The present invention relates to a method for sealing a puncture wound in a blood vessel and a device for practicing said method.
In certain medical procedures, such as cardiac catheterization, dilatation and counterpulsation, a catheter or other device is inserted into an artery, most commonly by percutaneous methods, and then fed through the arterial tree to the site where needed, frequently, the region of the heart. The site usually selected for insertion is the groin, because the femoral artery in that region is relatively easy to locate.
These procedures are normally initiated by insertion of an angiographic needle, followed by passing a guide wire through that needle into the artery. The needle is then removed leaving the guide wire in place. Next, a sheath-dilator set is passed over the guide wire into the artery in order to enlarge the opening sufficiently to permit entry of the catheter or other device. The dilator is then removed, leaving the sheath or guide cannula in place. The catheter or other device can then be inserted through the cannula with full confidence that when it emerges from the distal end it will be within the lumen of the artery.
It should be understood that the subject invention is independent of the nature of the medical device being used to treat the patient. Accordingly, the term “catheter” will be used here in a very generic and broad way to include not only “catheters” in the strict sense, but any device that is inserted into a blood vessel of the body.
Similarly, the subject invention is independent of the blood vessel involved. While it is anticipated that the femoral artery will be the most commonly used blood vessel, other arteries as well as veins might just as easily be involved.
After a procedure, for example, counterpulsation, has been completed, the sheath must be removed and the wound closed. Often, this can be accomplished simply by the application of digital pressure, generally augmented by the use of a pressure dressing. Customarily, pressure must be applied for at least ½ hour, and frequently for much longer than that. While pressure dressings often suffice, it is not uncommon for additional devices, such as sandbags, to be needed. In addition, during this period the patient must be immobilized, lest movement interfere with the closing process. Because of the pressure required, the time during which it must be applied and the need for immobilization, the procedure is painful and uncomfortable. It also requires prolonged personal attention of a health care professional. Finally, wound closures accomplished in this manner are prone to reopen unexpectedly long after closure appears to have been completed. Patients are therefore often required to remain in the hospital for 24 hours or longer.
Because sealing can be such a problem, cardiologists tend to use the smallest calibre catheters when performing catheterization procedures. Larger caliber catheters, however, are far preferable. An improved sealing procedure whereby larger catheters can be used without increasing the sealing difficulties would greatly facilitate cardiac catheterization.
A series of related devices which were designed to address some of these problems is described in U.S. Pat. Nos. 4,744,364, 4,852,568 and 4,890,612. These three patents describe a mushroom or umbrella shaped device which is used to seal the artery from the inside. The head of the device is placed within the arterial lumen and means are provided to pull and hold the underside of the head against the inside wall of the lumen. It is believed, however, that sealing from the inside can be the source of its own problems, including the promotion of clot formation inside the vessel.
Another method for sealing a puncture wound is described in U.S. Pat. No. 4,929,246. The approach taken there is to insert a balloon-tipped catheter into the tissue wound, inflate the balloon against the hole in the artery and then use a laser to thermally weld the wound closed.
The present invention is believed to overcome most of the drawbacks of the traditional method, without creating any new difficulties. This is accomplished by using a plug, preferably a collagen plug or plug of some other resorbable material, to seal the artery along its outside wall.
In its most simplified form, the instant invention involves the placing of hemostatic material against the wall of a punctured artery. The hemostatic material covers the entire puncture site and a hemostatic seal is formed so as to stop bleeding from the puncture wound.
In one embodiment, the subject invention teaches the use of a plug, preferably of fibrous collagen material. The plug is inserted into the tissue wound and is held against the artery wall so as to overlap the puncture wound. Before plug insertion, the artery is preferably clamped by the use of external digital pressure, at a point slightly upstream of the wound site. After the plug has been inserted, the upstream clamping pressure is maintained for a very short period of time, and then gently removed. Slight pressure may be maintained on the plug to hold it against the artery wall until a good seal has been established.
In order to insert the plug in accordance with the procedure outlined above, a special device has been designed. It is comprised of two basic components, a sheath and a plug pusher or piston. The sheath is inserted through the tissue until its leading end is near to or abuts the outer wall of the artery. Thereafter, the plug is advanced through the sheath by use of the plug pusher until the plug abuts the artery wall and overlaps the arterial puncture on all sides. Finally, after a good seal has been established, the sheath and pusher are removed.
a, b, c, d and e show alternative forms of plug which are useful in practicing the instant invention.
In certain procedures, for example, intra-aortic balloon pumping (“IABP”), percutaneous transluminal coronary angioplasty (“PTCA”) and angiography, as best seen in
In accordance with one embodiment of the instant invention, wounds of this type are closed by inserting a hemostatic material, either in the form of a plug of loose fibers or compressed or partially compressed fibers, or in the form of a sponge, a liquid, or a paste-like material, into tissue wound or channel 9, and holding it against the outside of the artery wall over arterial puncture 13 for a short period of time until a good self-sustaining hemostatic seal is established. Although punctures of the sort made by percutaneous procedures will generally, after removal of all cannulas and catheters, be in the nature of slits, for ease of understanding, they are depicted in the drawings herein more as holes. The shape of the puncture, however, is not critical.
In order to insert the plug, to assure that it is properly located and to be able to hold it in place until a good seal is established, a special insertion apparatus has been designed. One embodiment (
Plug holder 29 is comprised of an elongated rear tubular portion 47 and a coupling 39 which has an internal thread 41. Plug holder 29 also has a channel 31 running throughout its entire length. Coupling thread 41 is designed to mate with collar thread 37 so that when collar 35 is screwed into coupling 39, channels 31 and 27, which preferably are of the same cross sectional size and configuration, are aligned.
Like the other two components, the plug pusher 33 is also comprised of two parts, an elongated piston 49, and a stop knob 43. Piston 49 has a cross sectional size and configuration so as to permit sliding passage into channels 31 and 27 with only minimal clearance. The length of piston 49 is such that when sheath assembly 23 and plug holder 29 are screwed tightly together, shoulder 51 of knob 43 will abut rear end 53 of plug holder 29 as front end 55 of piston 49 is aligned with front end 25 of sheath 45.
It should be noted that pusher 33 is provided with its own channel 19. This is to permit passage therethrough of a guide wire and hence to enable pusher 33 to serve dual functions, as a tissue dilator and as a plug pusher.
In accordance with the method of the instant invention, first the device 7 (e.g., the IAB) and the guide cannula 3 are removed, leaving the guide wire 15 in place (as seen in
Although it is believed preferable to employ a guide wire, it is possible to practice the invention without one. It is also possible to practice the instant invention by eliminating the dilator, but this too is not the preferred approach.
The artery is clamped at least in part to prevent tissue channel 9 from filling with a pool of blood. When loose fibrous collagen encounters a pool of blood it tends to disintegrate almost immediately. Obviously, once disintegrated it cannot function properly to seal the arterial puncture. Hence, when collagen in loose fibrous form is employed, clamping of the artery is important. It is less important, but still generally advantageous, if the loose fibrous material has been tamped down or otherwise compressed. As used herein, the term “loose” includes material which has been compressed or tamped down.
Collagen that is more densely packed does not disintegrate upon encountering blood nearly as quickly as loose fibrous collagen. Therefore, clamping of the artery is not nearly as important when the hemostatic material is in the form of a densely packed material, as it is when a loose fleece-type hemostatic material is employed. Thus, although clamping is believed to be desirable, it is not in all cases essential.
While the artery remains clamped, the proximal end of guide wire 15 is fed through channel 20 of tissue dilator 17. The physician can then slide the dilator down along the guide wire into tissue channel 9 until it reaches the wall of artery 11 (as depicted in
The size and shape of the tissue dilator are such as to ensure that the body thereof will not enter the artery. In terms of size, preferably a dilator is selected which is significantly larger than the original guide cannula 3. With respect to its shape, unlike more traditional dilators which often have long tapered forward ends, the tissue dilator 17 of the instant invention has a blunt forward end 21. Although end 21 may be slightly rounded or chamfered in order to facilitate smooth passage through tissue channel 9, it is preferable not to reduce it in size sufficiently to permit entry through the arterial puncture 13 into the lumen of the artery.
As noted above, during this phase of the procedure, there is no significant blood pressure in the region of artery 11 adjacent puncture 13. As a result, when end 21 of dilator 17 reaches artery 11, the wall of the artery tends to collapse further (as depicted in
According to the procedure of the instant invention, once increased resistance is encountered, axial pressure is maintained so as to hold end 21 of dilator 17 against artery 11. Next, a sheath 45 is passed over dilator 17 and advanced along the dilator again until increased resistance is encountered. As with the dilator, increased resistance indicates that front end 25 is against artery 11 (as depicted in
Because end 25 of sheath 45 is larger than arterial puncture 9, the sheath cannot enter the arterial puncture. Although the precise dimensions of dilator 17 and sheath 45 are not critical, it is believed desirable that the sheath 45 be 30% to 50% or more larger than the previously removed guide cannula 3. In clinical trials done to date, when the guide cannula was 9 Fr., a 13 Fr. tissue dilator and a 14 Fr. sheath were used. It should be understood, however, that cannula which are oversized by as little as 10% may also be suitable.
Once the guide or procedure cannula has been removed, tissue channel 9 tends to collapse. Also, once the procedure cannula and the procedure catheter have been removed, arterial puncture 13 has a tendency to close up. It may therefore be possible or even preferable to use a sheath that is the same size as or even smaller than the previously removed procedure cannula.
With the front end 25 of sheath 45 held snugly against the wall of artery 11, plug 57 is slid down through lumen 27 of sheath 45 (as shown in
Once resistance is felt, the physician slowly withdraws the sheath while continuing to maintain pressure against the piston so that plug 57 remains pressed against artery 11. When shoulder 51 of knob 43 abuts rear end 53 of holder 29, the physician knows that plug 57 has been pushed entirely out of lumen 27 (as shown in
While it is believed that the preferable procedure is to permit both piston and sheath to remain in place until a self-sustaining hemostatic seal has been achieved, this is not absolutely necessary. Some physicians may prefer, once the pressure of the plug against the artery wall has produced hemostasis, to withdraw the sheath so that the tissue wound may begin to close down, while maintaining pressure on the plug by use of the piston alone. Alternatively, the piston might be withdrawn and reliance placed upon the outer rim of the sheath to hold the plug against the artery wall and assure hemostasis in that manner.
In addition, removal of the piston without removal of the sheath permits insertion of a second plug. This might be necessary where the first plug, perhaps of a loose fibrous material, disintegrates upon encountering a pool of blood. A second plug, this one of more densely packed material having greater physical integrity and less of a tendency toward immediate disintegration, is inserted in the sheath and the piston reinserted behind it.
An apparatus similar to that of
Another, somewhat different embodiment of an apparatus for inserting a plug in accordance with the instant invention is depicted in
In one method of using the apparatus of
With end 26 held snugly against artery 11, dilator 17 is withdrawn, but only far enough so as to uncover channel 67 of plug leg 63. Plug pusher 69 is then moved down through channel 67 until plug 57 has entered common leg 61 and pusher 69 is then withdrawn so that it will not interfere with dilator 17 as it passes from leg 65 into leg 61.
Once plug 57 has entered leg 61 and pusher 69 has been retracted, dilator 17 is again advanced into leg 61. When resistance is encountered, the physician knows that plug 57 has reached the artery. While maintaining axial pressure on dilator 17, apparatus 59 is slowly withdrawn until proximal end 73 of leg 65 reaches indicator mark 71. The distance between indicator 71 and dilator end 21 is the same as the distance between proximal end 73 and forward end 26. Therefore, the physician knows that when mark 71 reaches end 73, all of plug 57 has exited from end 26 of leg 61. As was described in connection with the embodiment of
The embodiment of
Although it is believed that the preferred method for using the embodiment of
While plug 57 may be made of any resorbable material, collagen is believed to be most suitable. The physical form of the plug may vary widely, with the one selected by the physician being dependent upon the circumstances of the case. For example, where the puncture wound is relatively small and the patient has not been on high doses of anticoagulant and heparin, a plug, like that depicted in
A third embodiment of a suitable plug is depicted in
Yet another type of plug is shown in
It is believed that when a collagen sponge or a densely packed collagen material are employed, very little if any pressure need be applied after the initial seating of the plug. This is believed to be true because the physical characteristics of the sponge-like or densely packed plug and the expansion thereof, as well as its interaction with body fluids in the tissue channel, will be adequate to hold the front end against the artery wall.
It is also believed that, initially, when the plug is pressed against the artery, hemostasis is achieved by mechanical means, i.e., by application of mechanical pressure all around the arterial puncture. Shortly thereafter, however, the hemostatic material begins to bind to the arterial tissue and biochemical hemostasis takes over. Once biochemical hemostasis becomes sufficiently strong to withstand the normal blood pressure within the artery, and therefore self-sustaining, external mechanical pressure can be removed.
e shows yet another form of plug, similar to the plug of
As noted earlier, the sheath is substantially larger in cross section than is arterial puncture 13. Consequently, when plug 57, which fills the entire cross section of the sheath channel, reaches the artery, even in its compressed state it overlaps puncture 13 on all sides. Obviously, then, when it exits the sheath and is permitted to expand, a full bandage-like covering over puncture 13 is assured.
In practice it has been found that when using a collagen plug in accordance with the subject invention, a good hemostatic seal can be achieved in five minutes or less. With larger wounds, for example, ones left after removal of 14 Fr. or larger catheters, or after the use of anticoagulants and heparin, sealing may take somewhat longer.
After the balloon 87 exits from the sheath 23 and is pressed against the wall of the artery 11, an inflation fluid is injected via the needle 18a to fill and expand the balloon, as shown in
As noted above, when the procedure cannula is removed, both the arterial puncture 13 and the tissue channel 9 tend to close up somewhat. The method depicted in
First, digital pressure (see arrows 105 in
Then, as shown in
One method for assuring that the sheath is inserted to the proper depth is as follows. Once the artery 107 has been punctured and the guide wire is in place, a needle clamp 108, as is depicted in
Next, as is best seen in
As can be seen in
The next step is to withdraw dilator 17 (as is indicated by arrow A on
Plunger 95 is then withdrawn, leaving sheath 45 to maintain pressure on plug 93. Sheath 45 can then be used to hold plug 93 in place over puncture 13 until self-sustaining hemostasis has been achieved. Alternatively, as depicted in
When the front end of plug 101 reaches the end of sheath 45, it abuts plug 93. Plunger 103 is then used to force about 1 cm. of plug 101 out of the sheath (107 on
It is believed to be most desirable that the front plug 93 be of loosely packed material, while rear plug 101 be of a more densely packed material. Also, as presently contemplated, in its natural, unrestrained state, plug 101 has a cross section larger than that of cartridge 99. Therefore, in order to get it into the cartridge, it must be compressed. It then stays in this compressed state while in cartridge 99 as well as while passing through sheath 45. However, after exiting from sheath 45, it naturally expands and presses against the walls of channel 9. The interaction then between plug 101 and the walls of channel 9 tends to hold the plug in place. As a result, very little if any external pressure is required.
Accordingly, after only a very short period of time, perhaps almost immediately, the plunger can be removed, leaving only the two plugs in the wound (see
Although it is not necessary, in the practice of the method of the instant invention, for plugs 93 and 101 to fill all of channel 9 from artery to skin line, it is believed preferable that they do so. Alternatively, plug 101 can be made longer than necessary to reach the skin line, in which case it could then be cut off flush with the skin. As yet another alternative, a single plug, the size of plugs 93 and 101 combined, could be used instead of two separate plugs.
While it is believed most advantageous to remove the procedure cannula and then insert a new sheath, it would be within the scope of the instant invention to use the procedure cannula as the delivery sheath through which the hemostatic material is passed.
It should also be understood that the hemostatic material employed may take many forms. For example, it may be in the form of a liquid or it may have a more viscous paste-like consistency, and in both the cases of the hemostatic material being in the form of a liquid or having a viscous paste-like consistency, it can specifically include such hemostatic materials as fibrin glue and thrombin. When using such liquid or paste-like materials, the delivery sheath, the hemostatic charge holder and the piston might most advantageously be combined together in a single syringe-like device.
While the method and apparatus of this invention have been described in connection with several specific embodiments, it should be understood that numerous modifications could be made by persons of skill in this art without departing from the scope of this invention. Accordingly, the above description is intended to be merely illustrative and not limiting. The scope of the invention claimed should be understood as including all those alternatives and modifications which the above specification would readily suggest or which would readily occur or be apparent to one skilled in the art upon reading the above.
Number | Date | Country | Kind |
---|---|---|---|
90 118 186.7 | Sep 1990 | EP | regional |
This is a continuation of application Ser. No. 11/495,802 filed on Jul. 28, 2006, which is a continuation of application Ser. No. 11/296,170 filed on Dec. 7, 2005, which is a continuation of application Ser. No. 08/399,535 filed on Mar. 7, 1995, which is a continuation of application Ser. No. 08/318,380 filed on Oct. 5, 1994, now U.S. Pat. No. 5,830,130, which is a divisional of application Ser. No. 07/746,339 filed on Aug. 16, 1991, now U.S. Pat. No. 5,391,183, which is a continuation-in-part of application Ser. No. 07/634,478 filed on Dec. 27, 1990, now abandoned. The disclosure of each of these applications is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 07746339 | Aug 1991 | US |
Child | 08318380 | Oct 1994 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11495802 | Jul 2006 | US |
Child | 11725433 | Mar 2007 | US |
Parent | 11296170 | Dec 2005 | US |
Child | 11495802 | Jul 2006 | US |
Parent | 08399535 | Mar 1995 | US |
Child | 11296170 | Dec 2005 | US |
Parent | 08318380 | Oct 1994 | US |
Child | 08399535 | Mar 1995 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 07634478 | Dec 1990 | US |
Child | 07746339 | Aug 1991 | US |