The present invention relates to protective techniques and methodologies for downhole probe external surfaces, and more specifically to the use of sacrificial sleeves as wear members.
It is known in the art of downhole probe design to employ covers or coatings to protect the external probe surfaces from undue wear, as abrasive liquid/solid mixtures are often transported in the pipeline or conduit that houses the probe. The covers may be manufactured separately and installed on the external surface of the probe, or they may be in the form of a spray-coating or similar application technique. The cover or sleeve material is commonly in the form of a plastic or metal material, the specific material selected on the basis of the application and the type, volume and velocity of fluid flow around the probe.
For example, U.S. Pat. No. 7,114,562 to Fisseler et al. teaches a measurement-while-drilling apparatus and method wherein the probe is provided with a releasably secured protective cover to protect the probe during drilling.
The use of a plastic sleeve is also known to have potential advantages in the field of downhole electromagnetic telemetry, as commonly-used gap subs employ some degree of electrical isolation for operation. As is taught in Patent Cooperation Treaty Application No. PCT/CA2013/050850 to Logan et al., an electrically insulative coating or sleeve can be used with a gap sub probe.
However, it is known that sleeves can be dislodged by normal fluid flow through a conduit, particularly in the context of drilling fluids or other high-velocity applications, as the fluids can flow beneath the leading or upstream edge of the sleeve and damage it and/or pull it away from the probe external surface, allowing abrasive fluids to damage the probe itself.
Some solutions have been proposed, such as using an adhesive to retain the sleeve against the external probe surfaces, but this makes it more difficult to remove the sleeve. In the situation where the sleeve is sacrificial and is intended to be replaced from time to time, having the sleeve glued in place renders such replacements difficult. Additional time and cost may be required to remove such adhered sleeves, with the potential for damaging the probe itself.
What is needed, therefore, is a means for providing a sacrificial sleeve for the external surface of a probe or other in-conduit device, while securing at least the upstream end of the sleeve to prevent or reduce the risk of fluid getting beneath the sleeve. Preferably, such means would not include the use of adhesives and would allow for easier replacement of worn sleeves.
The present invention therefore seeks to provide a retention device and method for securing at least an upstream or leading edge of a wear sleeve on the external surface of a device for positioning within a conduit. The present invention extends to conduits, drill collars and gap subs comprising such a device.
According to a first broad aspect of the present invention there is provided a device for positioning within an interior space of a conduit, the device comprising:
In some exemplary embodiments of the first aspect, the wear member forms a sleeve that covers at least a portion of the external surface. The wear member may be composed of a plastic material, with the plastic material preferably selected from the group consisting of thermoplastics, elastomeric polymers and rubber, or polyphenylene sulfide, polyethylene terephthalate or polyether ether ketone. Alternatively, the wear member may be composed of a metal material.
The device may comprise an electronics package or a probe.
The retention member may comprise a lip extending in a downstream direction, the lip configured to press a portion of the upstream end of the wear member against the external surface of the device. Such a lip is preferably circumferential and presses substantially the entire upstream end of the wear member against the external surface of the device.
The retention member may be composed of a metal material, and it may be a ring that secures the upstream end of the wear member against the external surface. In some embodiments, the device further comprises at least one downhole retention member for securing a downstream end of the wear member against the external surface, which downhole retention member may either be mounted on the external surface or of unitary construction with the external surface.
The wear member may be held in position by abutting against an upstream shoulder on the external surface, and the wear member may be further held in position by abutting against a downstream shoulder on the external surface.
The retention member may be composed of a metal selected from the group consisting of beryllium copper and stainless steel, although other metals may be appropriate, or even a ceramic material in certain contexts.
According to a second broad aspect of the present invention there is provided a retention member for securing at least one wear member on an external surface of a device, the device for positioning within an interior space of a conduit, the retention member comprising at least one projection extending adjacent the wear member to hold at least a portion of the wear member against the external surface.
In some exemplary embodiments of the second aspect, the projection comprises a lip extending in a downstream direction, the lip configured to press a portion of the upstream end of the wear member against the external surface of the device. The projection may comprise a circumferential lip extending around the device and generally parallel to the external surface, the circumferential lip configured to press a portion of the upstream end of the wear member against the external surface of the device. The device may comprise an electronics package and/or a probe. The retention member may be composed of a material selected from the group consisting of beryllium copper and stainless steel, although other metals may be appropriate, or even a ceramic material in certain contexts.
According to a third broad aspect of the present invention there is provided a wear assembly for use with a device, the device for positioning within an interior space of a conduit, the device having an external surface, the wear assembly comprising:
In some exemplary embodiments of the third aspect, the sleeve is composed of a plastic material, the plastic material deformable when fluid flowing through the conduit flows under the upstream end of the sleeve, the protuberance sized and configured to retain the upstream end of the sleeve against the external surface to reduce the flow of the fluid under the upstream end of the sleeve. The device may comprise an electronics package and/or a probe. The retention member may be composed of a material selected from the group consisting of beryllium copper and stainless steel, although other metals may be appropriate, or even a ceramic material in certain contexts. The conduit may be a drill collar comprising a gap sub assembly, with the sleeve composed of an electrically insulative material. The electrically insulative material is preferably selected from the group consisting of polyphenylene sulfide, polyethylene terephthalate and polyether ether ketone. The protuberance may comprise a circumferential lip adjacent the sleeve, and the device may comprise a shoulder for abutting engagement with the upstream end of the sleeve. In addition, the wear assembly may further comprise at least one downstream retention member for securing a downstream end of the sleeve against the external surface.
According to a fourth broad aspect of the present invention there is provided a gap sub for insertion in a drill string, the gap sub comprising:
In some exemplary embodiments of the fourth aspect, the retention member comprises at least one protuberance for bearing against the upstream end of the sleeve to press the upstream end against the external surface. The protuberance may comprise a circumferential lip. The electronics package may comprise a probe, and the sleeve may be composed of an electrically insulative material.
According to a fifth broad aspect of the present invention there is provided a wear assembly for use with a device, the device for positioning within an interior space of a conduit, the device having an external surface, the wear assembly comprising:
In some exemplary embodiments of the fifth aspect:
According to a sixth broad aspect of the present invention there is provided a method of reducing wear of an external surface of a device, the device for positioning within an interior space of a conduit, the method comprising the steps of:
a. providing at least one wear member sized and configured for slip-fit engagement with the external surface;
b installing the wear member on the external surface; and
c. engaging retention means to press an upstream end of the wear member against the external surface.
In some exemplary embodiments of the sixth aspect, the wear member is a sacrificial plastic sleeve, it may be composed of a metal material, or it may be composed of an electrically isolative material. The wear member may be sized to cover at least a portion of the external surface.
The retention means may comprise at least one retention member sized and configured for slip-fit engagement with the external surface, and the engaging of the retention means may comprise installing the retention member adjacent the upstream end of the wear member to press the upstream end against the external surface. The retention member may comprise at least one downwardly extending protuberance for pressing the upstream end of the wear member against the external surface. The downwardly extending protuberance preferably comprises a circumferential lip.
According to a seventh broad aspect of the present invention there is provided a method of securing at least one wear member against an external surface of a device, the device for insertion within a conduit, the method comprising the steps of:
a. providing the wear member, the wear member sized and configured for slip-fit engagement with the external surface;
b installing the wear member on the external surface; and
c. engaging retention means to press an upstream end of the wear member against the external surface.
In some exemplary embodiments of the seventh aspect the wear member is a sacrificial plastic sleeve. The wear member is preferably sized to cover at least a portion of the external surface. The wear member may be composed of a metal material or an electrically isolative material.
The retention means may comprise at least one retention member sized and configured for slip-fit engagement with the external surface, and the engaging of the retention means may comprise installing the retention member adjacent the upstream end of the wear member to press the upstream end against the external surface. The retention member preferably comprises at least one downwardly extending protuberance for pressing the upstream end of the wear member against the external surface, and the downwardly extending protuberance most preferably comprises a circumferential lip.
A detailed description of exemplary embodiments of the present invention is given in the following. It is to be understood, however, that the invention is not to be construed as being limited to these embodiments. The exemplary embodiments are directed to particular applications of the present invention, while it will be clear to those skilled in the art that the present invention has applicability beyond the exemplary embodiments set forth herein.
In the accompanying drawings, which illustrate exemplary embodiments of the present invention:
Exemplary embodiments of the present invention will now be described with reference to the accompanying drawings.
Throughout the following description specific details are set forth in order to provide a more thorough understanding to persons skilled in the art. However, well known elements may not have been shown or described in detail to avoid unnecessarily obscuring the disclosure. The following description of examples of the invention is not intended to be exhaustive or to limit the invention to the precise forms of any exemplary embodiment. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
Turning now to
Turning to
As can be seen in
In this exemplary embodiment the sleeves 26a, 26b are composed of polyphenylene sulfide. In the case of a gap sub application, such a material may provide suitable wear prevention functionality to the sleeves 26a, 26b while providing a desirable electrical isolation function. Those skilled in the art would be able to readily identify other materials that would be appropriate in a given context or application. The sleeves 26a, 26b as illustrated are each a one-piece cylindrical sleeve that extends substantially the length of the respective housing section 16a, 16b. It will be obvious to those skilled in the art that the sleeves 26a, 26b need not be a one-piece construction in a given application.
With the sleeves 26a, 26b thus in position,
Similarly, the connector metal sleeve 32 functions to retain the sleeves 26a, 26b. The connector metal sleeve 32 is configured for press-fit engagement over the connector 18 and the adjacent housing sections 16a, 16b. The connector metal sleeve 32 comprises two opposed lips 38, 40, the lip 38 extending in a downstream direction overlying the sleeve 26a, and the lip 40 extending in an upstream direction overlying the sleeve 26b. The lip 38 presses against the outer surface 48 of the upstream end 44 of the downstream sleeve 26a, such that the inner surface 52 of the sleeve 26a is pressed against the external surface 28a of the downstream housing section 16a, thus retaining the upstream end 44 of the sleeve 26a. Likewise, the lip 40 presses against the outer surface 50 of the downstream end 46 of the upstream sleeve 26b, such that the inner surface 54 of the sleeve 26b is pressed against the external surface 28b of the upstream housing section 16b, thus retaining the downstream end 46 of the sleeve 26b.
In the exemplary embodiment, the sleeves 26a, 26b are shown as secured by means of a press-fit engagement with the lips 36, 38, 40 and abutting against the shoulders 20, 22, 24. However, it is within the scope of the present invention to have other mechanisms for pressing the sleeves 26a, 26b against the probe housing sections 16a, 16b, such as for example a biasing mechanism. Those skilled in the art would be able to readily determine functionally equivalent mechanisms and techniques, all of which are intended to fall within the scope of the present invention as defined in the claims. Also, while the metal sleeves 30, 32 are shown in press-fit engagement, they could be installed using alternative connection means such as threadable engagement.
Turning now to
While the above description states that the device or probe may be within a gap sub or gap sub assembly, such description is simplified for the sake of illustration, and those skilled in the art will know that probes are commonly only partially within the gap sub itself.
As will be clear from the above, those skilled in the art would be readily able to determine obvious physical variants capable of providing the retention functionality, in which an end of the sleeve is pressed inwardly against the external surface of the probe, and all such variants and functional equivalents are intended to fall within the scope of the present invention.
The present invention also extends to methods of reducing wear to the external surface of an in-pipe device such as a probe, and of securing protective wear members to such devices.
In one exemplary embodiment of a method according to the present invention, the method is for reducing wear of an external surface of an in-pipe device. Reference will be made to the elements shown in
Similarly, the upstream sleeve 26b is manufactured to a suitable size and configuration for slip-fit engagement with the external surface 28b of the upstream housing section 16b. Before the housing section 16b is connected to the connector 18, the sleeve 26b is installed on the external surface 28b. The housing section 16b is then connected to the connector 18, such that the shoulder 24 comes into contact with the downstream end 46 of the sleeve 26b. As stated above, the upstream end of the upstream sleeve 26b would be secured in a manner similar to the way in which the downstream end 12 secures the downstream end 42 of the downstream sleeve 26a.
The metal sleeves 30, 32 are then installed over the exterior of the probe 10 by sliding them over one end of the probe 10 and into the desired position. Alternatively, the metal sleeve 30 could be installed on the downstream end 12 and the metal sleeve 32 installed on the connector 18 before assembly of the probe 10. In the case of the downstream metal sleeve 30, the desired position is shown in
Alternatively, with regard to the embodiment illustrated in
With the sleeves 26a, 26b thus positioned and retained against the external surfaces 28a, 28b, this exemplary embodiment may help to reduce wear of the external surfaces 28a, 28b of the probe 10.
In another exemplary embodiment of a method according to the present invention, the method is for securing a wear member against an external surface of a device, the device for insertion within a conduit. Reference will again be made to the elements shown in
The metal sleeves 30, 32 are then installed over the exterior of the probe 10 by sliding them over one end of the probe 10 and into the desired position. Alternatively, the metal sleeve 30 could be installed on the downstream end 12 and the metal sleeve 32 installed on the connector 18 before assembly of the probe 10. In the case of the downstream metal sleeve 30, the desired position is shown in
As will be clear to those of skill in the art, the present invention allows for a wear member application that can easily be replaced. When it is determined that the time has come for the sleeve(s) to be replaced, the device can be withdrawn or the section of conduit or drill pipe/collar can be taken out of operation, and the components can be disconnected in a conventional manner. The upstream and downstream ends of the probe can be pulled away, thus freeing the sleeves from the outwardly positioned lips. The sleeves can then be pulled away from the respective inwardly positioned shoulders and disengaged from the inwardly positioned lips. Replacement sleeves can then be installed and the various components reconnected as described above. The probe can then be returned to operation.
Unless the context clearly requires otherwise, throughout the description and the claims:
Words that indicate directions such as “vertical”, “transverse”, “horizontal”, “upward”, “downward”, “forward”, “backward”, “inward”, “outward”, “vertical”, “transverse”, “left”, “right”, “front”, “back”, “top”, “bottom”, “below”, “above”, “under”, and the like, used in this description and any accompanying claims (where present) depend on the specific orientation of the apparatus described and illustrated. The subject matter described herein may assume various alternative orientations. Accordingly, these directional terms are not strictly defined and should not be interpreted narrowly.
Where a component (e.g. a circuit, module, assembly, device, drill string component, drill rig system etc.) is referred to herein, unless otherwise indicated, reference to that component (including a reference to a “means”) should be interpreted as including as equivalents of that component any component which performs the function of the described component (i.e., that is functionally equivalent), including components which are not structurally equivalent to the disclosed structure which performs the function in the illustrated exemplary embodiments of the invention.
Specific examples of methods and apparatus have been described herein for purposes of illustration. These are only examples. The technology provided herein can be applied to contexts other than the exemplary contexts described above. Many alterations, modifications, additions, omissions and permutations are possible within the practice of this invention. This invention includes variations on described embodiments that would be apparent to the skilled person, including variations obtained by: replacing features, elements and/or acts with equivalent features, elements and/or acts; mixing and matching of features, elements and/or acts from different embodiments; combining features, elements and/or acts from embodiments as described herein with features, elements and/or acts of other technology; and/or omitting combining features, elements and/or acts from described embodiments.
The foregoing is considered as illustrative only of the principles of the invention. The scope of the claims should not be limited by the exemplary embodiments set forth in the foregoing, but should be given the broadest interpretation consistent with the specification as a whole.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2016/000047 | 2/23/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/134448 | 9/1/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3336054 | Blount | Aug 1967 | A |
5178214 | Bode | Jan 1993 | A |
6332499 | Kobylinski et al. | Dec 2001 | B1 |
6439324 | Ringgenberg et al. | Aug 2002 | B1 |
7114562 | Fisseler et al. | Oct 2006 | B2 |
Number | Date | Country |
---|---|---|
9603568 | Feb 1996 | WO |
2014071520 | May 2014 | WO |
Entry |
---|
ISA/CA, International Search Report and Written Opinion of PCT Patent Application No. PCT/CA2016/000047, dated May 24, 2016. |
WIPO, International Preliminary Report on Patentability of PCT Patent Application No. PCT/CA2016/000047, dated Aug. 29, 2017. |
Number | Date | Country | |
---|---|---|---|
20180030826 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
62120319 | Feb 2015 | US |