This application is the United States national phase of International Application No. PCT/EP2020/061037 filed Apr. 21, 2020, and claims priority to German Patent Application No. 10 2019 114 635.6 filed May 31, 2019, the disclosures of which are hereby incorporated by reference in their entirety.
The invention relates to a device for reshaping the gable surfaces of packages with a slanted gable, comprising: a conveyor apparatus with cells fastened thereto for receiving the packages and for transporting the packages along a direction of transport, at least one gable folder for folding a fin seam in the gable region of the packages, and at least two ear folders for folding ears in the gable region of the packages, wherein both the gable folder and the ear folders are mounted in a movable manner relative to the conveyor apparatus and the packages transported therewith.
The invention further relates to a method for reshaping the gable surfaces of packages with a slanted gable, comprising the following steps: a) providing packages with slanted gables, b) folding the fin seam in the gable region of the packages by means of a gable folder, c) folding the ears in the gable region of the packages by means of two ear folders, and d) reshaping the fin seam by means of a forming tool.
Packages can be manufactured in different ways and from an extremely wide range of materials. A common option for manufacturing is to manufacture a blank having normal fold lines (also known as a “crease lines”) from the packaging material from which initially a package sleeve and ultimately the package itself can be created by means of folding and further steps. Among other things, this variant has the advantage that the blanks are very flat and can therefore be stacked in a manner which saves space. In this way, the blanks or package sleeves can be manufactured in a different location to that where the folding and filling of the package sleeves takes place. Composite materials are often used as the material, for example a composite made of several thin layers of paper, cardboard, plastic or metal. Such packages are widely used in the foodstuffs industry in particular.
Packages made from blanks are known, for example, from WO 2009/141389 A2 and DE 38 35 390 A1. These packages predominantly have gable surfaces which rise at an identical angle towards the middle on both sides and are therefore symmetrically shaped. The fin seam is therefore the highest point of the package, at least before it is folded.
When manufacturing packages of this type, there is a challenge of creating protruding regions such as seams or “ears” on the package. In the case of cuboid packages, this is possible in a very simple manner; a machine to do this is known for example from EP 0 061 663 A2.
Packages with asymmetrical—in other words slanted—gables can also be manufactured from blanks. Packages of this type are known for example from WO 2009/030910 A2 and EP 2 468 641 B1. In these packages, the creation of protruding regions is particularly difficult as it is often not the fin seam but rather the rear edge of the gable which forms the highest point of the package in slanted gable packages of this type. This leads to the fin seam being more difficult for tools to access. In particular, the fin seam cannot be applied by a fixed tool which the package passes in these types of packages. A device and a method for shaping the gable surfaces of such slanted gable packages is for example known from DE 10 2016 109 980 A1.
Although the device described in DE 10 2016 109 980 A1 and the method described therein provide good results, the shape of the gable may once again arch outwards after shaping. In particular, it is occasionally observed that the gable seam or fin seam is either not completely applied to the gable or moves out of the applied position. This can for example be caused by the internal pressure of the package or a consequence of the pressing of the ears onto the side surfaces of the package. An uneven gable surface is not only visually unacceptable, but also makes it difficult to subsequently apply further elements, for example dispensing elements with screw caps.
Against this background, the object underlying the invention is to maintain and/or correct the shape of the gable in packages with a slanted gable.
This object is achieved in a device according to the invention herein, by at least one forming tool for reshaping the fin seam in the gable region of the packages, wherein the forming tool is mounted in a movable manner relative to the conveyor apparatus and the packages transported therewith.
The device is a device for the reshaping gable surfaces of packages with a slanted gable, in particular with a continuously slanted gable. In particular, the fin seam is (re)shaped in the gable region of the package, wherein reshaping describes a shaping of previously shaped, in particular folded regions. In addition, the entire gable surface is (re)shaped, for example, in order to stabilise certain folding edges. The package is preferably a package for foodstuffs made of a composite material. The composite material can have a plurality of thin layers made of paper, cardboard, plastic or metal. The device initially comprises a conveyor apparatus with cells fastened thereto to receive the packages and to transport the packages along a direction of transport. Through a conveyor apparatus (for example a transport belt, a conveyor belt or a transport chain), high tensile forces can be transferred enabling a plurality of package sleeves to be transported at constant distances from one another. The cells are used to receive the package sleeves. The package sleeves can be held in the cells either by means of a positive-locking connection or by means of a frictional connection. The conveyor apparatus is preferably arranged in a horizontal plane. The device also comprises at least one gable folder for folding a fin seam in the gable region of the packages. The gable folder is preferably arranged centrally above the conveyor apparatus and the packages transported thereon. In addition to this, the device comprises at least two ear folders to fold ears in the gable region of the packages. The two ear folders are preferably arranged above the conveyor apparatus and the packages transported thereon on both sides adjacent to the gable folder. The invention provides for both the gable folder and the ear folders to be mounted in a movable manner relative to the conveyor apparatus and the packages transported therewith.
A device according to the invention is characterised by at least one forming tool for reshaping the fin seam in the gable region of the packages, wherein the forming tool is mounted in a movable manner relative to the conveyor apparatus and the packages transported therewith. In addition to reshaping the fin seam, the forming tool is also used to reshape the gable surface. A processing station with such a forming tool can also be referred to as a “post-pressing station” or “reshaping station”. In other words, the forming tool, just like the gable folder and the ear folders, should be mounted in a rotatable, pivotable, displaceable or otherwise movable manner. Through this design measure, it is possible that the relative movement between the forming tool and the package required for the reshaping is achieved by a movement of the forming tool and not by a movement of the package. As a result, the package does not need to be moved during the shaping or reshaping, so the conveyor apparatus can be still. The conveyor apparatus can therefore be operated in an intermittent, cyclical manner. Shaping a package that is not moving has the advantage that the packages can be filled particularly easily as the filling apparatus does not have to be moved as well. A further advantage is that as a result of the folding tools being mounted in a movable manner, packages can also be shaped in which the rear edge of the gable rather than the fin seam forms the highest point of the packages.
According to one configuration of the device, the forming tool for reshaping the fin seam has at least two-dimensional mobility. This can for example be achieved by the forming tool being mounted in a movable manner in a plane (in particular rotatably), in particular in a plane formed by the direction of transport and the vertical direction of the packages. The forming tool should therefore not merely be able to be displaced in a linear direction but should also have at least two-dimensional mobility. In the plane of movement, the forming tool can make translational movements, rotational movements or combinations of the two (overlapping of translational and rotational movements). The plane of movement of the forming tool is preferably formed by the direction of transport and the vertical direction of the packages.
A further design of the device is characterised by a traverse which is arranged above the cells and extends along a transverse direction running transversely to the direction of transport. The use of a traverse has the advantage that a traverse can extend over a plurality of parallel rows or strips of packages to be transported, so that when a corresponding number of tools (e.g. forming tools) are fastened to the traverse, a plurality of strips of packages can be processed simultaneously. A plurality of traverses can be provided, for example a first traverse for mounting the gable folders and a second traverse for mounting the (re)forming tools.
For this design, it is further proposed that the traverse is mounted in a movable manner relative to the conveyor apparatus and the packages transported therewith. A movable mounting of the traverse offers different advantages. One advantage is that the forming tools can be rigidly connected to the traverse and can therefore be mounted in an immovable manner relative to the traverse. This is because the forming tools remain movable, even with a rigid connection to the traverse, due to the mobility of the traverse relative to the conveyor apparatus and the packages transported therewith. A further advantage of a movable mounting of the traverse is that the traverse can be adjusted to different package sizes. In the case of a “format change”, it is therefore not necessary to replace the traverse; instead, the height of the traverse can be adjusted, for example. Preferably, the traverse is mounted in a movable manner, i.e. in the vertical direction, relative to the conveyor apparatus and the packages transported therewith.
With regard to the traverse, in a further configuration of the device, at least two, in particular at least four forming tools are provided for reshaping the fin seam in the gable region of the packages, wherein all forming tools are mounted next to one another on the traverse in a transverse direction. This embodiment allows a plurality of packages to be processed simultaneously. For example, a plurality of conveyor belts running parallel can be provided. Preferably, a forming tool is assigned to each series of packages to be processed.
According to a further configuration of the device, the gable folder and the forming tool and/or their traverses are coupled to one another by a mechanical connection and have a common drive. Synchronous movement of these tools can be achieved by mechanically coupling the tools (gable folder, forming tool). This makes it possible for all tools to use the same drive. Mechanical coupling can be carried out by the tools themselves or by the traverses on which the tools are mounted.
According to a further design of the device, the forming tool comprises a mould carrier and a support. A multi-part structure of the forming tool can be used to make it easier to adapt to differently shaped packages by replacing the supports whose profiles are adapted to different gable surfaces. The mould carrier is preferably made of metal and serves to support different supports. The replaceable support is preferably made of silicone, plastic, rubber or another elastic or expandable material or at least coated with it (e.g. metal core with coating).
In a further configuration of the device, it is provided that the cells have a distance to one another and that the forming tool has at least twice the cell distance to the gable folder and/or to the ear folders. Spacing the tools means that the reshaping by the forming tool does not immediately follow the folding of the gable and the ears, but takes place at the earliest two “cycles” afterwards. This has the advantage that the temperature of the package in the gable region has already cooled slightly and the ears are firmly applied. On the other hand, (re)shaping that takes place too early would have the disadvantage that the adhesion process of the ears has not yet been completed, which could result in the ears coming away from the packaging again. In addition, it is difficult to arrange the (re)forming tools directly behind the gable shaping station due to the installation space requirements.
The object described at the outset is also achieved by a method for reshaping the gable surfaces of packages with a slanted gable, comprising the following steps: a) providing packages with slanted gables, b) folding the fin seam in the gable region of the packages by means of a gable folder, c) folding the ears in the gable region of the packages by means of two ear folders, and d) reshaping the fin seam by means of a forming tool. The method is characterised in that in step d) the forming tool is moved relative to the conveyor apparatus and the packages transported therewith. The packages can in particular be provided by means of a conveyor apparatus in the form of a conveyor belt or a transport belt or a transport chain with cells fastened thereto to receive the packages. The conveyor belt or transport belt or transport chain is preferably arranged in a horizontal plane. As already described in connection with the device, the relative movement between the forming tools and the packages necessary for the shaping should be achieved by means of a movement of the forming tools and not by means of a movement of the package. As a result, the package does not have to be moved during shaping, enabling the conveyor apparatus to be operated in an intermittent, cyclical manner. Shaping while the package is not moving has the advantage that filling can also be carried out without the package moving, and the processing of packages is also possible in which it is not the fin seam, but rather the rear edge of the gable that forms the highest point of the packages. The method is preferably carried out with a device according to the invention.
In accordance with one configuration of the method, the packages are moved by means of a conveyor apparatus with cells fastened thereto. As already described in connection with the device, through a conveyor apparatus (for example a transport belt, a conveyor belt or a transport chain), high tensile forces can be transferred enabling a plurality of package sleeves to be transported at constant distances from one another. The cells are used to receive the package sleeves. The package sleeves can be held in the cells either by means of a positive-locking connection or by means of a frictional connection. The conveyor apparatus is preferably arranged in a horizontal plane.
In accordance with a further development of the method, the packages are moved intermittently. Intermittent, in other words cyclical, operation has the advantage that the packages are briefly still and more precise processing can be carried out during this phase.
A further advantage is that the tools used to process the packages do not have to be moved along with the packages.
A further configuration of the method provides for the packages to be still during step b), during step c) and during step d). Steps b) and c) are used to move the fin seam and apply the protruding ears, while step d) is used to reshape the gable surface, in particular the fin seam. These steps should be carried out in as precise and rapid a manner as possible without damaging or deforming the packages. These requirements are easier to meet when the packages are not moving than when the packages are constantly moving.
In accordance with a further development of the method, the gable surfaces of at least two, in particular of at least four packages, are reshaped simultaneously in step d). This further development means that a plurality of packages can be processed simultaneously. In order to do this, a plurality of conveyor belts running parallel can, for example, be provided. Preferably, a forming tool is assigned to each series of packages to be processed.
Finally, according to a further configuration of the method, step d) is carried out at a location which has at least twice the cell distance (A) from the location at which step b) and/or step c) is carried out. By maintaining a minimum distance between the processing locations, the reshaping by the forming tool does not take place too close behind the folding of the gable and of the ears, but only two “cycles” afterwards or even later. This has the advantage that the temperature of the package in the gable region has already cooled slightly and the ears are firmly applied. On the other hand, (re)shaping that takes place too early would have the disadvantage that the adhesion process of the ears has not yet been completed, which could result in the ears coming away from the packaging again. In addition, it is difficult to arrange the (re)forming tools directly behind the gable shaping station due to the installation space requirements.
The invention will be explained in more detail below with reference to a drawing which simply represents a preferred exemplary embodiment, in which:
The blank 1 shown in
While the base surface 4 has a length L4 which is constant over the entire width of the blank 1, the length of the gable surface 5 has different values. The gable surface 5 has a decreased length L5min adjoining the outer partial regions 3B of the sleeve surface 3. However, adjoining the inner partial region 3A of the sleeve surface 3 (in other words in the region of the main gable surface 9), the gable surface 5 has an increased length L5max. This design means that the inner partial region 3A has a lower height than the outer partial regions 3B. For the package to be manufactured, this results in an inclined, slanted gable region which slopes in a forward direction.
The rectangular surfaces 7B in the base region of the blank are rectangular. Both external rectangular surfaces 7G in the gable region of the blank are also rectangular. In contrast, the middle main gable surface 9 is not exactly rectangular; it is instead formed with a front edge 11 which is convexly bent at least in sections. In the upper corner regions of the main gable surface 9, two curved embossing lines 12 are discernible, which give the main gable surface 9 a design reminiscent of an ellipse. A circle-shaped tear line S is shown centrally inside the main gable surface 9. This is preferably a circular recess in the carrier material which is spanned with the remaining plastic and where applicable aluminium layers of the composite material forming what is known as a “over coated hole”. Its diameter can be adapted to the size of the cutting element of a dispensing element to be applied there or can be designed to be relatively small to enable a straw to penetrate it.
The base surfaces 4 have two corner points E4 and the gable surfaces 5 have two corner points E5. The corner points E4, E5 are corner points of the package to be manufactured from the blank 1. Each corner point E4 of a base surface 4 is assigned a corresponding corner point E5 of a gable surface 5 which is in each case the corner point E5 which is arranged above this corner point E4 when the packages is standing up. A fold line 2′ runs through two corresponding corner points E4, E5 in each case and is used to form a rear (vertically running) edge of the package to be manufactured. However, there are only two continuous fold lines 2′ in the blank 1 shown in
The device 24 for shaping the gables of the packages 16 has a gable folder 27 for folding the fin seam 17 in the gable region of the packages 16. The device 24 also has two ear folders 28A, 28B for folding the ears 15 in the gable region of the packages 16. Furthermore, the device 24 comprises a traverse T1 on which the gable folders 27 are mounted. The traverse T1 is movably mounted relative to the conveyor apparatus 19, which, in the case of the exemplary embodiment shown in
For this purpose, the device 25 for reshaping the gables of the packages 16 has a forming tool 29. Furthermore, the device 25 comprises a traverse T2 on which forming tools 29 are mounted. The traverse T2 is mounted in a movable manner relative to the conveyor apparatus 19, which, in the case of the exemplary embodiment shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2019 114 635.6 | May 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/061037 | 4/21/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/239325 | 12/3/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2514867 | Howard et al. | Jul 1950 | A |
5000375 | Farber et al. | Mar 1991 | A |
5852919 | Matsuda et al. | Dec 1998 | A |
6560950 | Johansson | May 2003 | B1 |
7017796 | Ishikawa | Mar 2006 | B2 |
9475595 | Paradisi et al. | Oct 2016 | B2 |
10926896 | Vetten et al. | Feb 2021 | B2 |
20010030106 | Yamamoto et al. | Oct 2001 | A1 |
20110113733 | Franic | May 2011 | A1 |
Number | Date | Country |
---|---|---|
201472732 | May 2010 | CN |
108883845 | Nov 2018 | CN |
7531389 | Jan 1976 | DE |
3835390 | Apr 1990 | DE |
102013015638 | Mar 2015 | DE |
102016109980 | Oct 2017 | DE |
0061663 | Oct 1982 | EP |
2468641 | Jun 2012 | EP |
3321192 | May 2018 | EP |
522143 | Jun 1940 | GB |
2019513636 | May 2019 | JP |
2009030910 | Mar 2009 | WO |
2009141389 | Nov 2009 | WO |
Entry |
---|
English language translation of CN 201474732 U, EP Office, espacenet.com, 10 pages. (Year: 2023). |
Number | Date | Country | |
---|---|---|---|
20220219855 A1 | Jul 2022 | US |