Device and method for strengthening and rehabilitating the ankle joint

Information

  • Patent Grant
  • 10434365
  • Patent Number
    10,434,365
  • Date Filed
    Wednesday, October 26, 2016
    8 years ago
  • Date Issued
    Tuesday, October 8, 2019
    5 years ago
  • Inventors
  • Original Assignees
    • Secure linx Corporation (Novi, MI, US)
  • Examiners
    • Urbiel Goldner; Gary D
    Agents
    • Heed; Thomas P.
    • HeedLawGroup
Abstract
The present invention comprises a device for strengthening, improving range of motion and/or improving flexibility in ankle joints and/or rehabilitating injured ankle joints. The device comprises a structure or frame, at least one resistance mechanism connected to the structure or frame and a support platform connected to the at least one resistance mechanism for supporting a patient's foot. Rotating, flexing, inverting and/or everting the patient's foot connected to the ankle of interest, which results in pressure applied to the support platform by the patient's foot, increases and/or decreases tension in the at least one resistance mechanism. A variety of stretches and/or strengthening and/or rehabilitating exercises may be performed with the device. The support platform is suspended within the frame on the at least one resistance mechanism and, as a result, the support platform may be rotated, flexed, inverted and/or everted in an infinite number of directions.
Description
FIELD OF INVENTION

The invention relates to a device for strengthening and/or improving the range of motion and/or flexibility of a patient's ankle joint. The device may be used to prevent and/or treat ankle injuries. The device facilitates a variety of stretches, strength building exercises and rehabilitating exercises.


BACKGROUND OF INVENTION

Ankle strains and sprains are a common injury. A typical person's, or even a typical athlete's, ankle strength is insufficient for many modern sporting and recreational activities. Sports such as basketball, tennis, football, baseball, and soccer require quick pivots and foot plants, often resulting in ankle strains and sprains. Similarly, many exercises such as biking, hiking, running, and climbing can result in ankle strains and sprains. For teens and young adults, more extreme activities such as skiing and skateboarding can injure the ankle.


Even though ankle injuries are ubiquitous, there are a dearth of devices and methods that are intended to strengthen and/or rehabilitate the ankle. As a result, many people repeatedly injure their ankles and take prolonged periods of time to recover from such injuries.


SUMMARY OF THE INVENTION

This summary is intended to disclose the present invention, a device for strengthening and rehabilitating the ankle joint. The embodiments and descriptions are used to illustrate the invention and its utility, and are not intended to limit the invention or its use.


The present invention comprises a device for strengthening, improving range of motion and/or improving flexibility in ankle joints and/or rehabilitating injured ankle joints. The device comprises structure or frame, at least one resistance mechanism connected to the structure or frame and a substantially planar, rigid support platform connected to the at least one resistance mechanism for supporting the patient's foot. Rotating, flexing, inverting and/or everting the foot connected to the ankle of interest, which results in pressure applied to the substantially planar, rigid support platform by the subject foot, increases and/or decreases the tension in the at least one resistance mechanism. A variety of stretches and/or strengthening and/or rehabilitating exercises may be performed with the device. The substantially planar, rigid support platform is suspended within the frame on the at least one resistance mechanism and, as a result, the substantially planar, rigid support platform may be rotated, flexed, inverted and/or everted in an infinite number of directions.


The figures and the detailed description which follow more particularly exemplify these and other embodiments of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated with 8 figures on 9 sheets.



FIG. 1 illustrates a perspective view of one embodiment of the present invention;



FIG. 2 illustrates a top partial view of one embodiment of the present invention;



FIG. 3 illustrates a partial cutaway view of one embodiment of the present invention;



FIG. 4 illustrates a bottom cutaway view of one embodiment of the present invention;



FIGS. 5A and 5B illustrate side views of one embodiment of the present invention;



FIGS. 6A and 6B illustrate front and rear views, respectively, of one embodiment of the present invention;



FIG. 7 illustrates a side view of one embodiment of the present invention;



FIG. 8 illustrates a partial cutaway view of one embodiment of the present invention.





The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, which are as follows.


While the invention is amenable to various modifications and alternative forms, specifics thereof are shown by way of example in the drawings and described in detail herein. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DETAILED DESCRIPTION OF THE DRAWINGS

The following descriptions are not meant to limit the invention, but rather to add to the summary of invention, and illustrate the present invention, by offering and illustrating various embodiments of the present invention, a device for strengthening and rehabilitating the ankle joint. While embodiments of the invention are illustrated and described, the embodiments herein do not represent all possible forms of the invention. Rather, the descriptions, illustrations, and embodiments are intended to teach and inform without limiting the scope of the invention.


A device 10 for strengthening, improving range of motion and/or flexibility, and/or rehabilitating an injured ankle joint comprises a frame 12, at least one resistance mechanism 14 connected to a frame 12, and a substantially planar, rigid support platform 16 connected to the at least one resistance mechanism 14 for supporting the foot connected to the ankle joint of interest.


The device 10 may be used to prevent an ankle injury by improving the strength, range of motion and/or flexibility of the ankle joint, and muscles, tissues, tendons, etc., facilitating movement of the ankle joint. The device 10 may be further used to rehabilitate an injured ankle joint, e.g., and without limitation, a sprained ankle.


The frame 12, in some embodiments, comprises a base 20 with a first major surface 22 that faces upward and a second major surface 24 that faces downward. Base 20 can be of any suitable shape, but in some embodiments, such as the embodiment shown in FIG. 1, base 20 comprises a rectangular shape. The skilled artisan will readily recognize alternate shapes for the base 20 which will provide equivalent results and function, for example and without limitation, a square. Each of the equivalent base 20 shapes are within the scope of the present invention.


The rigid structure 12 further comprises at least two opposing side walls 30a, 30b extending upwardly from the base 20, as shown in FIG. 1. In at least the embodiment shown in FIG. 1, the two opposing side walls 30a, 30b extend upwardly from the first major surface 22 of the base 20 at or substantially near opposite sides. In some embodiments, the two walls 30a, 30b are generally parallel to one another. In embodiments, such as the embodiment of FIG. 1, two additional opposing walls, a toe wall 30c, and a heel wall 30d extend upwardly from the first major surface of the base 20. In some embodiments toe and heel walls 30c, 30d are generally parallel to one another. In the illustrated embodiment, the side walls 30a, 30b are arranged substantially perpendicularly to the toe and heel walls 30c, 30d, though other configurations are certainly possible and within the scope of the present invention. In at least one embodiment, the number of opposing walls extending upwardly from the base 20 is equivalent to the number of sides of the base 20. Thus, in the illustrated embodiment, the number of sides of the base 20 is four and the number of opposing walls 30a, 30b, 30c and 30d is also four.


Frame 12 may be, as illustrated in FIG. 1, a rigid non-collapsible structure. In alternative embodiments, the frame 12 may comprise sides 26 that are either removeable and/or collapsible to facilitate storage and/or transport by reducing the size and footprint of the disassembled or collapsed frame 12.



FIGS. 2 and 3 illustrate alternate embodiments for collapsible frame 12. FIG. 2 illustrates a top view of device 10 comprising frame 12 having a rectangular shape with four sides and, as in FIG. 1, four opposing walls 30a, 30b, 30c, 30d. Each of the opposing walls 30a, 30b, 30c, 30d further comprise one, or two or more, hinges 100 attached to the first major surface 22 of base 20 and to the corresponding opposing wall 30a, 30b, 30c, 30d. This allows the opposing walls 30a, 30b, 30c, 30d to be folded downward toward the first major surface 22 of base 20, thus collapsing the profile of the device 10 for storage and/or transport. The skilled artisan may recognize that one hinge 100 for each opposing wall 30a, 30b, 30c, 30d may suffice, or that more two or more hinges 100 may be preferred. Each such configuration is within the scope of the present invention.


According to this alternative embodiment, when the device 10 is required for use, opposing walls 30a, 30b, 30c, 30d are rotated on the hinge(s) 100 away from the first major surface 22 of base 20 and locked in place by methods well known to the skilled artisan. In this manner, collapsible walls 30a, 30b, 30c, 30d are capable of rotational collapse, wherein the walls lie substantially flat against the first major surface 22 of base 20 and locking deployment, wherein the opposing walls rise at an angle, preferable a right angle though other angles will also work, above the first major surface 22 of base 20.



FIG. 3 illustrates another type of hinging and locking mechanism 110 that may be used to allow collapsible rotation and locking deployment of the collapsible walls 30a, 30b, 30c, 30d. Here, mechanism 110 comprises a first end 112 and a second end 114, wherein first end 112 is secured, by fasteners such as for example and without limitation screws or nuts and bolts, to the first major surface 22 of base 20 and second end 114 is secured to the proximate opposing wall, as illustrated in the partial cutaway of FIG. 3, heel wall 30d to render heel wall 30d in the illustrated deployed locked position. Wall 30a is illustrated in the deployed locked position, but in dashed lines. Mechanism 110 further comprises a central pivot 116 allowing rotation of the mechanism's first end 112 and second end 114 around pivot 116. This configuration is well known in the art, being used in many applications including, e.g., card tables and the like. Releasing the central pivot 116 allows the pivot 116 to move, as opposing wall 30a, for example, is rotated downward toward the first major surface 22 of base 20. The same process is repeated for each of the remaining opposing walls to achieve the stored, substantially flat, profile for device 10. One or more hinging and locking mechanism 110 may be employed for each collapsible wall 30a, 30b, 30c, 30d.


Returning now to FIG. 1, at least one resistance mechanism 14 is connected to each of the opposing walls 30a, 30b, 30c and 30d, and the substantially planar, rigid support platform 16 is connected to the at least one resistance mechanism 14. In at least one embodiment, the at least one resistance mechanism 14 is removably and adjustably connected to each of the walls 30a, 30b, 30c and 30d. In at least one embodiment, the at least one resistance mechanism is adjustable, as further described supra, thereby allowing the user to adjust, i.e., increase or decrease, the amount of tensional resistance achieved between the subject wall 30a, 30b, 30c, 30d and the substantially planar, rigid support platform 16. As the treatment on the joint progresses, more resistance can be added to increase the amount of tension in the device to facilitate gains in strength, flexibility, etc.


As illustrated, the at least one resistance mechanism 14 comprises resistance bands of known tension. The resistance mechanism 14 thus may be stretched or tightened in order to increase the resistance between substantially planar, rigid support platform 16 and the relevant opposing wall to which resistance mechanism 14 is connected. Similarly, resistance mechanism 14 may be loosened in order to decrease the resistance between substantially planar, rigid support platform 16 and the relevant opposing wall to which resistance mechanism 14 is connected. The resistance mechanism 14 may comprise color schemes to indicate relative tensional resistance to aid in quickly setting up the device 10. For example, lighter duty resistance mechanisms 14 may be desired for younger patients or the elderly. These lighter duty resistance mechanisms may comprise a certain identifying color, e.g., green. Medium duty resistance mechanisms 14 may comprise a different color scheme, e.g., purple. Heavy duty resistance mechanisms 14 for advance work may comprise a still different color scheme, e.g., red.


In addition to varying degrees of resistance capability in the resistance mechanisms 14, the resistance of a given resistance mechanism, e.g., a resistance band, may be modified by loosening or tightening the mechanism 14. Markings may be placed on resistance mechanisms 14 to indicate general resistance levels on the individual mechanisms 14. This will aid in accuracy and precision in training resistance levels and help in documenting the progress of the patient as treatment progresses.


In at least the embodiment shown in FIG. 1, the at least one resistance mechanism 14 comprises at least one resistance mechanism 14 connected to the opposing toe wall 30c and at least one resistance mechanism 14 connected to the opposing heel wall 30d. Further, at least two resistance mechanisms 14 may be connected to side opposing wall 30a as well as to side opposing wall 30b. These resistance mechanisms 14 are connected at a first end to substantially planar, rigid support platform 16 and, at a second end, to the relevant opposing wall 30a, 30b, 30c, 30d. As illustrated, three resistance mechanisms 14 are connected at the first end to substantially planar, rigid support platform 16 and at the second end to each side opposing wall 30a, 30b.


The skilled artisan will now readily recognize an alternative number of resistance mechanisms 14 to utilize for connecting and suspending the substantially planar, rigid support platform 16 in the described manner, each equivalent alternative being within the scope of the current invention.


Alternatively, as shown in FIG. 4, a bottom cutaway view through base 20, the resistance mechanisms 14 may be molded or otherwise fixed to the underside of the substantially planar, rigid support platform 16 and further adjustably and releasably attached to the relevant walls 30a, 30b, 30c, 30d.


With this arrangement and system, substantially planar, rigid support platform is suspended by the resistance mechanisms 14 above the first major surface 22 of base 20.


In at least one embodiment, the substantially planar, rigid support platform 16 is attached to the first end of resistance mechanism 14 and suspended between the walls 30a, 30b, 30c, 30d. In at least one embodiment, the substantially planar, rigid support platform 16 has a toe end 16a and a heel end 16b opposite the toe end. In some embodiments, the substantially planar, rigid support platform 16 may be ergonomically configured. The substantially planar, rigid support platform may include straps or other retaining devices 36 to keep the body part in a desired position relative to the substantially planar, rigid support platform. The substantially planar, rigid support platform 16 may further comprise a heel support 120 for positioning foot on the substantially planar, rigid support platform 16 and providing placement fixation on substantially planar, rigid support platform 16.


Resistance mechanisms 14 are connected to opposing walls 30a, 30b, 30c, 30d by apertures 130 therethrough. As illustrated in FIG. 1, toe and the opposing heel walls 30c, 30d each comprise a substantially vertical series of four apertures 130. The resistance mechanisms 14 are threaded through the apertures 130. If a change in resistance is desired for resistance mechanisms 14, they may be repositioned in the apertures 130 to either tighten or loosen the resistance mechanism 14 between substantially planar, rigid support platform 16 and walls 30c, 30d. Equivalent aperture 130 patterns will reveal themselves to the skilled artisan, each of which is within the scope of the present invention.


Opposing side walls 30a, 30b of FIG. 1 provide three pairs of apertures 130, wherein the pairs are each arranged substantially in a vertical configuration. This allows securing, tightening and/or loosening of each of the resistance mechanisms 14 connected between the substantially planar, rigid support platform 16 and walls 30a, 30b. Again, equivalent aperture 130 patterns will reveal themselves to the skilled artisan, each of which is within the scope of the present invention.


For example, FIGS. 5A and 58 illustrate side opposing walls 30a, 30b, respectively. In this embodiment, a pattern of three sets of four vertically arranged apertures 130 are provided. And, in the embodiment of FIGS. 6A and 68, two sets of four vertically arranged apertures 130 are illustrated through the toe and heel walls, respectively, with two apertures 130 disposed therebetween.


In certain embodiments, e.g., that of FIG. 1, the resistance mechanisms 14 may be positioned, then essentially tied off with a knot 140 which is larger in diameter than aperture 130 as is well known in the art. Knot 140 may be undone in order to reposition resistance mechanism 14, then re-knotted to secure resistance mechanism in its new position.


Alternatively, instead of knot 140, clamps or the equivalent may be engaged on the resistance mechanisms 14, wherein the clamps are located on the outer surface of the frame and are larger than the aperture 130 so that the clamps are prevented from moving through the aperture 130 when resistance is applied by the clamped resistance mechanisms 14. In this alternative embodiment, the clamps may be easily released allowing the user to either tighten or loosen the resistance mechanism 14 and then re-clamped when the desired resistance is achieved.



FIG. 7 illustrates an alternative repositioning key mechanism for opposing wall 30b. Here, at least one key mechanism 200 is provided. Key mechanism comprises at least one aperture 130′, wherein the at least one aperture 130′ receives the resistance mechanism 14 for securing therein as described above in connection with FIG. 1 et seq. At least one access aperture 210 is in operative communication with the at least one aperture 130′. At least one access aperture 210 comprises an aperture size that is larger than the at least one aperture 130′, wherein the aperture size of the at least one access aperture 210 is sufficiently large to accommodate the resistance mechanism's knot 140 or the alternative releasable clamp therethrough. This allows the resistance mechanism 14 to be readily and easily positioned, then slid into aperture 130′ where resistance mechanism 14 is secured by knot 140 or clamp.


As illustrated in FIG. 7, three key mechanisms 200 are provided, wherein each key mechanism 200 comprises four apertures 130′ in substantially vertical alignment. Each of the four apertures 130′ are in operative communication with the adjacent aperture(s) 130′ by a channel 220 which allows sliding movement and repositioning of the resistance mechanisms 14 therethrough, with subsequent securement of the repositioned resistance mechanism 14 in one of the apertures 130′. Each key mechanism 200 further comprises at least one access aperture 210. In each of the three illustrated key mechanisms 200, the access aperture 210 is illustrated in a different position relative to the apertures 130′. Thus, a single access aperture 210 may be used for the individual key mechanisms 200. Alternatively, more than one access aperture 210 may be used for individual key mechanisms. A preferred embodiment may comprise having one access aperture 210 for each of the at least one apertures 130′ in each key mechanism. This arrangement allows the operator or user to easily position or reposition resistance mechanisms 14 within the key mechanism 200 without unknotting or otherwise undoing the securing mechanism used to secure the resistance mechanism 14 with aperture 130′.


Returning now to FIG. 4, a visible light emitting device 300 may be disposed on the underside of the substantially planar, rigid support platform 16 which is capable of emitting light in a line directed toward at least one of the walls 30a, 30b, 30c, 30d. The contact point of the light with the wall allows the user, and/or healthcare provider and/or trainer, to determine how much rotation, flexion, eversion etc., that the substantially planar, rigid support platform 16 is undergoing. This also aids in tracking progress of the training and/or treatment over time. To aid in this tracking, a grid of vertical and horizontal lines may be provided on at least one of the walls 30a, 30b, 30c, 30d, preferably the wall that is receiving the emitted light beam from the light emitting device 300. Thus, the movement of the light along the grid may be used to determine relative motion, flexibility, etc., during a session as well as track progress over multiple sessions. The grid may be further numbered to facilitate ascertaining reference points, e.g., by identifying numbered cells or intersection points of the grid lines. The grid may be permanently affixed to the subject wall 30a, 30b, 30c, 30d or a removable grid may be used that may facilitate note taking and removal after the session is complete and placed in the patient's records for later review. This grid is best illustrated in FIG. 8.


A preferred mounting location for light emitting device 300 is on the toe area 16a of substantially planar, rigid support platform 16. This focuses the light beam on the toe wall 30c whereupon the grid described above may be disposed.


Rehabilitation device 10 has an initial state and at least one active state. When a person places a body part such as a hand or foot onto the substantially planar, rigid support platform without any weight, the device is in the initial state. When the person rotates the injured joint within the device, the device is in an active state where tension from the resistance bands increases depending on the movement of the injured joint. For example, ankle joints can be worked in the sagittal plane (dorsiflexion, plantarflexion), frontal plane (inversion, eversion) and the horizontal plane (abduction, adduction) or motions can be combined to work more function tri-plane motions of the foot for pronation (dorsiflexion, abduction, eversion) and supination (plantarflexion, adduction, inversion). The resistances bands can be adjusted at any level to modify the specific amount of tension the patient or caregiver needs for the targeted goal of rehabilitation. All of the ankle planes can be performed with any specific thickness of band and the amount of tension can be adjusted to the band. The lever arm of the resistance bands can be lengthened or shortened to allow it to be closer to the axis of rotation.


In addition, the resistance mechanisms 14 may be positioned in apertures 30 or 130′ so that the resistance mechanisms 14 for opposing side walls 30a, 30b are substantially at the same height, rendering the substantially planar, rigid support platform 16 in an attitude that is substantially flat. In other cases, the substantially planar, rigid support platform 16 may be presented to the patient with an attitude or positioning that is tilted in one direction, e.g., with an inversion or an eversion attitude. This may be achieved by lowering the resistance mechanism 14 positioning and height on one of the side walls, 30a, 30b, by using a lower set of apertures 130, 130′, while maintaining the resistance mechanisms 14 position and height on the other side wall. This causes the substantially planar, rigid support platform 16 to take on tilted position and allows the user to focus on one particular side or area of the ankle.


This device allows the patient and caregiver a safe, controlled environment for tissue healing of the foot and ankle. Muscles, tendons, ligaments, capsules and cartilage of the knee, lower leg, ankle and foot can be rehabilitated for various diagnosed injuries or impairments. Muscles and tendons of the anterior lower leg superficial to deep include: tibialis anterior, extensor digitorum longus, extensor hallusis longus, and fibularis tertius. The lateral compartment is composed of the fibularis longus and fibularis brevis. Muscles of the posterior lower leg include: gastrocnemius, soleus, plantaris, popliteus, flexor hallucis longus, flexor digitorum longus, and tibialis posterior.


Common ligaments that will benefit from applied modified tension include: anterior inferior tibiofibular ligament, anterior talofibular ligament, calcaneofibular ligament, deltoid ligament and the plantar fascia.


Whatever the desired strengthening and/or rehabilitation goal, the patient and caregiver have many options when applying exercise. The device will improve coordination, increase muscle recruitment, improve range of motion, decrease edema, allow for safe tissue repair, inhibit pain, improve circulation, improve endurance, increase strength and improve balance.


The device will also assist in the stimulation of cellular metabolism for the production of type 1 collagen and glycosaminoglycan. This new tissue will assist in repairing damaged tissue and increase the tensile properties required by every day function tasks. The device is easily adjustable to modify tension to allow the correct exercise dosage. This will allow the correct healing to take place. All muscles, tendons, ligaments, capsules, cartilage of the ankle and foot will be allowed to start healing with low resistance repetitive motion around a normal physiological axis. In some embodiments, the device can be used to assist in neurological adaptation and nerve stimulation.


In some embodiments, at least the base 20 comprises a suitable material or surface features that allow for increased stability and prevent unintended movement of the base. In at least one embodiment, the second surface 24 of the base comprises a tacky layer of material, a rubberized surface, and/or a plurality of surface features that prevent unintended movement of the base. In some embodiments, the base 20 is permanently or removably fixed to another structure, such as the floor or a weight bench.


Although all four walls 30a, 30b, 30c, 30d are the same height in FIG. 1, in some embodiments, the walls may have different heights. For instance, where the device is used for ankle joints, wall 30b at the toe end of the substantially planar, rigid support platform 16 may have a greater height than wall 30a at the heel end of the substantially planar, rigid support platform 16. The different heights allow the foot to be placed on substantially planar, rigid support platform 16 at a more comfortable angle. This is best illustrated in FIGS. 5A and 5B.


In some embodiments, the at least one resistance mechanism includes a strain gauge or other suitable measuring device that measures the amount of tension in the at least one resistance mechanism. In some embodiments, an analog or digital indicator of the tension is mounted on the frame 12. In some embodiments, the analog or digital indicator is in communication with a strain gauge. The digital indicator helps the patient and/or a caregiver to determine (and record) the progress of the injured joint as well as providing specific targets for the current and upcoming therapeutic sessions.


The substantially planar, rigid support platform 16 can be fabricated from a wide variety of durable, structural materials, such as wood, steel, aluminum, zinc, magnesium, poly(methyl-methacrylate) (“PMMA”), polycarbonate (“PC”), acrylonitrile butadiene styrene (“ABS”), polypropylene (“PP”), high-density polyethylene (“HDPE”), and low-density polyethylene (“LDPE”). Likewise, the base 20 and the frame 12 can be fabricated from a wide variety of durable, structural materials, such as such as wood, steel, aluminum, zinc, magnesium, poly(methyl-methacrylate) (“PMMA”), polycarbonate (“PC”), acrylonitrile butadiene styrene (“ABS”), polypropylene (“PP”), high-density polyethylene (“HDPE”), and low-density polyethylene (“LDPE”).


The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the present specification.

Claims
  • 1. A device for strengthening and rehabilitating an ankle joint of a user, the device comprising: a frame comprising a base,at least two opposing side walls,a toe wall, anda heel wall;wherein the base has a first major surface;wherein the at least two opposing side walls extend upwardly from the base and comprise a first wall and a second wall opposite and parallel to the first wall; wherein the toe wall extends upwardly from the base;wherein the heel wall extends upwardly from the base and is opposite and parallel the toe wall;a plurality of elastic resistance elements; anda substantially planar, rigid support platform, sized and configured for receiving and supporting a foot of the user thereon,the substantially planar, rigid support platform comprising a toe end, oriented to be closest to the toe wall, and a heel end opposite the toe end, oriented to be closest to the heel wall,wherein at least one of the plurality of elastic resistance elements adjustably and releasably attaches the heel end to the heel wall,wherein a different at least one of the plurality of elastic resistance elements adjustably and releasably attaches the toe end to the toe wall, andwherein another different at least one of the plurality of elastic resistance elements adjustably and releasably attaches to the first wall, the substantially planar, rigid support platform, and the second wall; andwherein the first wall, the second wall, the toe wall, and the heel wall can each rotate about a hinge attaching each respective wall to the base.
  • 2. The device of claim 1, further comprising at least one aperture through each of the first wall, the second wall, the toe wall and the heel wall, and whereby the respective at least one of the plurality of elastic resistance elements are respectively releasably and adjustably secured.
  • 3. The device of claim 2wherein a force required to move the substantially planar, rigid support platform can be increased by detaching the respective at least one of the plurality of elastic resistance elements from a respective at least one aperture, and then stretching and attaching the respective at least one of the plurality of elastic resistance elements to a different at least one aperture further disposed from the substantially planar, rigid support platform (“tightening”), andwherein the force required to move the substantially planar, rigid support platform can be decreased by detaching the respective at least one of the plurality of elastic resistance elements from the respective at least one aperture, and then loosening and attaching the respective at least one of the plurality of elastic resistance elements to another different at least one aperture more closely disposed to the substantially planar, rigid support platform (“loosening”).
  • 4. The device of claim 3 wherein the force required to move the substantially planar, rigid support platform can be varied by at least one of the following actions: connecting another respective elastic resistance element between the substantially planar, rigid support platform and the respective walls, removing a respective at least one of the plurality of elastic resistance elements which connect the substantially planar, rigid support platform to the respective walls, tightening the respective at least one of the plurality of elastic resistance elements, or loosening the respective at least one of the plurality of elastic resistance elements.
  • 5. The device of claim 3, further comprising a grid disposed on at least one of the first and second walls, the toe wall and the heel wall, said grid providing guidance for tightening and loosening the plurality of elastic resistance elements.
  • 6. The device of claim 4, wherein the substantially planar, rigid support platform is configured to resist the user's foot when the user attempts to move the substantially planar, rigid support platform with the user's foot.
  • 7. The device of claim 1, wherein the first wall, the second wall, the toe wall, and the heel wall are permanently and durably fixed to the base.
  • 8. The device of claim 1, wherein the first wall, second wall, the toe wall and the heel wall can be detached from the base.
  • 9. The device of claim 1, further comprising a means for tracking the movement of the substantially planar, rigid support platform.
  • 10. The device of claim 9, wherein the tracking means is comprised of at least one light-emitting diode.
  • 11. The device of claim 1, wherein the substantially planar, rigid support platform is fabricated from at least one of wood, steel, aluminum, zinc, magnesium, poly(methyl-methacrylate) (“PMMA”), polycarbonate (“PC”), acrylonitrile butadiene styrene (“ABS”), polypropylene (“PP”), high-density polyethylene (“HDPE”), and low-density polyethylene (“LDPE”).
  • 12. The device of claim 1, wherein the frame is fabricated from at least one of wood, steel, aluminum, zinc, magnesium, poly(methyl-methacrylate) (“PMMA”), polycarbonate (“PC”), acrylonitrile butadiene styrene (“ABS”), polypropylene (“PP”), high-density polyethylene (“HDPE”), and low-density polyethylene (“LDPE”).
  • 13. The device of claim 1, wherein the base is fabricated from at least one of wood, steel, aluminum, zinc, magnesium, poly(methyl-methacrylate) (“PMMA”), polycarbonate (“PC”), acrylonitrile butadiene styrene (“ABS”), polypropylene (“PP”), high-density polyethylene (“HDPE”), and low-density polyethylene (“LDPE”).
  • 14. A method for strengthening and/or rehabilitating an ankle joint of a user, the method comprising: providing a frame comprising a base,at least two opposing side walls;a toe wall, anda heel wall;wherein the base has a first major surface; wherein the at least two opposing side walls extend upwardly from the base and comprise a first wall and a second wall opposite and parallel to the first wall; wherein the toe wall extends upwardly from the base; wherein the heel wall extends upwardly from the base and is opposite and parallel to the toe wall;allowing each of the first wall, the second wall, the toe wall, and the heel wall to rotate about a hinge attaching each respective wall to the base;providing a plurality of resistance mechanisms adjustably and releasably attached respectively to each of the first and second walls at a positional height above the base, and respectively to each of the toe wall and the heel wall;providing a substantially planar, rigid support platform, sized and configured for receiving and supporting a foot of the user thereon, the substantially planar, rigid support platform comprising a toe end, oriented to be closest to the toe wall, and a heel end opposite the toe end, oriented to be closest to the heel wall,wherein at least one of the plurality of resistance mechanisms connects the heel end to the heel wall,wherein a different at least one of the plurality of resistance mechanisms connects the toe end to the toe wall, andwherein another different at least one of the plurality of resistance mechanisms connects to the first wall, the substantially planar, rigid support platform, and the second wall;positioning the user's foot on the substantially planar, rigid support platform; and instructing the user to move the user's foot to engage and manipulate the user's ankle joint by applying directional pressure to the substantially planar, rigid support platform and engaging at least one of the plurality of resistance mechanisms.
RELATED APPLICATIONS

This application is a continuation-in-part of application Ser. No. 13/795,774, filed Mar. 12, 2013, and entitled, “Rehabilitation Device for Strengthening and Improving Range of Motion in Joints.” This application claims benefit of provisional application 61/693,600, filed Aug. 27, 2012, entitled “Rehabilitation Device for Strengthening and Improving Range of Motion in Joints”. Both applications are incorporated herein, by reference.

US Referenced Citations (72)
Number Name Date Kind
1117796 Coulter Nov 1914 A
3020046 Hotas Feb 1962 A
3356366 Barthel Dec 1967 A
4569515 Gordon Feb 1986 A
4703928 Escher Nov 1987 A
4707934 Hart Nov 1987 A
4876804 Hart Oct 1989 A
5016874 Boardman May 1991 A
5035421 Scheller Jul 1991 A
5704882 Coates Jan 1998 A
5749668 McIlvain May 1998 A
5857944 Cone Jan 1999 A
5925000 Marciniak Jul 1999 A
5941802 Kiser Aug 1999 A
5947875 Cone Sep 1999 A
5957816 Staffa Sep 1999 A
6053845 Publicover Apr 2000 A
6063013 Vathappallil May 2000 A
6071213 Raasch Jun 2000 A
6217488 Bernardson Apr 2001 B1
6277057 Hayden Aug 2001 B1
6283897 Patton Sep 2001 B1
6599198 Ettenhofer Jul 2003 B2
6676579 Lin Jan 2004 B1
6821235 Johnson Nov 2004 B1
6942487 Corbalis Sep 2005 B2
7150704 Schaeffer Dec 2006 B2
7192410 Rodgers Mar 2007 B1
7309303 Proctor Dec 2007 B1
7322914 Vittone Jan 2008 B1
7335167 Mummy Feb 2008 B1
7381168 Bowser Jun 2008 B2
7458924 Anderson Dec 2008 B1
7462142 Gordon Dec 2008 B1
7481751 Arnold Jan 2009 B1
7666126 Rempe Feb 2010 B2
7758471 Nelson Jul 2010 B2
7762927 Gordon Jul 2010 B1
D631107 Gillis Jan 2011 S
7935026 McSorley May 2011 B2
8083654 MacDonald Dec 2011 B1
8202205 Reade Jun 2012 B2
8206266 Hall Jun 2012 B2
8360940 Kole Jan 2013 B2
8403817 Ferguson Mar 2013 B2
8585558 Chen Nov 2013 B2
8657696 Gurley Feb 2014 B1
8734297 Chen May 2014 B2
8968110 Bapst Mar 2015 B2
9630040 Louis Apr 2017 B1
20020137598 Publicover Sep 2002 A1
20040009850 Teff Jan 2004 A1
20040121883 Publicover Jun 2004 A1
20050107226 Monda May 2005 A1
20060116242 Publicover Jun 2006 A1
20060135320 Chen Jun 2006 A1
20060135321 Chen Jun 2006 A1
20070004559 Alexander Jan 2007 A1
20070004560 Nelson Jan 2007 A1
20080076638 Publicover Mar 2008 A1
20080269019 Lovley, II Oct 2008 A1
20080269021 Publicover Oct 2008 A1
20080318744 Barra Dec 2008 A1
20090005187 Schechter Jan 2009 A1
20090270231 Hall Oct 2009 A1
20100279835 Ozawa Nov 2010 A1
20100286575 Ochi Nov 2010 A1
20110136597 Gordon Jun 2011 A1
20120142500 Ronan Jun 2012 A1
20120252644 Reade Oct 2012 A1
20120295763 Lin Nov 2012 A1
20140018218 Chen Jan 2014 A1
Related Publications (1)
Number Date Country
20170043211 A1 Feb 2017 US
Provisional Applications (1)
Number Date Country
61693600 Aug 2012 US
Continuation in Parts (1)
Number Date Country
Parent 13795774 Mar 2013 US
Child 15335169 US