. 16/130,978 / U.S. Pat. No. 10,251,740, filed Sep. 13, 2018 / Apr. 9, 2019.
U.S. Appl. No. 16/130,988, filed Sep. 13, 2018.
U.S. Appl. No. 16/205,213, filed Nov. 29, 2018.
U.S. Appl. No. 16/374,698, filed Apr. 3, 2019.
U.S. Appl. No. 16/395,209, filed Apr. 25, 2019.
U.S. Appl. No. 16/408,419, filed May 9, 2019.
U.S. Appl. No. 16/505,624, filed Jul. 8, 2019.
U.S. Appl. No. 16/686,013, filed Nov. 15, 2019.
U.S. Appl. No. 16/672,420, filed Nov. 1, 2019.
U.S. Appl. No. 16/866,377, filed May 4, 2020.
U.S. Appl. No. 16/875,652, filed May 15, 2020.
U.S. Appl. No. 16/876,640, filed May 18, 2020.
U.S. Appl. No. 16/878,228, filed May 19, 2020.
Ando, et al., Left ventricular decompression through a patent foramen ovale in a patient with hypertrophic cardiomyopathy: A case report, Cardiovascular Ultrasound, 2: 1-7 (2004).
Article 34 Amendments dated May 28, 2013 in related International PCT Patent Appl No. PCT/IB2012/001859.
Article 34 Amendments dated Nov. 27, 2012, as filed in related Int'l PCT Application No. PCT/IL2011/000958.
“Atrium Advanta V12, Balloon Expandable Covered Stent, Improving Patient Outcomes with An Endovascular Approach,” Brochure, 8 pages, Getinge (2017).
Boehm, et al., Balloon Atrial Septostomy: History and Technique, Images Paeditr. Cardiol., 8(1):8-14(2006).
Braunwald, Heart Disease, Chapter 6, pp. 186.
Bridges, et al., The Society of Thoracic Surgeons Practice Guideline Series: Transmyocardial Laser Revascularization, Ann Thorac Surg., 77:1494-1502 (2004).
Bristow, et al., Improvement in cardiac myocite function by biological effects of medical therapy: a new concept in the treatment of heart failure, European Heart Journal 16 (Suppl.F): 20-31 (1995).
Case, et al., Relief of High Left-Atrial Pressure in Left-Ventricular Failure, Lancet, Oct. 17, 1964 (pp. 841-842).
Coats, et al., Controlled Trial of Physical Training in Chronic Heart Failure: Exercise Performance, Hemodynamics, Ventilation, and Autonomic Function, Circulation, 85: 2119-2131 (1992).
Davies, et al., Reduced Contraction and Altered Frequency Response of Isolated Ventricular Myocytes From Patients With Heart Failure, Circulation, 92: 2540-2549 (1995).
Del Trigo et al., Unidirectional Left-To-Right Interatrial Shunting for Treatment of Patients with Heart Failure with Reduced Ejection Fraction: a Safety and Proof-of-Principle Cohort Study, Lancet, 387:1290-1297 (Mar. 26, 2016).
Drexel, et al., The Effects of Cold Work and Heat Treatment on the Properties of Nitinol Wire, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, May 7-11, 2006, Pacific Grove, California, USA (pp. 447-454).
Eigler, et al., Implantation and Recovery of Temporary Metallic Stents in Canine Coronary Arteries, JACC, 22(4):1207-1213 (1993).
Ennezat, et al., An unusual case of low-flow, low gradient severe aortic stenosis: Left-to-right shunt due to atrial septal defect, Cardiology, 113(2):146-148, (2009).
Ewert, et al., Acute Left Heart Failure After Interventional Occlusion of An Artial Septal Defect, Z Kardiol, 90(5): 362-366 (May 2001).
Ewert, et al., Masked Left Ventricular Restriction in Elderly Patients with Atrial Septal Defects: A Contraindication for Closure, Catherization and Cardiovascular Interventions, 52: 177-180 (2001).
Ewert, et al., Masked Left Ventricular Restriction in Elderly Patients With Atrial Septal Defects: A Contraindication for Closure?, Catheterization and Cardiovascular Intervention, 60: 1245-1249,(1995) Abstract.
Extended European Search Report dated Jan. 8, 2015 in EP Patent Appl No. 10772089.8. (0530).
Extended European Search Report dated Sep. 19, 2006 in EP Patent Appl No. 16170281.6 (0731).
Extended European Search Report dated Mar. 29, 2019 in EP Patent Appl. Serial No. EP16789391, 10 pages (1830).
Geiran, et al., Changes in cardiac dynamics by opening an interventricular shunt in dogs, J. Surg. Res. 48(1): 6-12 (1990).
Gelernter-Yaniv, et al., Transcatheter ClosureoOf Left-To-Right Interatrial Shunts to Resolve Hypoxemia, Congenit. Heart Dis. 31(1): 47-53 (Jan. 2008).
Gewillig, et al., Creation with a stent of an unrestrictive lasting atrial communication, Cardio. Young 12(4): 404-407 (2002).
Hasenfub, et al., A Transcatheter Intracardiac Shunt Device for Heart Failure with Preserved Ejection Fraction (Reduce LAP-HF): A Multicentre, Open-Label, Single-Arm, Phase 1 Trial, www.thelancet.com, 387:1298-1304 (2016).
International Search Report & Written Opinion dated Nov. 7, 2016 in Int'l PCT Patent Appl. Serial No. PCT/IB2016/052561 (1810).
International Search Report & Written Opinion dated May 29, 2018 in Int'l PCT Patent Appl. Serial No. PCT/IB2018/051385 (1310).
International Search Report & Written Opinion dated Feb. 6, 2013 in Int'l PCT Patent Appl No. PCT/IB2012/001859, 12 pages (0810).
International Search Report & Written Opinion dated May 13, 2019 in Int'l PCT Patent Appl No. PCT/IB2019/050452, 16 pages (1610).
International Search Report & Written Opinion dated Aug. 28, 2012 in Int'l PCT Patent Appl No. PCT/IL2011/000958, 16 pages (0710).
International Search Report & Written Opinion dated Mar. 19, 2015 in Int'l PCT Patent Appl Serial No. PCT/IB2014/002920 (0810).
International Search Report & Written Opinion dated May 29, 2018 in Int'l PCT Patent Appl. Serial No. PCTIB2018/051355 (1310).
International Search Report & Written Opinion dated Feb. 7, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2019/060257 (1410).
International Search Report & Written Opinion dated Oct. 26, 2007 in International PCT Patent Application Serial No. PCT/IB07/50234 (0610).
International Search Report dated Apr. 7, 2008 received from the International Searching Authority of the Patent Cooperation Treaty Re.: PCT/IL05/00131 (0410).
International Search Report dated Aug. 25, 2010, in Intl PCT Patent Appl. No. PCT/IL2010/000354, (1 pg) (0510).
International search report dated Sep. 20, 2016 in Int'l PCT Patent Appl No. PCT/IB2016/052561 (1810).
ISR & Written Opinion dated Feb. 16, 2015 in Int'l PCT Patent Appl. Serial No. PCT/IB2014/001771 (0910).
Keren, et al. Methods and Apparatus for Reducing Localized Circulatory System Pressure,., Jan. 7, 2002 (pp. 16).
Khositseth et al., Transcatheter Amplatzer Device Closure of Atrial Septal Defect and Patent Foramen Ovale in Patients With Presumed Paradoxical Embolism, Mayo Clinic Proc., 79:35-41 (2004).
Kramer, et al., Controlled Trial of Captopril in Chronic Heart Failure: A Rest and Exercise Hemodynamic Study, Circulation, 67(4): 807-816, 1983.
Lai et al., Bidirectional Shunt Through a Residual Atrial Septal Defect After Percutaneous Transvenous Mitral Commissurotomy, Cadiology, 83(3): 205-207 (1993).
Lemmer, et al., Surgical Implications of Atrial Septal Defect Complicating Aortic Balloon Valvuloplasty, Ann. thorac. Surg, 48(2):295-297 (Aug. 1989).
Merck Index, 1759 and 3521 (11th ed. 1989).
Merriam-Webster OnLine Dictionary, Definition of “chamber”, printed Dec. 20, 2004.
Park Blade Septostomy Catheter Instructions for Use, Cook Medical, 28 pages, Oct. 2015.
Park, et al., Blade Atrial Septostomy: Collaborative Study, Circulation, 66(2):258-266 (1982).
Partial International Search dated Aug. 17, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2017/053188.
Partial Supplemental European Search Report dated Dec. 11, 2018 in EP Patent Appl. Serial No. 16789391.6 (1830).
Rosenquist et al., Atrial Septal Thickness and Area in Normal Heart Specimens and in Those With Ostium Secundum Atrial Septal Defects, J. Clin. Ultrasound, 7: 345-348 (1979).
Rossignol, et al., Left-to-Right Atrial Shunting: New Hope for Heart Failure, www.thelancet.com, 387:1253-1255 (2016).
Roven., Effect of Compromising Right Ventricular Function in Left Ventricular Failure by Means of Interatrial and Other Shunts 24:209-219 (Aug. 1969).
Salehian, et al., Improvements in Cardiac Form and Function After Transcatheter Closure of Secundum Atrial Septal Defects, Journal of the American College of Cardiology, 45(4):499-504 (2005).
Schmitto, et al., Chronic Heart Failure Induced by Multiple Sequential Coronary Microembolization in sheep, The International Journal of Artificial Organs, 31(4):348-353 (2008).
Schubert, et al., Left ventricular Conditioning in the Elderly Patient to Prevent Congestive Heart Failure After Transcatheter Closure of the Atrial Septal Defect, Catheterization and Cardiovascular Interventions, 64(3): 333-337 (2005).
Stormer, et al., Comparative Study of in Vitro Flow Characteristics Between a Human Aortic Valve and a Designed Aortic Valve and Six Corresponding Types of Prosthetic Heart Valves, European Surgical Research 8(2): 117-131 (1976).
Stumper, et al., Modified Technique of Stent Fenestration of the Atrial Septum, Heart, 89:1227-1230, (2003).
Supplementary European Search Report dated Nov. 13, 2009 in EP Patent Appl. Serial No. 05703174.2. (0430).
Trainor, et al., Comparative Pathology of an Implantable Left Atrial Pressure Sensor, ASAIO Journal, Clinical Cardiovascular/Cardiopulmonary Bypass, 59(5):486-492 (2013).
Written Opinion of the International Searching Authority dated Apr. 7, 2008 received from the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00131 (0410).
Zhou, et al., Unidirectional Valve Patch for Repair of Cardiac Septal Defects with Pulmonary Hypertension, Annals of Thoracic Surgeons, 60:1245-1249, (1995).
Abraham et al., “Hemodynamic Monitoring in Advanced Heart Failure: Results from the LAPTOP-HF Trial,” J Card Failure, 22:940 (2016) (Abstract Only).
Abraham et al., “Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the Champion randomised trial,” The Lancet, doi.org/10.1016/S0140-6736(15)00723-0 (2015).
Abraham et al., “Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial,” The Lancet, DOI:10.1016/S0140-6736(11)60101-3 (2011).
Abreu et al., “Doppler ultrasonography of the femoropopliteal segment in patients with venous ulcer,” J Vasc Bras., 11(4):277-285 (2012).
Adamson et al., “Ongoing Right Ventricular Hemodynamics in Heart Failure Clinical Value of Measurements Derived From an Implantable Monitoring System,” J Am Coll Cardiol., 41(4):565-571 (2003).
Adamson et al., “Wireless Pulmonary Artery Pressure Monitoring Guides Management to Reduce Decompensation in Heart Failure With Preserved Ejection Fraction,” Circ Heart Fail., 7:935-944 (2014).
Ambrosy et al. “The Global Health and Economic Burden of Hospitalizations for Heart Failure,” J Am Coll Cardiol., 63:1123-1133 (2014).
Aminde et al., “Current diagnostic and treatment strategies for Lutembacher syndrome: the pivotal role of echocardiography,” Cardiovasc Diagn Ther., 5(2):122-132 (2015).
Anderas E. “Advanced MEMS Pressure Sensors Operating in Fluids,” Digital Comprehensive Summaries of Uppsala Dissertation from the Faculty of Science and Technology 933. Uppsala ISBN 978-91-554-8369-2 (2012).
Anderas et al., “Tilted c-axis Thin-Film Bulk Wave Resonant Pressure Sensors with Improved Sensitivity,” IEEE Sensors J., 12(8):2653-2654 (2012).
Ataya et al., “A Review of Targeted Pulmonary Arterial Hypertension-Specific Pharmacotherapy,” J. Clin. Med., 5(12):114 (2016).
Bannan et al., “Characteristics of Adult Patients with Atrial Septal Defects Presenting with Paradoxical Embolism.,” Catheterization and Cardiovascular Interventions, 74:1066-1069 (2009).
Baumgartner et al., “ESC Guidelines for the management of grown-up congenital heart disease (new version 2010)—The Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC),” Eur Heart J., 31:2915-2957 (2010).
Beemath et al., “Pulmonary Embolism as a Cause of Death in Adults Who Died With Heart Failure,” Am J Cardiol., 98:1073-1075 (2006).
Benza et al., “Monitoring Pulmonary Arterial Hypertension Using an Implantable Hemodynamic Sensor,” Chest, 156(6):1176-1186 (2019).
Borlaug, et al., Latent Pulmonary Vascular Disease May Alter The Response to Therapeutic Atrial Shunt Device in Heart Failure, Circulation (Mar. 2022).
Bruch et al., “Fenestrated Occluders for Treatment of ASD in Elderly Patients with Pulmonary Hypertension and/or Right Heart Failure,” J Interven Cardiol., 21(1):44-49 (2008).
Burkhoff et al., “Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers,” Am J Physiol Heart Circ Physiol., 289:H501-H512 (2005).
Butler et al. “Recognizing Worsening Chronic Heart Failure as an Entity and an End Point in Clinical Trials,” JAMA., 312(8):789-790 (2014).
Chakko et al., “Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care,” Am J Medicine, 90:353-359 (1991) (Abstract Only).
Chang et al., “State-of-the-art and recent developments in micro/nanoscale pressure sensors for smart wearable devices and health monitoring systems,” Nanotechnology and Precision Engineering, 3:43-52 (2020).
Chen et al., “Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care,” Nature Communications, 5(1):1-10 (2014).
Chen et al., “National and Regional Trends in Heart Failure Hospitalization and Mortality Rates for Medicare Beneficiaries, 1998-2008,” JAMA, 306(15):1669-1678 (2011).
Chiche et al., “Prevalence of patent foramen ovale and stroke in pulmonary embolism patients,” Eur Heart J., 34:P1142 (2013) (Abstract Only).
Chin et al., “The right ventricle in pulmonary hypertension,” Coron Artery Dis., 16(1):13-18 (2005) (Abstract Only).
Chun et al., “Lifetime Analysis of Hospitalizations and Survival of Patients Newly Admitted With Heart Failure,” Circ Heart Fail., 5:414-421 (2012).
Ciarka et al., “Atrial Septostomy Decreases Sympathetic Overactivity in Pulmonary Arterial Hypertension,” Chest, 131(6):P1831-1837 (2007) (Abstract Only).
Cleland et al., “The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe—Part 1: patient characteristics and diagnosis,” Eur Heart J., 24:442-463 (2003).
Clowes et al., “Mechanisms of Arterial Graft Healing—Rapid Transmural Capillary Ingrowth Provides a Source of Intimal Endothelium and Smooth Muscle in Porous PTFE Prostheses,” Am J Pathol., 123:220-230 (1986).
Davies et al., “Abnormal left heart function after operation for atrial septal defect,” British Heart Journal, 32:747-753 (1970).
Della Lucia et al., “Design, fabrication and characterization of SAW pressure sensors for offshore oil and gas exploration,” Sensors and Actuators A: Physical, 222:322-328 (2015).
Drazner et al., “Prognostic Importance of Elevated Jugular Venous Pressure and a Third Heart Sound in Patients with Heart Failure,” N Engl J Med., 345(8):574-81 (2001).
Drazner et al., “Relationship between Right and Left-Sided Filling Pressures in 1000 Patients with Advanced Heart Failure,” Heart Lung Transplant, 18:1126-1132 (1999).
Eigler et al., “Cardiac Unloading with an Implantable Interatrial Shunt in Heart Failure: Serial Observations in an Ovine Model of Ischemic Cardiomyopathy,” Structural Heart, 1:40-48 (2017).
Eshaghian et al., “Relation of Loop Diuretic Dose to Mortality in Advanced Heart Failure,” Am J Cardiol., 97:1759-1764 (2006).
Feldman et al., “Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure with Preserved Ejection Fraction (Reduce LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure]), A Phase 2, Randomized, Sham-Controlled Trial,” Circulation, 137:364-375 (2018).
Ferrari et al., “Impact of pulmonary arterial hypertension (PAH) on the lives of patients and carers: results from an international survey,” Eur Respir J., 42:26312 (2013) (Abstract Only).
Flachskampf, et al., Influence of Orifice Geometry and Flow Rate on Effective Valve Area: An In Vitro Study, Journal of the American College of Cardiology, 15(5):1173-1180 (Apr. 1990).
Fonarow et al., “Characteristics, Treatments, and Outcomes of Patients With Preserved Systolic Function Hospitalized for Heart Failure,” J Am Coll Cardiol., 50(8):768-777 (2007).
Fonarow et al., “Risk Stratification for In-Hospital Mortality in Acutely Decompensated Heart Failure: Classification and Regression Tree Analysis,” JAMA, 293(5):572-580 (2005).
Fonarow, G., “The Treatment Targets in Acute Decompensated Heart Failure,” Rev Cardiovasc Med., 2:(2):S7-S12 (2001).
Galie et al., “2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension—The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS),” European Heart Journal, 37:67-119 (2016).
Galie et al., “Pulmonary arterial hypertension: from the kingdom of the near-dead to multiple clinical trial meta-analyses,” Eur Heart J., 31:2080-2086 (2010).
Galipeau et al., “Surface acoustic wave microsensors and applications,” Smart Materials and Structures, 6(6):658-667 (1997) (Abstract Only).
Geva et al., “Atrial septal defects,” Lancet, 383:1921-32 (2014).
Gheorghiade et al., “Acute Heart Failure Syndromes, Current State and Framework for Future Research,” Circulation, 112:3958-3968 (2005).
Gheorghiade et al., “Effects of Tolvaptan, a Vasopressin Antagonist, in Patients Hospitalized With Worsening Heart Failure A Randomized Controlled Trial,” JAMA., 291:1963-1971 (2004).
Go et al. “Heart Disease and Stroke Statistics—2014 Update—A Report From the American Heart Association,” Circulation, 128:1-267 (2014).
Guillevin et al., “Understanding the impact of pulmonary arterial hypertension on patients' and carers' lives,” Eur Respir Rev., 22:535-542 (2013).
Guyton et al., “Effect of Elevated Left Atrial Pressure and Decreased Plasma Protein Concentration on the Development of Pulmonary Edema,” Circulation Research, 7:643-657 (1959).
Hoeper et al., “Definitions and Diagnosis of Pulmonary Hypertension,” J Am Coll Cardiol., 62(5):D42-D50 (2013).
Hogg et al., “Heart Failure With Preserved Left Ventricular Systolic Function. Epidemiology, Clinical Characteristics, and Prognosis,” J Am Coll Cardiol., 43(3):317-327 (2004).
Howell et al., “Congestive heart failure and outpatient risk of venous thromboembolism: A retrospective, case-control study,” Journal of Clinical Epidemiology, 54:810-816 (2001).
Huang et al., “Remodeling of the chronic severely failing ischemic sheep heart after coronary microembolization: functional, energetic, structural, and cellular responses,” Am J Physiol Heart Circ Physiol., 286:H2141-H2150 (2004).
Humbert et al., “Pulmonary Arterial Hypertension in France—Results from a National Registry,” Am J Respir Crit Care Med., 173:1023-1030 (2006).
International Search Report & Written Opinion dated Feb. 9, 2022 in Int'l PCT Patent Appl. Serial No. PCT/IB2021/060473 (2010).
International Search Report & Written Opinion dated May 17, 2022 in Int'l PCT Patent Appl. Serial No. PCT/IB2022/051177 (2310).
International Search Report & Written Opinion dated Jul. 14, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2020/053832 (1210).
International Search Report & Written Opinion dated Jul. 20, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2020/054699 (1710).
International Search Report & Written Opinion dated Jul. 23, 2021 in Int'l PCT Patent Appl. Serial No. PCT/IB2021/053594 (1910).
International Search Report & Written Opinion dated Aug. 12, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2020/053118 (1010).
International Search Report & Written Opinion dated Sep. 21, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2020/054306 (1510).
Jessup et al. “2009Focused Update: ACC/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in Collaboration With the International Society for Heart and Lung Transplantation,” J. Am. Coll. Cardiol., 53:1343-1382 (2009).
Jiang, G., “Design challenges of implantable pressure monitoring system,” Frontiers in Neuroscience, 4(29):1-4 (2010).
Kane et al., “Integration of clinical and hemodynamic parameters in the prediction of long-term survival in patients with pulmonary arterial hypertension,” Chest, 139(6):1285-1293 (2011) (Abstract Only).
Kaye et al., “Effects of an Interatrial Shunt on Rest and Exercise Hemodynamics: Results of a Computer Simulation in Heart Failure,” Journal of Cardiac Failure, 20(3): 212-221 (2014).
Kaye et al., “One-Year Outcomes After Transcatheter Insertion of an Interatrial Shunt Device for the Management of Heart Failure With Preserved Ejection Fraction,” Circulation: Heart Failure, 9(12):e003662 (2016).
Kaye, et al., One-Year Outcomes After Transcatheter Insertion of an Interatrial Shunt Device for the Management of Heart Failure with Preserved Ejection Fraction, Circulation: Heart Failure, 9(12):e003662 (Dec. 2016).
Keogh et al., “Interventional and Surgical Modalities of Treatment in Pulmonary Hypertension,” J Am Coll Cardiol., 54:S67-77 (2009).
Kretschmar et al., “Shunt Reduction With a Fenestrated Amplatzer Device,” Catheterization and Cardiovascular Interventions, 76:564-571 (2010).
Kropelnicki et al., “CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor,” J. Micromech. Microeng., 23:085018 pp. 1-9 (2013).
Krumholz et al., “Patterns of Hospital Performance in Acute Myocardial Infarction and Heart Failure 30-Day Mortality and Readmission,” Circ Cardiovasc Qual Outcomes, 2:407-413 (2009).
Kulkarni et al., “Lutembacher's syndrome,” J Cardiovasc Did Res., 3(2):179-181 (2012).
Kurzyna et al., “Atrial Septostomy in Treatment of End-Stage Right Heart Failure in Patients With Pulmonary Hypertension,” Chest, 131:977-983 (2007).
Lammers et al., “Efficacy and Long-Term Patency of Fenerstrated Amplatzer Devices in Children,” Catheter Cardiovasc Interv., 70:578-584 (2007).
Lindenfeld et al. “Executive Summary: HFSA 2010 Comprehensive Heart Failure Practice Guideline,” J. Cardiac Failure, 16(6):475-539 (2010).
Luo, Yi, Selective and Regulated RF Heating of Stent Toward Endohyperthermia Treatment of In-Stent Restenosis, A Thesis Submitted in Partial Fulfillment of The Requirements For The Degree of Master of Applied Science in The Faculty of Graduate and Postdoctoral Studies (Electrical and Computer Engineering), The University of British Columbia, Vancouver, Dec. 2014.
MacDonald et al., “Emboli Enter Penetrating Arteries of Monkey Brain in Relation to Their Size,” Stroke, 26:1247-1251 (1995).
Maluli et al., “Atrial Septostomy: A Contemporary Review,” Clin. Cardiol., 38(6):395-400 (2015).
Maurer et al., “Rationale and Design of the Left Atrial Pressure Monitoring to Optimize Heart Failure Therapy Study (LAPTOP-HF),” Journal of Cardiac Failure., 21(6): 479-488 (2015).
McClean et al., “Noninvasive Calibration of Cardiac Pressure Transducers in Patients With Heart Failure: An Aid to Implantable Hemodynamic Monitoring and Therapeutic Guidance,” J Cardiac Failure, 12(7):568-576 (2006).
McLaughlin et al., “Management of Pulmonary Arterial Hypertension,” J Am Coll Cardiol., 65(18):1976-1997 (2015).
McLaughlin et al., “Survival in Primary Pulmonary Hypertension—The Impact of Epoprostenol Therapy.,” Circulation, 106:1477-1482 (2002).
Mu et al., “Dual mode acoustic wave sensor for precise pressure reading,” Applied Physics Letters, 105:113507-1-113507-5 (2014).
Nagaraju et al., “A 400μW Differential FBAR Sensor Interface IC with digital readout,” IEEE., pp. 218-221 (2015).
Noordegraaf et al., “The role of the right ventricle in pulmonary arterial hypertension,” Eur Respir Rev., 20(122):243-253 (2011).
O'Byrne et al., “The effect of atrial septostomy on the concentration of brain-type natriuretic peptide in patients with idiopathic pulmonary arterial hypertension,” Cardiology in the Young, 17(5):557-559 (2007) (Abstract Only).
Oktay et al., “The Emerging Epidemic of Heart Failure with Preserved Ejection Fraction,” Curr Heart Fail Rep., 10(4):1-17 (2013).
Owan et al., “Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction,” N Engl J Med., 355:251-259 (2006).
Paitazoglou et al., “Title: The AFR-Prelieve Trial: A prospective, non-randomized, pilot study to assess the Atrial Flow Regulator (AFR) in Heart Failure Patients with either preserved or reduced ejection fraction,” EuroIntervention, 28:2539-50 (2019).
Peters et al., “Self-fabricated fenestrated Amplatzer occluders for transcatheter closure of atrial septal defect in patients with left ventricular restriction: midterm results,” Clin Res Cardiol., 95:88-92 (2006).
Ponikowski et al., “2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC),” Eur Heart J., doi:10.1093/eurheartj/ehw128 (2016).
Potkay, J. A., “Long term, implantable blood pressure monitoring systems,” Biomed Microdevices, 10:379-392 (2008).
Pretorious et al., “An Implantable Left Atrial Pressure Sensor Lead Designed for Percutaneous Extraction Using Standard Techniques,” Pace, 00:1-8 (2013).
Rajeshkumar et al., “Atrial septostomy with a predefined diameter using a novel occlutech atrial flow regulator improves symptoms and cardiac index in patients with severe pulmonary arterial hypertension,” Catheter Cardiovasc Interv., 1-9 (2017).
Rich et al., “Atrial Septostomy as Palliative Therapy for Refractory Primary Pulmonary Hypertension,” Am J Cardiol., 51:1560-1561 (1983).
Ritzema et al., “Direct Left Atrial Pressure Monitoring in Ambulatory Heart Failure Patients—lnitial Experience With a New Permanent Implantable Device,” Circulation, 116:2952-2959 (2007).
Ritzema et al., “Physician-Directed Patient Self-Management of Left Atrial Pressure in Advanced Chronic Heart Failure,” Circulation, 121:1086-1095 (2010).
Roberts et al., “Integrated microscopy techniques for comprehensive pathology evaluation of an implantable left atrial pressure sensor,” J Histotechnology, 36(1):17-24 (2013).
Rodes-Cabau et al., “Interatrial Shunting for Heart Failure Early and Late Results From the First-in-Human Experience With the V-Wave System,” J Am Coll Cardiol Intv., 11:2300-2310.doi:10.1016/j.cin.2018.07.001 (2018).
Ross et al., “Interatrial Communication and Left Atrial Hypertension—A Cause of Continuous Murmur,” Circulation, 28:853-860 (1963).
Sandoval et al., “Effect of atrial septostomy on the survival of patients with severe pulmonary arterial hypertension,” Eur Respir J., 38:1343-1348 (2011).
Sandoval et al., “Graded Balloon Dilation Atrial Septostomy in Severe Primary Pulmonary Hypertension—A Therapeutic Alternative for Patients Nonresponsive to Vasodilator Treatment,” JACC, 32(2):297-304 (1998).
Schiff et al., “Decompensated heart failure: symptoms, patterns of onset, and contributing factors,” Am J. Med., 114(8):625-630 (2003) (Abstract Only).
Schneider et al., “Fate of a Modified Fenestration of Atrial Septal Occluder Device after Transcatheter Closure of Atrial Septal Defects in Elderly Patients,” J Interven Cardiol., 24:485-490 (2011).
Scholl et al., “Surface Acoustic Wave Devices for Sensor Applications,” Phys Status Solidi Appl Res., 185(1):47-58 (2001) (Abstract Only).
Setoguchi et al., “Repeated hospitalizations predict mortality in the community population with heart failure,” Am Heart J., 154:260-266 (2007).
Shah, et al., Atrial Shunt Device For Heart Failure With Preserved And Mildly Reduced Ejection Fraction (Reduce LAP-HF II): A Randomised, Multicentre, Blinded, Sham-Controlled Trial, The Lancet, 399(10330):1130-1140 (Mar. 2022).
Shah et al., “Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction—5-Year Outcomes,” J Am Coll Cardiol., https://doi.org/10.1016/j.jacc.2017.08.074 (2017).
Shah et al., “One-Year Safety and Clinical Outcomes of a Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure With Preserved Ejection Fraction in the Reduce Elevated Left Atrial Pressure in Patients With Heart Failure (Reduce LAP-HF I) Trial—A Randomized Clinical Trial,” JAMA Cardiol. doi:10.1001/jamacardio.2018.2936 (2018).
Sitbon et al., “Selexipag for the Treatment of Pulmonary Arterial Hypertension.,” N Engl J Med., 373(26):2522-2533 (2015).
Sitbon et al., “Epoprostenol and pulmonary arterial hypertension: 20 years of clinical experience,” Eur Respir Rev., 26:160055:1-14 (2017).
Steimle et al., “Sustained Hemodynamic Efficacy of Therapy Tailored to Reduce Filling Pressures in Survivors With Advanced Heart Failure,” Circulation, 96:1165-1172 (1997).
Stevenson et al., “The Limited Reliability of Physical Signs for Estimating Hemodynamics in Chronic Heart Failure,” JAMA, 261(6):884-888 (1989) (Abstract Only).
Su et al., “A film bulk acoustic resonator pressure sensor based on lateral field excitation,” International Journal of Distributed Sensor Networks, 14(11):1-8 (2018).
Thenappan et al., “Evolving Epidemiology of Pulmonary Arterial Hypertension,” Am J Resp Critical Care Med., 186:707-709 (2012).
Tomai et al., “Acute Left Ventricular Failure After Transcatheter Closure of a Secundum Atrial Septal Defect in a Patient With Coronary Artery Disease: A Critical Reappraisal,” Catheterization and Cardiovascular Interventions, 55:97-99 (2002).
Torbicki et al., “Atrial Septostomy,” The Right Heart, 305-316 (2014).
Troost et al., “A Modified Technique of Stent Fenestration of the Interatrial Septum Improves Patients With Pulmonary Hypertension,” Catheterization and Cardiovascular Interventions, 73:173179 (2009).
Troughton et al., “Direct Left Atrial Pressure Monitoring in Severe Heart Failure: Long-Term Sensor Performance,” J. of Cardiovasc. Trans. Res., 4:3-13 (2011).
Vank-Noordegraaf et al., “Right Heart Adaptation to Pulmonary Arterial Hypertension—Physiology and Pathobiology,” J Am Coll Cardiol., 62(25):D22-33 (2013).
Verel et al., “Comparison of left atrial pressure and wedge pulmonary capillary pressure—Pressure gradients between left atrium and left ventricle,” British Heart J., 32:99-102 (1970).
Viaene et al., “Pulmonary oedema after percutaneous ASD-closure,” Acta Cardiol., 65(2):257-260 (2010).
Wang et al., “A Low Temperature Drifting Acoustic Wave Pressure Sensor with an Integrated Vacuum Cavity for Absolute Pressure Sensing,” Sensors, 20(1788):1-13 (2020).
Wang et al., “Tire Pressure Monitoring System and Wireless Passive Surface Acoustic Wave Sensor,” Appl Mech Mater., 536(537):333-337 (2014).
Warnes et al., “ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease—A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease),” JACC, 52(23):e143-e263 (2008).
Webb et al., “Atrial Septal Defects in the Adult Recent Progress and Overview,” Circulation, 114:1645-1653 (2006).
Wiedemann, H.R., “Earliest description by Johann Friedrich Meckel, Senior (1750) of what is known today as Lutembacher syndrome (1916),” Am J Med Genet., 53(1):59-64 (1994) (Abstract Only).
Yantchev et al., “Thin Film Lamb Wave Resonators in Frequency Control and Sensing Applications: A Review,” Journal of Micromechanics and Microengineering, 23(4):043001 (2013).
Zhang et al., “Acute left ventricular failure after transcatheter closure of a secundum atrial septal defect in a patient with hypertrophic cardiomyopathy,” Chin Med J., 124(4):618-621 (2011).
Zhang et al., “Film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system,” J Micromech Microeng., 27(4):1-10 (2017).
Clowes, et al., Mechanisms of Arterial Graft Healing—Rapid Transmural Capillary Ingrowth Provides a Source of Intimal Endothelium and Smooth Muscle in Porous PTFE Prostheses, Am. J. Pathol., 123(2):220-230 (May 1986).
Greitz, et al., Pulsatile Brain Movement and Associated Hydrodynamics Studied by Magnetic Resonance Phase Imaging, Diagnostic Neuroradiology, 34(5): 370-380 (1992).
International Search Report & Written Opinion dated Feb. 3, 2023 in Int'l PCT Patent Appl. Serial No. PCT/IB2022/060621 (2210).
International Search Report & Written Opinion dated Mar. 29, 2023 in Int'l PCT Patent Appl. Serial No. PCT/IB2023/050743 (2410).
Related Publications (1)
Number Date Country
20200261705 A1 Aug 2020 US
Provisional Applications (2)
Number Date Country
61240667 Sep 2009 US
61175073 May 2009 US
Divisions (1)
Number Date Country
Parent 14227982 Mar 2014 US
Child 15650783 US
Continuations (3)
Number Date Country
Parent 15650783 Jul 2017 US
Child 16866377 US
Parent 13108880 May 2011 US
Child 14227982 US
Parent PCT/IL2010/000354 May 2010 WO
Child 13108880 US