1. Field
The present invention relates to a target that is enabled to have its utility controlled using RF communication. In a particular example, the invention uses radio frequency (RF) devices and processes to set the level of utility available for advanced integrated circuit devices such as processors, MCM's (multi-chip module), or SIPs (system in a package) and the subsystems and finished goods into which they are incorporated
2. Description of Related Art
Management of the supply chain is a concern for most manufactures, shippers, and retailers. In order to facilitate efficient check-out of products, manufacturers have place bar code labels on many consumer products. In a similar way, manufacturers and shippers have also labeled pallets of products with bar-code labels to increase shipping efficiency. However, bar code readers require a line-of-site reading, so can not, for example, account for products in the middle of a pallet, or for products buried in a consumer's cart. An RFID (radio frequency identification) system overcomes this problem by labeling a product with an RFID tag. The RFID tag is attached to a product, and when interrogated by an associated RF reader, responds with its identification number. In this way, products can be identified and tracked without the need for line of sight scanning. Unfortunately, RFID has been slow to be adopted, due to the relatively high cost of RFID tags themselves, and to limitations in reading the RFID tags. For example, although RFID tags do not need line-of-sight scanning, the RFID tags must be in a position to receive and transmit low-level RF signals. This not only limits where on a product package an RFID label may be placed, but also causes errors when a product is placed in a position where the label is shielded from the RF reader.
Theft is also serious and growing problem in the distribution of products. In one example, electronic devices continue to shrink in size, while increasing their utility. As these electronic devices become smaller and more capable, they also become easier and more attractive to steal. Devices, such as digital cameras, DVD players, MP3 players, and game devices are popular targets of theft, not only in the retail store by consumers, but also by others in the distribution chain. For example, retail store employees, shippers, warehousers, and even employees of the manufacturer often steal products, and even boxes of products, for their own use or to sell. Other types of products are also subject to theft, such as DVDs, CDs, game discs, game cartridges, and other types of media. These types of products are, also in high demand, and being relatively small and valuable, are easy and attractive to steal.
In another example, microprocessors and other advanced integrated circuit devices are easy targets for theft. These advanced integrated circuit devices are small, expensive, and are easily sold in a “black” market, or readily incorporated into a thief's system or product. These advanced integrated circuit devices may consist of a single integrated circuit in a package, such as for some microprocessors, microcontrollers, or memory devices, or may have multiple integrated circuits in a single package. In this later construction, often referred to as a multi-chip module (MCM), several integrated circuits cooperate to provide advanced functionality. For example, an MCM may have a processor, modulators, amplifiers, and support circuitry for a complete wireless radio system. This radio MCM may fit in a single package that connects into a target device through pins or a ball-grid array. The advanced integrated circuit may also be constructed for surface mount, and therefore may be provided in a reel of parts for automatic attachment to a target device. Another type of advanced integrated circuit device is the System in a Package, or SIP. An SIP is similar to an MCM in that it has multiple integrated circuit devices in a single package, but the level of integration among the integrated circuits may be higher. As the processors, MCM's and SIP's advance, they have become smaller, making them even easier targets for theft.
It is particularly difficult to implement an anti-theft circuit or scheme with these advanced integrated circuit devices.
From the facility where they are manufactured to the retail point-of-sale (POS) where they are sold many high-value consumer products are vulnerable to theft. Various security techniques are used to minimize the losses (video cameras, security staff, electronic tagging, storing high-value items behind locked cabinets etc.). Despite these efforts theft of high-value targets such as DVD's, CD's and video games; portable video game players, DVD players, digital cameras, computers, printers, televisions and the like cost manufacturers and retailers billions of dollars per year.
Such rampant theft increase the cost of manufacturing, shipping, and selling of products. Each entity in the distribution chain is at risk for theft, and must take steps to reduce or control the level of theft. This cost is ultimately borne by the legitimate purchaser, which places an unfair “theft tax” on purchased products. Also, since may products are so easily stolen from a retail environment, retailers must take extraordinary steps to secure products. For example, DVDs, CDs, and small electronic devices are often packaged in oversized holders to make them more difficult to hide. These holders, however, also interfere with a consumers ability to interact with the product, ultimately making the product less attractive to the consumer. In another example, retail stores may place their most valuable and easily stolen products in locked cases. In this way, retail consumers are completely distanced from these products, which reduces theft, but also makes the products difficult to purchase. The consumer cannot read the full labeling on these locked-up products, can not physically interact with them, and must get the attention of a retail clerk, who might have a key, in order to get to the product. In another attempted solution, retail stores put security tags on products, which are intended to be disabled at the check stand upon purchase. If a consumer leaves the store with a live tag, then an alarm sounds. A guard or clerk is expected to stop the consumer and determine if the consumer has shoplifted a product. This process may be dangerous for the guard or clerk, and, since many of the alarms are false, causes undo stress for law-abiding consumers.
None of these attempts to stop retail theft has worked, and all make the retail experience less attractive to the consumer. In this way, the retailer is in the untenable position of having to accommodate and accept a certain (and sometimes significant) level of theft in order to maintain an attractive and desirable retail environment for paying customers. Further, neither the oversized holders, the locked cases, nor the guards address the significant level of theft that occurs between the manufacturer's dock to the retail shelf. Accordingly, the entire distribution chain has resigned itself to an “acceptable” level of theft, and passes the cost of theft on to the legitimate consumer.
The distribution of products faces other challenges. For example, consumers want to choose products that have a particular set of functions or utility, and find it desirable to purchase products matched to their specific needs. Accordingly, manufacturers often manufacture a product in several difference models, with each model having a different set of features. Although this is desirable from the consumer's standpoint, it complicates the manufacturing, shipping, inventorying, shelving, and retailing processes. This problem exists in the configuration of electronic products, computers, gaming systems, DVDs, CDs, game cartridges, for example. For a specific example, a DVD movie disc may be available in a family version, a theater version, and an “uncut” version. Each has a different age restriction, and will appeal to different and significant markets. Accordingly, three different versions must be manufacture, shipped, inventoried, shelved, and managed. A similar problem exists with feature sets for games, computers, and other products.
Challenges also exist for non-commercial distribution of goods. For example, the military stores, transports, and maintains weapons and gear that is subject to theft and misuse. These weapons and gear must be available for rapid deployment and use, but yet must be sufficiently controlled so that they do not fall into enemy hands, or used in ways not approved by military command.
Briefly, the present invention provides a radio frequency controller device that enables the utility of a target to be controlled using an RF communication. The radio frequency controller device has a switch that is set to a defined state responsive to the RF communication. More particularly, conditional logic circuitry uses the RF communication to determine if the target's utility should be changed, and sets the state of the switch accordingly. The radio frequency controller device also has a target interface that allows the target to determine the state of the switch, and based on the state of the switch, a different utility will be available for the target. The radio frequency controller device also has an antenna for the RF communication, as well as a demodulator/modulator circuit. When used to control the utility of an electrical or electronic device, the radio frequency controller device has a low-power circuit portion that is used to set the state of the switch responsive to the RF communication, and also has a full power circuit portion that communicates with the target. In this way, the state of the switch may be set when the target is in a power-off condition, and the target is able to determine the state of the switch when the target is activated.
In one arrangement, the radio frequency controller device has an internal module inside the target, and an external module outside the target. The external module has the antenna, so the antenna is able to robustly provided RF communication. The external module may electrically and mechanically connect to the target through a connector, such as a custom connector, power connector, audio connector, or video connector. In some cases, the connector may not sufficiently pass RF signals, so the RF signal is demodulated to a lower frequency using circuitry on the external module. Also, some standard connectors are likely to connect to target operating circuitry, so an isolation circuit may be useful to properly route signals between the external module and the internal module. The isolation circuit may also be useful to protect radio frequency controller device circuits from effects of the target circuit, as well as protect the target circuits from effects of the radio frequency controller device. The radio frequency controller device may be constructed, for example, as an integrated circuit DIP package, a surface mount package, silicon die, or as a printed circuit.
Advantageously, the disclosed radio frequency controller device enables an RF device to selectively change the utility of a target. The radio frequency controller device may be readily incorporated into targets such as electrical or electronic devices, so enables adaptable manufacturing process, flexible distribution accounting, and a denial-of-benefit security system. Since the radio frequency controller device may be constructed as commonly used surface mount or DIP packages, the radio frequency controller device may be economically installed in many electronic, electrical, and media devices. Also, the radio frequency controller device may be constructed as a single package, or may be constructed as an internal module connected to an external module, which allows for the flexible positioning of device components. In this way, components that need RF communication capability may be placed in areas with improved RF reception. By separating the antenna or other RF-sensitive components from other logic circuitry, more robust detection is enabled. Also, the increased placement flexibility enables an RF control capability for a wider range of products, and allows for a more aesthetically appealing arrangement of components. For example, the externally visible portions of the radio frequency controller device may be made smaller and less intrusive, with the memory and logic portions placed in an out-of-sight location.
a-6e are block diagrams of an RF controlled advanced IC device.
f is a block diagram of a controlled advanced IC device.
a and 11b are block diagrams of an RF controlled advanced IC device.
c is a flowchart of a method for using an RF controlled advanced IC device.
Referring now to
Target 10 may be an electronic device such as a computer, TV, appliance, MP3 player, camera, game counsel, or toy. In another example, the target may be a tangible media, such as an optical disc, DVD, CD, or game cartridge. During manufacture or preparation of the target 10, the RFA device 14 has been incorporated into the target in a way that allows the RFA device 14 to control the utility of the target. For example, the RFA device 14 has a switch 31 that couples to some utility 16 of the target. The switch is coupled to the utility 16 through the target interface, which may be a logic line, a power line, a control line, a multi-line interface, or a memory location. Also, it will be appreciated that the target interface may be selected according to the physical form of the RFA device. For example, if the RFA device is in an integrated circuit DIP package, then the target interface will include an IC pin coupled to a trace in the target's printed circuit board. In the case of a surface mount form, the target interface will include a pad contact to the printed circuit board or other substrate.
The switch 31 is set by the RFA device according to received data, and is used to control the utility available for the target or for use of the target. More particularly, the switch 31 has multiple states, with each state being associated with an available state of utility for the target. In a specific application, the switch may be switched between two available states of utility. In operation, the RFA device acts as an interface between two distinct systems. First, the RFA device has a low-power RF circuit that is configured to receive data from a low-power RF source, and using power received from the RF source, determine if the target is authorized to have its utility changed. If so, the RFA device, using its low-power circuit, sets the switch to the authorized state. The second system is the full power circuit of the target electronic device. This full power target utility circuit may include, for example, microprocessors, power supplies, memory systems, and other electric and electronic components. The target utility circuit couples to the switch in a way that allows the target utility circuit to act according to the state of the switch. For example, each time the target is activated, the target utility circuit tests the state of the switch, and depending of the switch's state, presents a particular level of utility. Stated more succinctly: the state of the switch is set using a low power circuit, which sets the utility available to the full power circuit. In a typical case, the RFA device will also be powered from the full power circuit. In other cases, the RFA device may remain passive when the target is operating.
When the target 10 enters the distribution chain, the target 10 is set to have one utility. For example, this utility could be a severely comprised utility, where the target has no useful function available. In another example, the utility may be set to a demonstration utility that allows limited demonstration functionality. It will be appreciated that the available utility may be set according the requirements of the specific distribution chain. At some point in the distribution chain, for example, when the target is transferred to a consumer, it may be desirable to change the available utility. Accordingly, when the target in the presence of an activation device at a point-of-sale, the activation device or another reader is able to read an identifier value or other identification from the target. The activation device uses the identifier to generate or retrieve an authorization key. Provided the point-of-sale device has authorization to change the utility of the target, the activation device transmits the authorization key to the RFA device 14. In one example, the activation device reads the ID 29 from the RFA device 14, and transmits the authorization key to the RFA device 14 using an RF (radio frequency) communication. It will be appreciated that other types of wireless communication may be used. For example, the communication may use infrared (IR) communication in one or both directions. In another example, the target may make physical contact with the activation device for effecting the communications.
The RFA device 14 uses the received authorization key to set the switch 31 to another state. Then, when the consumer fries to use the target 10 in its full-power state, the target utility 16 is able to function according to the new state set in switch 31. In this switch state, the target has a different utility than when the switch was in the first state, which is typically a fully-functioning state. The RFA device 14 has logic 25 coupled to the switch 31 that uses the authorization key to effect a change the switch 31. In one example, the RFA device 14 has a restricted access key 27 that was defined and stored with the RFA device 14 during the manufacturing process for the target 10. This restricted access key may not be externally read, altered, or destroyed, but may be read or otherwise used by the RFA logic 25. This restricted access key 27 may be compared or otherwise used with the received authorization key to determine if the RFA device 14 is enabled to change states of the switch 31.
In a specific example of target 10, target 10 is illustrated to be an MP3 player. During manufacture of the MP3 target device, an RFA device is installed in the MP3 player. The RFA device may be, for example, an RFA integrated circuit DIP device, a surface mount device, or other circuit module. In the case where the RFA device is a surface mount device, the RFA device is applied to a circuit board of the player in a way that the RFA switch 31 is able to control a utility function 16 of the player. For example, the RFA device may connect to the power source of the player's operational circuitry so that the player will not function until the switch is changed. In another example, the RFA device couples to the decoder processor in the player, and restricts the ability of the player to properly play music files until the switch is in a proper position. In yet another example, the RFA device may couple to the processor, and restrict the options available in the user interface until the switch is in the proper position. In this way, the player may have a limited demonstration interface until the full user interface is enabled by changing the switch. A restricted access key is also stored in the RFA device, and the switch 31 is set to a state so that the MP3 player's utility is compromised.
The MP3 player is thereby manufactured and ready for sale as a compromised MP3 player that will not properly power-on or function. In this way, the compromised MP3 player would be nearly useless to a consumer, and therefore would be less likely to be a target of theft. The manufacturer has also stored an accessible identification 29 in the RFA device. In some cases, the identification may be pre-stored in the RFA device, and in others, the manufacturer will assign the ID during the manufacturing process. For example, the accessible identifier may be a stored value that is accessible through, for example, an RFID reader system. The compromised MP3 player may be shipped through the distribution chain and to the retailer with a substantially reduced threat of theft. Also, the retailer may display and make the MP3 player available for customer handling in a retail environment with reduce risk of theft. In this way, reduced security measures may be taken at the retail level, such as using locked cases or sophisticated packaging, since the consumer would obtain no benefit by stealing a nonworking, compromised MP3 player.
When a consumer decides to purchase the MP3 player, the consumer may take the MP3 player to the point-of-sale terminal and have it passed proximally to an activation device. As the MP3 player is close to the activation device, its accessible ID 29 is read by the activation device by retrieving the stored accessible ID using a wireless or EM (electromagnetic) communication. For example, the communication may be an RF (radio frequency) communication. The communication from the point-of-sale device to the RFA device 14 is though antenna 18. In one arrangement, antenna 18 is able to both receive and transmit data to the point of sale terminal. The point-of-sale terminal may have a network connection to an operation center, and sends the accessible ID value to the operation center. The operation center, which has a database of RFA device identifications associated with their restricted access keys, retrieves the particular authorization key for the RFA device in the MP3 player that is at the point-of-sale device. At the point-of-sale terminal, additional confirmation actions may be taking place. For example, a clerk may be accepting payment from the consumer, or may be checking a consumer's identification or age. These other confirmation criteria may then be used to confirm that the point-of-sale terminal is ready to restore the utility of the MP3 player. Provided the activation device determines restoration is appropriate, the activation device transmits the authorization key to the RFA device using a wireless communication. The RFA device 14 receives the authorization key, and using its logic 25, compares the authorization key to its pre-stored restricted access key 27. If the keys match, then the RFA device 14 uses its low-power source to change the state of the switch 31. In the new state, the target utility 16 is fully available to consumer.
In another example, the consumer purchases the MP3 player from an online retailer, and the MP3 player is shipped or mailed to the consumer. In this scenario, several alternatives exist as to where the utility for the MP3 player may be restored. In one alternative, the online retailer has an activation device in their warehouse or shipping department, and a retail employee restores the utility to the MP3 player as part of the shipping process. In another alternative, the MP3 player is shipped with compromised utility, and the shipper has an activation device that they use to restore utility prior or at the time of delivery. In this alternative, the driver of the delivery truck may restore utility as the consumer accepts the MP3 player, thereby removing risk of theft during the entire shipping process. In a final alternative, the consumer has a home activation device, and the consumer uses the activation device to restore utility to the MP3 player. In this last alternative, the MP3 player is in a compromised utility from the manufacturer all the way to the consumer's location, and it is the consumer, after the commercial transaction is complete, that finally restores utility to the MP3 player.
In some cases, the RFA device may have additional circuitry for confirming that the utility has been restored. For example, the state of the switch may be measured, or another test or measurement may be taken. According to whether or not the switch was set successful, a different value may be placed in a confirmation memory. The confirmation memory may be read by an activation device to confirm to the consumer and to the network operations center that activation was successful. By confirming successful activation, the retailer may have a higher degree of confidence of consumer satisfaction, and may accurately and timely report and authorize payment to the supplier of the MP3 player.
RFA device 14 is constructed to receive an authorization key via a demodulator/modulator 23. Demodulator/modulator 23 may be a wireless communication circuit, such as a radio frequency or electromagnetic receiver. The RFA device 14 has logic 25 which is configured to receive the authorization code and make a determination if the switch 31 should have its state changed. The logic 25 may include logic structures as well as dynamic or non-volatile memory. In one example, logic 25 uses a target key 27 in making the determination of whether or not the switch can change to another state. In one example, target key 27 has been stored during the manufacturing process in a manner that is not readable using external devices. For example, target key 27 may be placed in a nonvolatile, non erasable and non alterable memory of the RFA device during manufacture. This target key may be the same value as the authorization key, so the logic simply performs a comparison between the restricted access target key 27 and the received authorization key to determine if the switch 31 of the RF device may be changed. It will be understood that other logical processes may be used in making this determination. Provided the logic 25 determines the switch 31 may be changed, the logic causes the switch 31 to change states. In one example, the switch 31 is a change effecting device. The change effecting device may be, for example, an electronic switch, an electrical switch, a fuse, a conditional break in a trace, a logical state, or may be a set of values defined in a memory location. In another example, the change effecting device is an electrically switchable optical material such as electrochromic material. It will be appreciated that other devices may be used for the change effecting device.
The change effecting device may change state upon the application of an activation power, or may use logical process to set or change values stored in memory. The activation power 21 may be, for example, a separate battery which powers the logic 25, the demodulator/modulator 23, and the switch 31. In another example, the activation power 21 may be a converter for converting a received radio frequency or electromagnetic energy into available power. Also, the activation power may be wholly or partially obtained from a source external to the target. It will be appreciated that other electronic components may be necessary to implement such a converter. In another example, activation power may be provided by the operational power for the full device. For example, if the full device is an MP3 player, and the MP3 player has an operational rechargeable battery, the rechargeable battery may have sufficient initial charge to power the RFA device while the target is in the distribution chain. In yet another example, activation power may be provided by multiple power sources. For example, a small battery may power the change effecting device, while an RF or EM converter device may power the logic and communication circuit. It will be appreciated that many options and alternatives exist for powering the circuitry within the RFA device 14.
RFA device 14 may have a confirmation circuit or memory with logic 25 which changes state according to the actual or probable state of the switch 31. In some cases, the actual state of the switch may be detected, or the actual state of the switch may be measured. In other cases, the actual states may not be conveniently measured or detected, so some aspect of the change process may be measured or detected instead. In this case, a confirmation that change process was being successfully performed leads to a high probability that the utility of the target was also successfully changed. Accordingly, the confirmation logic may directly detect the state of the switch 31, or may have measured the electrical processes used in making the change. For example, the current passing through a fuse may be measured, and thereby confirm that a sufficient amount of electricity has passed through the fuse to cause it to break. Although not a direct detection of the state of the switch, it is highly probable that the state of the fuse has changed, resulting in a change of state in the switch. In another example, logic 25, and may confirm that logical processes were properly performed for setting the switch. In another example, logic 25 may directly connect to the utility means 16 itself, to confirm that the switch changed. Once logic 25 receives confirmation that the switch changed, that confirmation signal may be communicated to an activator device using a transmitter, or may be read responsive to a request from the activator. The RFA device 14 may therefore provide feedback to the activation and distribution control system to confirm that utility has been changed. This information may then be used to generate reports or to initiate payment to parties within the distribution chain.
Referring now to
The RFA device 51 may have a power source 56 for powering the communication, logic, and switch. In another example, an operational power source 78 in the target may be used to power certain portions of the RFA device. The RFA device may also have a restricted access target key 68, and an accessible target ID 69. The demodulator/modulator 58 may be used to send the target ID value 69 to an activation device. The RFA device 51 has the primary components of the target stored in a housing 65 of the target. In one example, housing 65 is a case or other enclosure. Since housing 65 or other aspects of the target may restrict wireless communication to components within the housing 65, certain circuits and processes for RFA device 51 are on an external antenna member 52, while an internal RFA portion 67 is inside the housing 65. In the example illustrated in
The antenna member 52 may be mounted or adhered to the target housing 52, or may be positioned remote from the target and coupled to the target housing 52 through a wired connection. In another example, the antenna member 52 may couple to the target housing 52 through a connector 61 available on the target's case 63. In one example, the target case 63 may have power input ports, on which the antenna member 52 may temporarily mounted. In such a case, the target 50 would be activated with the antenna member 52 coupled to the power plug of the case 63, and after processing at the activation terminal, the antenna member 52 would be removed from the power plug, and the power plug inserted into a wall outlet to place the electronic device in its operable state. It will be appreciated that other available connectors may be used. For example, an existing audio, video, or data connector may be used. However, when using a standard connector 61, it may be desirable to provide an isolation circuit to protect the RFA circuits from loading effects of the target circuits. The target circuits may load the signals at the RFA IC and prevent proper operation. In some cases, the target could actually damage the RFA IC, for instance when a DC or AC connector is used. The isolation circuit may also protect target circuits from possible detrimental effects of signals passed into the target from antenna member 52. By arranging the antenna member 52 external to the target, more robust communication with the activation device may be maintained, as well as more efficient and effective power conversion when converting power from an available RF or EM source.
Generally, the target activation system described with reference to
Depending on the application, switches may be switched only one time, only a limited number of times, or an unlimited number of times. Further, they may be reversible. The change effected in the target may be temporally offset from the initiation of the RFA switch. For example, an RFA device coupled to an AC powered drill may be ‘activated’ at the retail check-stand (e.g. a switching relay coupled to the RFA device and the drill's power supply is enabled), but the effect of the switch (the drill powers-up) is realized only when the drill is plugged into AC power. The functions of the RFA device including the switch may be combined in different ways and distributed among one or more components/locations in, or coupled, to a target. Further the RFA device may be configured in such a way that some of the functions may be physically decoupled (removed) from the target after the activation has taken place. The antenna, for instance, might be removed. Many of the circuits and processes described herein are applicable to conventional passive and active RFID tags and similar wireless technologies or products.
A typical known passive RFID tag 175 is shown in
Unlike the known RFID chip, the RFA device is communicatively coupled to the target (typically via electrical contacts) and it may transmit/receive data, power, or commands with the target. The RFA device also contains logic and typically data, instructions, or commands for conditionally switching the switch based on input received from a device external to the device (e.g. an RF activation device). An RFA device for example, may allow the manufacturer, RFA device manufacturer or a third party to store a hidden or “private key” into write-once memory in addition to the public key and other information. This private key may be randomly generated or it may be based on an algorithm. Further, the RFA device may contain a separate blank area of memory to store a key received from an external source (e.g. an RF activator at the point-of-sale). In this example, logic in the RFA device (pre-programmed instructions or commands) compares the received key to the previously stored private key. If they match (or some other conditional state is realized), the logic will switch the switch (e.g. set a memory bit or blow a fuse). In such a configuration the stored private key would be inaccessible to an RFID reader or any external device. The key, commands, and instructions that define the logical comparison process are typically stored in write-once memory, or permanently configured in hardware or firmware.
In certain embodiments, the logic in the RFA device may be supplemented or combined with additional instructions or commands received from outside the RFA device. There may also be more than one private key stored in memory (also typically write-once memory) within the RFA chip. The logic effectuated may be conditional upon which private key, or combination of private keys, that match the received key. At a minimum the logic consists of instructions or commands embedded in the RFA device, which are sufficient to initiate action upon the realization of a conditional state. In many embodiments the logic is entirely contained within the RFA device.
In some embodiments, the private key (or private keys) stored within the RFA device may enable cryptographic methods to be used to protect data, instructions or commands transmitted to, and received by, the RFA device or the target to which it is coupled. In such embodiments the RFA device may include an encryption or decryption algorithm. An example of an RFA enabled encryption process 200 (
The manufacturer 201 encrypts the private key using the encryption key and transmits the encrypted private key paired to the public ID to the NOC 206. When the public key in the target's RFA device is read, for example using an RFID reader at a retail check-stand 204, and transmitted to the NOC, the NOC uses the public ID to lookup the associated encrypted private key. The NOC then transmits the encrypted private key to the RFA device coupled to the target. The RFA device then uses its stored encryption key and stored algorithm to decrypt the private key. The decrypted private key can then be used for comparison to the private key stored in write-once memory in the RFA device. The decryption and comparison process occurs entirely within the RFA device. This approach reduces the risk of a clear-text private key being illicitly obtained from the NOC or during the communication from the target manufacturer to the NOC or from the NOC to the RFA device. Asymmetric encryption schemes using algorithms such as that utilized in the RSA Public Key Encryption scheme and described in the U.S. patent for the RSA algorithm (U.S. Pat. No. 4,405,829, “Cryptographic Communications System And Method”) and now in the public domain, may also be applied using combinations of public and private keys (including those used as encryption keys), and algorithms embedded within the RFA device.
Other encryption schemes may involve an encryption key provided by a 3rd party. For example, a manufacturer may store a retailer specific encryption key in the RFA device coupled to its target and use it, independently or in conjunction with other keys, to encrypt the private key. To decrypt the private key received from the NOC, the algorithm in the RFA device needs the 3rd party key (e.g. input at the check-stand independent of the NOC). In another embodiment a 3rd party key may be stored by the RFA device manufacturer and be unknown to the target manufacturer. The 3rd party encryption key may then be sent to NOC or via an alternative path to the reader and on to the RFA device. Encryption systems such as those described above can be used to secure the conditional logic process effectuated within the RFA device (e.g. to prevent unauthorized switching of the embedded switch). They may also be used to secure the transmission to, and usage within, an RFA device of data, instructions or commands. Further, such encryption systems can be used to enable different parties independently or in combination to effectuate control over the conditional logic and the dependent outcome (switching the RFA Switch).
It is important to note the difference between the RFA device and some RFID tags such as EPC generation 2.0 devices, which can utilize passwords for the purpose of controlling access to information (data) stored in the memory of the RFID tags. These passwords control the ability to read the information stored in the memory, and also the ability to write new information, or change existing information that is already stored. In these cases, the only thing being accessed or changed is the data itself. Even the password can be changed by writing a new password to the location in memory where the password is stored. Further, these password schemes only affect the ability to read and write data via the RF communication path to the external RFID reader, and do not interact with the target or the target's utility. The RFA device works in a fundamentally different way. The private key(s) is stored in memory within the RFA device at the time of programming by the manufacturer of the target device, the manufacturer of the RFA device or a 3rd party. These private key(s) are typically stored in write-once memory and cannot be read back by the RF reader (or any device external to the RFA device) nor preferably can they be changed in the future by any means. Once a private key(s) is programmed into an RFA device, prior knowledge of it is required to supply the correct key(s) that meet the conditions necessary for the RFA switch to be switched.
In certain embodiments involving more than one private key, one of the private keys, the primary private key, may configure the logic within the RFA device to combine the secondary private keys stored in memory to result in an computed key that can be compared to the received key sent to the RFA device from the external reader at the time of activation. If the computed key matches the received key then the RFA device enables an output (and optionally an input that affects the target's utility. This output is a typically via a physical connection (e.g. an electrical contact or pin) that can logically function in a number of different ways (e.g. a state change or a defined data sequence) depending upon RFA device logic configuration information supplied to the RFA device by the target. This logical data sequence can be a function of the primary key, and other configurable logical means within the RFA device. In another example, the logical sequence uses an externally generated data stream, such as a data stream provide to the RFA device from the target circuitry, such as from a microprocessor. The logical configuration information can be sent to the RFA device via a number of techniques such as a serial link to the enable pin of the RFA device, or by a pair of dedicated mode pins on the RFA device. The configuration means is primarily controlled by the target, but could also be a function of commands stored within the RFA device or sent to the RFA device from the reader after completion of the activation comparison process.
It may be desirable to deactivate a target, for example in the situation where a target is returned to a retail outlet after having been purchased and activated. One preferred method of reactivating a target is to send a command to the RFA device that causes the output line (pin) to be deactivated. If the target is to be reactivated, it may be desirable to generate a computed key that is used for comparing a received key that is different from the previously received key (for matching to the computed private key) and to effectuate the conditional logic. An example of a way to securely affect such a system is to use a counter within the RFA device that keeps track of the number of times that the RFA device has been deactivated. The RFA device internally generates a new computed key automatically through its logic by using the primary key and the state of the deactivation counter. This process can be taken further by logically combining the secondary keys in a different sequence. The private keys are not changed. The sequence is known to the manufacturer (or the party that originally stored the key in the RFA device), and is tied to the public key (e.g. ID, serial number) of the RFA device. The reader has access to the deactivate counter state, and sends that data along with the RFA device's public key back to the NOC in order to receive the correct (sequential) key. The reader cannot change the key and/or key sequence directly by writing data to the RFA device. The RFA device itself changes the key or key sequence by using the mode configuration information in addition to its own internal logic.
To prevent attempts to defeat the security scheme effectuated within the RFA device by repeated transmission of keys to the RFA device, there are several alternative techniques that can be employed. One is to limit the number of false key submissions, and particularly the number of false key submissions over a period of time. Logic and programmable memory within the RFA device could automatically shut down, temporarily or permanently, the internal authorization process after a specified number of false comparisons. Another solution would be for the logic, using an internal clock, to limit the rate at which the RFA devices receives or processes digital keys or compares them to the private keys. Alternatively, the speed of the RFA device (e.g. clock speed) could be limited to achieve a similar outcome.
A denial-of-benefit security system depends on everyone involved with the product including would be thieves, employees and consumers to be aware that the target's utility is compromised and it must be activated before its value is restored. A successful denial-of-benefit security system therefore depends on a means for generating awareness of the target's participation in the security scheme in addition to the mechanism internal to the target that alters its utility (the switch). One cost effective solution is to couple an RFA device with a visible “symbol”, mark, icon or message on the outside of the target or its associated package that identifies the target as a participant in the system. Further, the symbol can be positioned on a target's package relative to the RFA device's antenna (which is coupled to the target within) to facilitate placement of an external reader.
In certain embodiments the RFA device, independently or in conjunction with elements within the target, may employ means for determining the status of the switch or target (e.g. did the RFA switch, switch, as intended; is the target active, what features were enabled or disabled), and communicating such information to an external device such as an RFID reader coupled to a point-of-sale system. Depending on the specific embodiment, the means may include logic or circuitry to measure or test elements of the RFA device or the target to which it is coupled. For example, when a ‘successful’ comparison is made of a received key and a private key, a value can be written to a memory that is externally accessible to an external device. In another example, the electrical properties (e.g. resistance, capacitance etc.) of circuitry or materials in elements of the RFA switch in the target can be measured, when the target is powered, and the results output to an external device. An example of communicating the state of the RFA device would be to set an indicator state for a directly coupled element such as an LED. Another example would be the removable antenna element of an RFA device (described herein) combined with an electro-chromic film that changes appearance depending on the state of the RFA device (e.g. red prior to activation, green after).
In embodiments where the status information is output to a communicatively coupled external device (e.g. an RFID reader) the information can be used locally or transmitted to a remote location like the NOC or to the manufacturer or a 3rd party. The information can be used to execute dependent actions such as retry an activation if the initial attempt failed. The information can also be used to determine the state of a target (active or inactive) or whether it's been activated before. The information can also be used aggregated (e.g. at the NOC) to identify, diagnose and report problems. It may also be used to identify unauthorized attempts to breach the system. The status of an RFA device can also be used as a dependent variable for a variety of transaction systems. For example, a customer cannot be charged until the target is activated. Alternatively, a target cannot be activated until the customer is charged, has evidenced an ability to pay (e.g. a test to see if a credit card or customer account is valid), or payment is made. The status of an RFA device can also be used in conjunction with other security schemes. For example, in a retail store, a product that had not been successfully activated at the check-stand could be detected by an RF sensing system located at the exit doors and an alarm triggered.
Referring now to
The advanced integrated circuit device 238 may have a power input port, ground input port, and a reset port. As illustrated, the power and ground ports may be connected to associated pins on the package 237 for powering and grounding the advanced integrated circuit device. Other pins would couple to data and communication lines according to the specific advanced device used. Many advanced integrated circuit devices have a reset or other enable/disable line for controlling the operation of the advanced integrated circuit device. For example, the reset port may have two states: a first state that allows the advanced integrated circuit device's operational circuitry to operate normally, and a second state that causes the device's operational circuitry to reset or otherwise disrupt or compromise operation. In a similar way, other enable or disable ports may be provided. It will be appreciated that different types of advanced integrated circuit devices may have different types of enable/disable ports, and that multiple such ports may be provided. Typically, if such a reset or enable/disable port is held to its reset condition, the advanced integrated circuit device will be compromised, that is, will not operate as intended.
As illustrated in
The RF signal may require a matching circuit to be properly received by the RF device 239. The RF device 239 also has a low-power circuit for setting the state of the internal switch. As a more fully described with referenced to
In a specific example, device 235 is a microprocessor complying with an industry or commercial standard. The RF device 239 is manufactured with its internal switch set to a closed or “0” state. In this configuration, the switch acts to couple the output line to ground. Accordingly, if the pins for package 237 are connected to power and ground, the output line for the RF device 239 will continuously hold the reset port of the advanced integrated circuit device 238 to a low state. Typically, an advanced integrated circuit device resets upon a low state on its reset pin, so the advanced integrated circuit 238 will not operate when the switch for the RF device 239 is closed. Accordingly, the advanced integrated circuit device is manufactured and transported through the distribution chain in a state that renders it unusable, and is therefore less likely to be stolen. In this way, the compromised microprocessor may be shipped through the distribution chain and to a retailer with a substantially reduced threat of theft. Also, the retailer may display and make the microprocessor available for customer handling in a retail environment with reduced risk of theft. In this way reduced security measures may be taken at the retail level, such as using locked cases or sophisticated packaging, since the consumer or employee would obtain no benefit by stealing a nonworking, compromised microprocessor.
When a consumer decides to purchase the microprocessor, the consumer may take the processor to a point of sale terminal and have it passed proximately to an activation device. As the microprocessor is passed by the activation device, it has an accessible ID read from the RF device 239. The point-of-sale terminal may cooperate with a network and network operations center to retrieve an authorization key for the particular microprocessor present at the point-of-sale terminal. Provided the user has properly paid for the microprocessor, the point-of-sale device or scanner uses its activation device to transmit the authorization key to the RF device 239 through the antenna. The RF device 239 receives the authorization key, and using its internal logic or comparison circuitry, compares the authorization key to its pre-stored restricted access key. If the keys match, then the RF device 239 uses its low power source, which may be derived from the received RF energy, to switch the internal switch to an open (1) state. In one example, the change to the open state is made permanent. In another example, the change may be more temporary in nature. Also, it will be appreciated that an externally perceptible identification may also be switched, so that a consumer or clerk may visually confirm that the microprocessor has been activated. This visual indictor may be an electro-chromic material, for example. It will also be understood that the point of sale terminal or the network may also receive a confirmation from the RF device 239 that the microprocessor has been properly activated.
With the switch now permanently in an open state, the package enclosure may be placed in its operating environment and powered. When the device 235 is powered, power will be applied to the advanced integrated circuit 238 as well as the RF device 239. However, the switch internal to the RF device 239 is now open, so the output of the RF device 239 floats or is set to a “on” (1) condition. Since the reset port is now at a “1” state, the operational circuitry does not continually reset. In this way, the microprocessor operational circuitry 238 is allowed to operate at its full operational capability.
It will be appreciated that the RF device 239 may be positioned inside packaging 237 along with the advanced integrated circuit 238. As shown in
In some cases, it may be desirable to allow the low power circuitry to set the state of the switch while the advanced integrated circuit has its operational power applied. For example, a computer system may be placed in a power-on condition for test and configuration, and while the circuit is being tested, the switch may be set to selectively enable or disable functionality. In this arrangement, the activation device is part of the system test equipment. In another example, a device may have persistent operational power, or may be constructed in a way that makes it undesirable to temporarily disable the operational power. Accordingly, the low power circuitry is arranged to allow an activation device to set the state of the switch while operational power is on. It will be appreciated that known isolation circuitry may be needed between the operational power and low power sub-systems.
f shows another example of a controlled advanced integrated circuit device. Controlled device 235a is similar to device 235 discussed with reference to
The internal device 239a may only receive communications from the connection port, or may optionally include an antenna for receiving RF communications and signals. In this way, the connection port may be used in some parts of the distribution chain, such as during manufacturing and for service or repair, and the RF connection may be used at other parts of the distribution chain, for example, during consumer point-of-sale transactions. The antenna may be internal to the package, part of the package, part of an assigned or unassigned pin-out, or may be externally connected to the package. If external, the antenna may be removable or disposable. In one example, the connection port is used to access and set the switch during manufacturing and testing, and an external antenna is used to activate the advanced integrated circuit at a point of sale transaction. After activation, the consumer or clerk removes and disposes of the antenna. Then, if the device 235a needs service at a later time, service personnel would access the switch using the connection port.
Referring now to
As described with reference to
Referring to
In use, antenna 252 is attached to connector during the manufacture or the shipping process. At the point-of-sale environment, an activating device cooperates with the antenna 252 to send and receive information and power to and from the RFA internal device, which is inside the target enclosure. In particular, the antenna may receive a request for an identification value and transmit an identification value to the internal RFA device. The activation device, after performing its authorization routines, may then send an authorization key through the antenna 445 into the internal RFA device. The internal RFA device has logic coupled to the antenna through the connector which determines that it may change its switch to another state. After the state of utility has been changed, the internal RFA device may report the verification of the change through the antenna 252 back to the activation device. Typically, at this point a consumer will transport the electronic device 250 to another location, and place the electronic device in an operable state. The consumer may remove the antenna member 252 and dispose of it. In another example, antenna member 252 is integrally formed with the case and may remain on the case.
In some cases it may be advantageous to utilize devices contained within the target to effect communication with the internal RFA device, for example when the target is a “wireless” device such as a wireless access point, where its antenna and circuitry may be designed to accommodate such communication. Many targets utilize foam inserts to isolate the target from shipping damage. The antenna could be easily integrated into those inserts. Using effective antenna design practices, the packaging foam could serve as a “spacer” between the antenna element and the metal case of a target, and assist in maintaining the efficiency and operation of the antenna, thus facilitating the communications between reader and internal RFA device. The antenna substrate material could be any relatively stiff material that has the required dielectric properties for the antenna to function properly. Traditionally Mylar® or Kapton® have been used, but a variety of materials including stiff cardboard, or coated paper may also be used.
An alternative is to configure the antenna and connector as a “break away” system 275 as shown in
At 900 MHz and at 2.4 GHz, the connector becomes important in terms of its electrical characteristics and requirements. Referring to
In one arrangement, the internal RFA device is integrated into the connector which mounts to the internal PCB of the target. This means that the manufacturer only has to place a single part on their internal board, and place a corresponding hole in their enclosure for the antenna connection. The connector and RFA assembly can utilize thru hole or SMT leads, and may also include mechanical locating mechanisms, or mechanical attachment mechanisms.
It is also possible to utilize an existing connector on some targets rather than adding a separate connector. For instance, on many commercial audio and video products, the low level audio input can be utilized. Most of these products use an RCA phono jack for the audio input connector. The antenna shown in
There are several methods by which the RFA device can communicate and interface to the target. Typically, and in particular in embodiments where the RFA device interfaces with circuitry in the target, there is a system provided to isolate the RFA device from the target during RF communication with the reader. During activation, the RFA device is powered by the RF energy from the reader. The target however, is not powered, and is prevented from drawing energy from the RFA device during this time. Once the target 300 is activated and powered, it provides any needed power to the RFA device, and interfaces with the output line as shown in
Referring now to
Referring now to
Referring now to
To increase tamper proofing of the target, the internal RFA device 327 can utilize an “Enable” line 326 as shown in
The internal RFA device can also be utilized to activate targets that do not have microprocessors. For example, if the target 350 has a DC supply 355 such as a cordless drill, the internal RFA device 352 can be used to turn on a power MOSFET 351 in series with load as shown in
Referring now to
Many other functions and behaviors can be implemented using this approach. Audible, ultrasonic, optical, thermal, and any other function that require power can be utilized. This allows not only activation of the target by various means, but also can provide an indication back to the check-out clerk, or customer that the product has indeed been activated. For instance, the battery can provide energy to a LED indicator that is visible through a clear window in the target packaging. When successful activation has been achieved, the LED can be turned on (100% or blinking), to indicate activation. An alternate approach is to supply the LED as a stick-on label with a printed antenna that is applied to the outside of the target's package. When successful activation occurs, the battery and power circuit turn on a small transmitter. The transmitted signal picked up by the printed antenna on the label and causes the LED to light. Further, the antenna coupled to the internal RFA device may be constructed out of the same material/process used to construct the energy storage element (e.g. a thin-film battery) or some other element of the target (e.g. the materials comprising a reflective layer of an optical disc).
In addition to the electrical/electronic targets described above, the RFA devices described herein may be applied to a wide variety of non electrical/electronic targets for example:
In some situations it is desirable to mass produce a target (e.g. a computer), package it for shipment and then activate individual options (e.g. preloaded software or content, or hardware features) or enter preferences (e.g. user or retailer name, configuration information etc.) at either the manufacturing facility or the retail point-of-sale. An RFA device configured to receive and output multiple data elements such as passwords or keys to decrypt preloaded software can be used for this purpose. For some classes of targets it is desirable to activate multiple sub-assemblies within a single target to deter theft of the target for its parts. An example is a laptop computer which contains multiple valuable sub-assemblies such as a hard disk drive, LCD display, CPU, CD disk drive, etc. In one example each subassembly may have its own internal RFA device and is activated by an activation signal to each assembly. Another example 400 of how multiple sub-assemblies can be individually activated is shown in
Referring to
In many instances it may be desirable for the manufacturer to utilize an existing connector on the target device to couple in the RFA signals from the RFA Antenna member to the internal RFA device in the target. Examples of existing connectors on common targets include the AC Power Mains, Audio, Video, DC Power, as well as many others, all of which may be used to couple in the RFA signals for target activation. One arrangement is shown in
Many other target connectors can be utilized as the activation signal port using the techniques described above and depicted in FIGS. 17 to 22. Many connectors have unused pins, which can be used for activation signals without any isolation networks. Connectors which fall into these categories include, but are not limited to: USB ports, Ethernet ports, mouse ports, keyboard ports, PCMCIA ports, memory card ports, S video ports, game ports, serial ports, parallel ports, phone jacks, and battery connectors.
Referring now to
It will also be appreciated that the target interface 542 may be dependent upon the particular physical construction of the RFA device 529. For example, the RFA device may be constructed as an integrated circuit, in which case the target interface 542 may be a pin on an IC package device. The target interface 542 may couple the IC pin to one of the internal layers of a PC board to reduce tampering. In another example, the RFA device is a surface mount package. In this case, the target interface 542 will be constructed as a pad or terminal interface on the surface mount package. It will be appreciated that other types of target interfaces may be used dependent on the physical packaging for the RFA device.
In use, a consumer may take target 525 to a point-of-sale terminal, pay for the target, and have the point-of-sale clerk confirm that the user is authorized to have an activated target. At that point, the point-of-sale terminal may transmit an RF signal to antenna 531. Antenna 531, cooperating with the demodulator modulator 535 and power source 533, receives an RF signal sufficient to change switch 537 to a different state. In one example, switch 537 is a fuse which is blown by the application of power 533. In another example, switch 537 is a change effecting device such as an electro-optical material. Upon the application of an electrical current, the electro-optical material changes state, which may be detected by the target utility through the target interface. Once the switch 537 is in its operational state, the next time the target utility 544 is activated, it will detect the new position of the switch 537 and allow the target to fully operate. Accordingly, the target 525 was shipped through the distribution channels in a disabled state, and upon authorization from a point of sale system, was activated using an RF signal. In some arrangements, a confirmation signal may be sent back to the point-of-sale to device to confirm activation activity.
Referring now to
Referring now to
Referring now to
While particular preferred and alternative embodiments of the present intention have been disclosed, it will be appreciated that many various modifications and extensions of the above described technology may be implemented using the teaching of this invention. All such modifications and extensions are intended to be included within the true spirit and scope of the appended claims.
The present application claims priority to U.S. provisional patent application 60/654,384, filed Feb. 18, 2005, entitled “A Method and Means of RF Activation of a Target”; and is also a continuation-in-part to co-pending U.S. patent application Ser. No. 11/296,082 filed Dec. 7, 2005 and entitled “Method and System for Identifying a Target”; to U.S. patent application Ser. No. 11/296,547 filed Dec. 7, 2005 and entitled “Device and Method for Selectively Controlling a Processing Device”; to U.S. patent application Ser. No. 11/296,081 filed Dec. 7, 2005 and entitled “Device and Method for Selectively Controlling the Utility of a Target”; and to U.S. patent application Ser. No. 11/295,867 filed Dec. 7, 2005 and entitled “Device and Method for Selectively Activating a Target”; all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60654384 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11296082 | Dec 2005 | US |
Child | 11358352 | Feb 2006 | US |
Parent | 11296547 | Dec 2005 | US |
Child | 11358352 | Feb 2006 | US |
Parent | 11296081 | Dec 2005 | US |
Child | 11358352 | Feb 2006 | US |
Parent | 11295867 | Dec 2005 | US |
Child | 11358352 | Feb 2006 | US |