The present invention relates to a method and apparatus for screening mixtures of fine particles. In particularly, this invention relates to a method and apparatus for separating between different materials comprised in a mixture of fine particles.
There are quite a few industrial processes where one requires separating between different materials comprised in a mixture of particles having essentially a similar size.
Some of the solutions proposed in the past to deal with such a problem are:
U.S. Pat. No. 5,887,803 describes a process and an apparatus for grinding and sifting a product, in which the product is embrittled by a coolant and is comminuted in a mill and fed to a sifter. According to this publication, the product is comminuted and sifted in a closed-loop process without separating agents having to be fed to the ground product prior to sifting to overcome electrostatic charging.
U.S. Pat. No. 5,755,388 discloses a waste tire treating apparatus which comprises a grinding device for grinding the waste tire into blocks of smaller volume, a granulating device for cutting and granulating the dried waste tire into granules with predetermined volume, a heating device for heating and melting the waste tire granules and a sorting device disposed under the heating device for receiving the molten rubber, the nylon fibers and the steel filaments of the waste tire. The sorting device includes a channel with circulated water flow, whereby the mixture of the rubber and nylon fibers float on top of the water, while the steel filaments precipitate onto the bottom of the channel and are separately recovered.
U.S. Pat. No. 6,308,903 describes an apparatus and method for processing used vehicle tires that separates the steel metal from the rubber and other non-metallic materials for recycling. The tire is rotated at sufficient speed to force the materials outwardly by centrifugal force. Heated blades are used to melt and cut through the non-metallic materials, dividing the tire into at least two arcs that are held together by the steel reinforcement that is not easily cut through. Electric heating apparatus heats the steel to a higher temperature than the rubber so that the forces binding the rubber are released, thereby enabling the rubber and other non-metallic materials to be flung outwardly away from the steel and the steel is then collected separately.
U.S. Pat. No. 6,325,215 discloses a method for separating elastomeric particulates from a pulverized mixture wherein a first separator assembly separates out clean fiber and passes non-fibrous particulates and residual fiber to a second separator assembly that separates out clean non-fibrous particulates. The method includes propelling the pulverized mixture under a number of separator cylinders with mixture-engaging structure and against a structure for removing non-fibrous particulates and residual fibers from the pulverized mixture. The non-fibrous particulates and residual fibers are propelled under a plurality of other separator cylinders that include centrifugally releasable mixture-engaging structures and against a structure for separating non-fibrous particulates from the residual fibers.
Such separation processes, which are not too trivial, become rather complex processes when the mixtures are in the form of fine or even ultrafine particles, as most of the common methods are not applicable to handle particles of this size range.
It is an object of the present invention to provide a method and apparatus for efficiently separating mixtures which comprise fine particles of different materials.
It is another object of the present invention to provide a method and apparatus for carrying out a cost effective process that enables separating two or more different materials, being in the form of fine to ultrafine particles.
Other objects of the present invention will become apparent from the following description.
According to a first embodiment of the invention, there is provided a separation arrangement adapted for use in a process of separating between particles of different materials comprised in a mixture of fine particles, and wherein the arrangement comprises: a solid particles feed ingress means, a solid particles pushing/pulling means and at least one mesh adapted to stop particles of a first of the materials comprised in the mixture, and wherein particles comprised in the mixture of fine particles are allowed to free fall within the separation arrangement towards a lower part thereof, and wherein particles of the first of the materials comprised in the mixture (preferably of the lighter material) are being extracted away from the free falling particles by the solid particles pushing/pulling means and conveyed towards the at least one mesh, whereas particles of a second material of the mixture (preferably the heavier material) are allowed to reach the lower part of the separation arrangement.
The term “different materials” as used herein and throughout the specification and claims should be understood to encompass two or more materials having substantially different densities from each other, as well as at least one material having two distinct fractions of solid particles, wherein the particles in each of the fractions being substantially different from those of the other.
According to a preferred embodiment of the invention, the free falling particles are subjected to a gas blown thereat by the solid pushing/pulling means and/or subjected to vacuum applied there onto, so that particles of the lighter material (from among the materials comprised in the mixture) are extracted towards the at least one mesh.
In accordance with another preferred embodiment of the invention, the solid pushing/pulling means is a member of the group consisting of gas blower, fan, vacuum generating means, electrically charged means, magnets and the like. Preferably, the vacuum generating means are applied only when there is a substantial difference between the densities of the lighter particles and the heavy particles, as otherwise the resulting separation might be far from satisfactory.
According to another preferred embodiment of the present invention, the separation arrangement comprises an electrically charged mesh which is particularly of interest in case one of the materials comprised in the mixture is an electrically conducting material (e.g. metal). According to one option, the at least one mesh of the separation arrangement is the one that is charged electrically, whereas according to another option, there are at least two meshes in the separation arrangement where at least one mesh is electrically charged and the at least one other mesh is not charged electrically. The latter embodiment allows separation of a three materials mixture in which one of the materials is electrically conducting material, so that the particles of the light material are collected at the non-charged mesh, the particles of the electrically conducting material are collected at the electrically charged mesh, whereas the particles of the heavier material are collected at the lower part of the separation arrangement.
In the alternative, instead of or in addition to having an electrically charged mesh, electromagnets are used to remove the particles of the electrically conducting material comprised in the mixture (e.g. metal particles).
According to another preferred embodiment of the invention a typical dimension (e.g. average diameter) of the particles in the mixture is essentially in the range of from about 0.75 mm to about 1 micron.
In accordance with yet another preferred embodiment, the separation arrangement is adapted for use with a mixture of fine and/or ultra fine powder of particles derived from processing used tires, and the mixture of materials to be separated comprises rubber, metal and fiber particles.
According to still another embodiment the separation arrangement is adapted for use with a mixture of particles comprising plastic and metallic materials.
In accordance with another preferred embodiment, the solid particles feed ingress means is located essentially at the top section of the separation arrangement whereas an egress means for removing the heavier particles is located essentially at the bottom section of that separation arrangement.
By yet another preferred embodiment of the present invention, the gas blown by the gas blowing means is air and the blowing velocity is proportional to the density of the lighter falling particles.
According to still another embodiment of the invention, the separation arrangement further comprises sieving means adapted to sort particles of the heavier material reaching the bottom section of the arrangement in accordance with their physical size.
According to another aspect of the present invention there is provided a method for use in a separation process of fine powders. The method comprises the steps of:
providing a mixture of at least two different materials which comprises a plurality of solid particles, preferably having an average typical size of less than 0.75 mm;
feeding the plurality of solid particles into a separation chamber;
allowing the plurality of solid particles to free fall within the separation chamber;
extracting particles of one of the at least two different materials from among the falling solid particles;
collecting the extracted particles; and
removing solid particles of the at least one other different material of the mixture out of the separation chamber.
In accordance with an embodiment of this aspect of the invention the extracted particles are of the lighter material from among the materials comprising the mixture, and preferably, the step of extracting the particles comprises blowing gas onto the falling solid particles where the gas is blown in a direction which is essentially perpendicular to the direction of the solid particles' fall.
A better understanding of the present invention is obtained when the following non-limiting detailed examples are considered in conjunction with the accompanying drawings.
Let us consider first
Let us now consider another example illustrated in
The present invention has been described using non-limiting detailed descriptions of preferred embodiments that are provided by way of example and are not intended to limit the scope of the invention. It should be understood that features described with respect to one embodiment may be used with other embodiments. Variations of embodiments described will occur to persons of the art. Furthermore, the terms “comprise”, “include”, “have” and their conjugates shall mean, when used in the claims “including but not necessarily limited to”. Also when term was used in the singular form it should be understood to encompass its plural form and vice versa, as the case may be.
Number | Date | Country | Kind |
---|---|---|---|
193633 | Aug 2008 | IL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2009/000795 | 8/12/2009 | WO | 00 | 4/29/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/020983 | 2/25/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1383441 | Sturtevant | Jul 1921 | A |
2803344 | Morrison | Aug 1957 | A |
2885077 | Herron | May 1959 | A |
4172028 | Dunn | Oct 1979 | A |
4950388 | Stafford | Aug 1990 | A |
5032256 | Vickery | Jul 1991 | A |
5299744 | Garmater | Apr 1994 | A |
5570789 | Dunn | Nov 1996 | A |
5755388 | Yen et al. | May 1998 | A |
5887803 | Dietrich et al. | Mar 1999 | A |
6308903 | Mucciacciaro et al. | Oct 2001 | B1 |
6325215 | Anthony | Dec 2001 | B1 |
6359246 | Essig et al. | Mar 2002 | B1 |
7104403 | Stephens et al. | Sep 2006 | B1 |
7641134 | Bohm et al. | Jan 2010 | B2 |
20020014440 | Oder et al. | Feb 2002 | A1 |
20050000863 | Lean et al. | Jan 2005 | A1 |
20110203974 | Logunov et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
2003 001632 | Jan 2003 | JP |
2004 136207 | May 2004 | JP |
2008 104954 | May 2008 | JP |
486 790 | Oct 1975 | SU |
WO 0061292 | Oct 2000 | WO |
WO 2008075470 | Jun 2008 | WO |
Entry |
---|
International Search Report mailed Dec. 18, 2009 in International Application PCT/IL2009/000795, filed Dec. 8, 2009. |
Number | Date | Country | |
---|---|---|---|
20110203974 A1 | Aug 2011 | US |