This application claims priority from European Patent Application No. 11169051.7 filed Jun. 8, 2011, the entire disclosure of which is incorporated herein by reference.
The present invention concerns a device and method for securing one watch element relative to another with adjustable mutual angular orientation, and more specifically, a securing device and method for a watch case comprising a screw-in back cover, the alignment of which can be adjusted relative to a vertical 12 o'clock-6 o'clock axis.
It frequently happens that, when, for example, a back cover of a watch case is screwed onto the middle part thereof, once the back cover is completely screwed in, it becomes noticeable that the decorative markings or patterns, which may for example, have been stamped or etched on the surface of the back cover located on the side of the watch wearer's wrist, are not properly aligned relative to the vertical 12 o'clock-6 o'clock axis, which is of course detrimental to the aesthetic appearance of the watch. Although this defect in appearance may be tolerated for inexpensive watches, it is a very inconvenient drawback for more expensive watches.
To overcome this drawback, usual solutions consist in matching a back cover with a determined watch case during machining, to ensure that once the back cover is completely screwed in it is perfectly aligned with the 12 o'clock-6 o'clock axis of the watch. This solution is, however, unsatisfactory since problems are likely to occur if the original back cover of the watch is lost or damaged and has to be replaced by another back cover, since one cannot be certain that the back cover is properly aligned with the vertical 12 o'clock-6 o'clock axis once it is screwed on to the middle part.
EP Patent No. 1890203 by this Applicant proposes to overcome this drawback by inserting an intermediate ring between the back cover and the middle part, wherein the threads of said ring, respectively cooperating with the back cover and the middle part, are arranged in opposite directions. Thus, when the back cover is completely screwed onto the middle part, it is possible to continue to screw in the back cover, as the intermediate element which connects the back cover is then unscrewed and moves vertically along the middle part. This system certainly allows the alignment of the back cover to be simply and efficiently adjusted relative to the 12 o'clock-6 o'clock axis of the watch, but it has the drawback of not allowing a precise definition of the tightening torque of the back cover on the case. Indeed, once the back cover is screwed as far as possible onto the middle part, it is only the friction forces between the back cover and the intermediate element which prevent the back cover from rotating relative to the middle part.
CH Patent No. 699777 proposes an alternative solution for assembling an adjustable back cover on the middle part of a watch using an adjusting ring acting as an axial stop member to define the angular position of the back cover. The ring is screwed to the middle part or to the back cover with a pre-set tightening torque, whereas the back cover is screwed to the middle part using threads arranged in the opposite direction, so that the ring cannot be driven in rotation when the back cover abuts on the middle part. Thus, unlike the solution described above, the back cover is screwed directly onto a part which is rigidly secured to the watch case. The drawback of this solution is that it requires proceeding by successive estimations to determine the axial position of the ring which matches the desired angular position of the back cover. Moreover, the axial adjustment of the ring degrades the hermetic properties of the back cover since the contact surfaces of the back cover and the middle part are no longer in contact with each other in the assembled position.
Consequently, it is an object of the present invention to provide a solution for securing a back cover to the middle part of a watch, and more generally one watch element to another with adjustable mutual angular orientation, which is free of known limitations.
These objects are achieved via a securing device according to claim 1, characterized in that it includes an intermediate element, provided with a threaded portion arranged to cooperate with the threaded portion of a first element to be assembled, and another threaded portion arranged to cooperate with the threaded portion of a second element to be assembled, wherein the thread pitches of the threaded portions of the intermediate element are different.
These objects are also achieved via a securing method according to claim 9, wherein an intermediate element is first of all fully screwed onto a first element to be assembled by means of a first threaded portion, then the first element—intermediate element assembly is screwed onto the second element by means of a second threaded portion so that the first element abuts on the second element, the method being characterized in that it includes the following steps:
One advantage of the proposed solution is that the angular correction can be easily performed according to the difference between the thread pitches used, which is predetermined. The angular adjustment of the intermediate element can thus be carried out in a single operation, instead of by successive estimations.
Another advantage of the proposed solution is that it overcomes deficiencies in terms of tightening torque between the elements to be assembled, without causing any axial movement of the first element relative to the second element in the assembled position, which is not the case when an intermediate element is used as an adjustment stop member. This absence of axial movement consequently does not damage the hermetic properties of the final assembly.
Other features and advantages will appear more clearly in the detailed description of various preferred embodiments and the annexed drawings, in which:
The top of
An O-ring joint 21 is inserted in a conventional manner in an annular groove at the base of middle part 2, along a bottom contact surface 24 thereof, which will come into contact with the top contact surface 14 of the back cover in the assembled position. The purpose of O-ring joint 21 is to guarantee the sealing of the proposed assembly between back cover 1 and middle part 2, when surfaces 14 and 24 are in contact with each other once back cover 1 is in the assembled position on middle part 2.
A first threaded portion 11 is machined on back cover 1 and a second thread 22 is machined on middle part 2. The present invention proceeds from the general idea of using an intermediate element 3 provided with internal and/or external threads to be simultaneously screwed to the back cover and to the middle part, so that back cover 1 and middle part 2 are no longer assembled directly to each other. According to the illustrated preferred embodiment, the intermediate element 3 is a ring provided with a third threaded portion 31 on the inner periphery thereof, which cooperates with the first threaded portion 11 of back cover 1, and a fourth threaded portion 32 on the inner periphery thereof, which consists here of an inner thread of middle part 2 according to the illustrated preferred variant. According to this arrangement, the second threaded portion 22 is arranged on an inner wall of middle part 2, so that the diameter of the ring is reduced. According to a variant it would, however, also be possible to arrange the second threaded portion 22 of the middle part on the external wall so that this threaded portion cooperates with the internal thread of a ring 3, whose external thread would cooperate with a threaded portion 11 of back cover 1. Although other shapes could be envisaged for intermediate element 3, a ring is preferred since it is simple to machine and inexpensive due to its very reduced volume. The ring according to the invention preferably has internal and external threads over the entire height thereof to simplify the manufacturing process and it includes substantially flat top and bottom surfaces (respectively referenced 33 and 34).
The ring of a preferred embodiment of intermediate element 3 illustrated in
The relative axial and angular positioning of back cover 1, middle part 2 and ring-shaped intermediate element 3 is illustrated respectively in
The invention allows an angular correction step to be performed simply and quickly on the back cover, owing to the fact that the third and fourth thread pitches 31, 32 are different. To achieve this, the ring (intermediate element 3) simply has to be unscrewed from back cover 1 by an angle which depends on the difference between the thread pitches 310 and 320 of the ring (intermediate element 3), and the ring and back cover 1 then have to be screwed back onto middle part 2 to obtain the desired orientation of back cover 1.
Step C in the diagram of
Once the angle of angular orientation 120 has been determined, in a subsequent step D, the angle of adjustment 130 by which intermediate element 3 has to be unscrewed relative to back cover 1 must be inferred according to the thread pitches 310, 320 used for the third and fourth threaded portions 31, 32. According to the illustrated preferred embodiment, the internal diameter of the ring (intermediate element 3) is, for example, 30 millimeters, whereas the pitch 310 of the first and second threads 11, 31 is 0.5 and the pitch 320 of the third and fourth threads 22, 32 is 0.4, i.e. one complete revolution of 360 degrees corresponds respectively to axial movements of the ring of 0.5 and 0.4 millimeters.
In
Once the angle of adjustment 130 of intermediate element 3 relative to back cover 1 has been determined in step D, in the following step E, intermediate element 3 can be unscrewed from back cover 1 over a corresponding angular travel, which may be made easier by angular reference marks 332 or the notches when the latter are used as angular reference marks. Once intermediate element 3 is in the right position, it must be ensured that the ring will stay locked relative to back cover 1 when the back cover 1—intermediate element 3 assembly is screwed back onto middle part 2. A locking step is not necessary when there are sufficient friction forces between the first and second threaded portions 11, 31, i.e. when said forces are considerably greater than the friction forces acting between the third and fourth threaded portions 22, 32. However, an additional step E′ of locking intermediate element 3 relative to back cover 1 will preferably be performed before the subsequent screwing step F, which is carried out by means of the second threaded portion 22, cooperating with the fourth threaded portion 32 arranged on intermediate element 3, so that back cover 1 abuts on middle part 2 again, i.e. the top contact surface 14 of the back cover comes into contact with the bottom contact surface 24 of middle part 2. Locking step E′ can be achieved, for example, by electric boring, laser welding, bonding, or by material upsetting.
Consequently, it can be observed that the device according to the invention allows simple, quick correction of the orientation of back cover 1 relative to the middle part of a watch 2, simply by using an unscrewing-screwing operation, This device can easily be replicated to the mutual angular orientation of any constituent elements of a watch which require precise positioning relative to a given axis.
Number | Date | Country | Kind |
---|---|---|---|
11169051 | Jun 2011 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3614865 | Widmer et al. | Oct 1971 | A |
8092077 | Hobor | Jan 2012 | B2 |
20020067665 | Ecoffet | Jun 2002 | A1 |
20020167866 | Oomori et al. | Nov 2002 | A1 |
20030227829 | Megner et al. | Dec 2003 | A1 |
20050007891 | Hiranuma et al. | Jan 2005 | A1 |
20080025158 | Hiranuma et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
699 777 | Apr 2010 | CH |
889 427 | Sep 1953 | DE |
1 727 005 | Nov 2006 | EP |
1 890 203 | Feb 2008 | EP |
Entry |
---|
European Search Report issued on Nov. 28, 2011 in corresponding European Application No. 11 16 9051 filed on Jun. 8, 2011 (with an English Translation). |
Number | Date | Country | |
---|---|---|---|
20120311862 A1 | Dec 2012 | US |