Device and Method for Supplying Lubricating Oil

Information

  • Patent Application
  • 20080257648
  • Publication Number
    20080257648
  • Date Filed
    February 11, 2006
    18 years ago
  • Date Published
    October 23, 2008
    16 years ago
Abstract
The invention relates to a device for feeding lubricating oil to an internal combustion engine. This device comprises a lubricating oil pump and an oil pressure regulating apparatus. The lubricating oil pump is designed as a reciprocating piston valve pump and the oil pressure regulating apparatus is designed as a multistage oil pressure regulating apparatus.
Description

The invention relates to a device for supplying an internal combustion engine of a motor vehicle with lubricating oil, with a lubricating oil pump and an oil pressure regulating apparatus.

    • In lubricating oil pumps of an internal combustion engine of a motor vehicle the delivery volume is customarily designed for the most unfavorable case of hot idling. This design takes the fact into account that given high oil temperature and a correspondingly low oil viscosity as well as a low speed of the internal combustion engine the lubricating oil supply must nevertheless be ensured. This has the result that in all other operating states the lubricating oil pump delivers too large an amount of supplied lubricating oil, that is, it is “designed too large”. Vane cell pumps with an adjustable delivery amount offer the possibility of carrying out a variable regulation of the volume current. Conventional vane cell pumps can be combined with a multistage pressure regulation so that a lubricating oil supply device is present whose oil pressure can be adjusted and that can be roughly adapted to different operating states.


The invention has the problem of creating a robust and economical device for supplying an internal combustion engine with lubricating oil that allows a good adaptation to the different operating states of the internal combustion engine.


This problem is solved in accordance with the invention in a device of the initially cited type in that the lubricating oil pump is designed as a reciprocating piston valve pump and the oil pressure regulating apparatus is designed as a multistage oil pressure regulating apparatus. Since the power consumption of the lubricating oil pump for the internal combustion engine is substantially a function of the hydraulic power, namely the product of oil delivery volume current and pressure elevation, in addition to the internal friction, the solution in accordance with the invention allows an optimal adaptation of the power consumption of the lubricating oil pump to the requirement of the internal combustion engine. The concept “internal combustion engine” denotes in the context of this application the internal combustion engine itself and furthermore any accessory units. The design of the lubricating oil pump as a reciprocating piston valve pump permits a coordination of the transport volume as a function of the particular operating state of the internal combustion engine, optionally taking other parameters into account. Furthermore, the variability of the oil pressure on account of the multistage oil pressure regulating apparatus is also present so that the product of delivery volume and pressure elevation that determines the hydraulic power of the lubricating oil pump can always be influenced in such a manner that the smallest possible power consumption is present as a function of the operating state of the internal combustion engine. The reciprocating piston valve pump that can be adjusted in the delivery amount has the advantage over a conventional vane cell pump that the vanes of the internal rotor that are designed as reciprocating piston valves do not run with a relative high speed to a stroke ring, thus producing critical lubricating states but rather the reciprocating piston valves are movably arranged with their outer ends in grooves of a control ring, which control ring rotates in a stroke ring and is therefore hydrodynamically supported. The cited critical lubricating states and a correspondingly high wear therefore do not occur in the reciprocating piston valve pump used in accordance with the invention. The subject matter of the invention therefore makes a high degree of operational safety possible.


A further development of the invention provides that the coupling between the oil pressure regulating apparatus and a delivery volume adjustment apparatus of the reciprocating piston valve pump is designed to be mechanical or hydraulic. The oil pressure regulating apparatus acts on the delivery volume adjustment apparatus of the reciprocating piston valve pump in order to influence the delivered amount of lubricating oil and therewith the oil pressure. To this end the oil pressure regulating apparatus comprises a control piston that performs shifting movements as a function of the oil pressure. These shifting movements can be mechanically transferred to the delivery volume adjustment apparatus of the reciprocating piston valve pump in order to adjust the transport volume. Alternatively, it is possible that the movement of the control piston results in a shifting of a control edge, as a result of which a corresponding hydraulic pressure is supplied to a hydraulic pilot control of the reciprocating piston valve pump, as a result of which a corresponding amount of lubricating oil is delivered by the pump.


The oil pressure regulating apparatus is preferably designed as a two-stage oil pressure regulating apparatus. The required oil pressure is determined by an overriding control- or regulating apparatus and influences the oil pressure regulating apparatus in such a manner that either the lower or the higher oil pressure is available.


It is advantageous if the oil pressure regulating apparatus comprises a control piston with several, in particular two active surfaces for a loading with control pressure. If one of the active surfaces is loaded by the control pressure, this brings about a corresponding position of the control piston that results in a corresponding lubricating oil pressure. If another active surface in the surface area or additionally at least one further active surface is loaded by the control pressure, the control piston shifts into a new position with the consequence that now another oil pressure is brought about.


The control piston is preferably loaded by the control pressure and in the opposite direction by a pressure spring. Therefore, the control pressure operates counter to the force of the pressure spring, during which the control pressure brings about a corresponding position of the control piston as a function of its magnitude and the magnitude of the active surface of the control piston. The control ring of the pump is shifted in such a manner by the shifting of the control piston that a corresponding delivery volume is adjusted that for its part results in the desired oil pressure in the engine.


A multiple-way valve is preferably provided for cutting in or out the loading of the active surfaces of the control piston with the control pressure or with at least one control pressure. If a two-stage oil pressure regulating apparatus is present, a two-way valve can be used and in particular a 3/2-way pilot valve can be used.


The invention also relates to a method for supplying an internal combustion engine of a motor vehicle with lubricating oil, with a lubricating oil pump and an oil pressure regulating apparatus, especially for operating a device for the supplying with lubricating oil of the previously described type. A reciprocating piston valve pump is used as lubricating oil pump and a multistage oil pressure regulating apparatus is used as oil pressure regulating apparatus.


It is furthermore advantageous as concerns the method if the delivery volume of the lubricating oil delivered by the reciprocating piston valve pump and/or the lubricating oil pressure of the lubricating oil delivered by the reciprocating piston valve pump is/are adjusted, especially controlled or regulated, in such a manner that the power consumption of the lubricating oil pump is as low as possible, especially minimized, taking into consideration the operating state of the internal combustion engine. This adaptation of the power consumption takes place by adjusting the delivery volume of the lubricating oil while simultaneously adjusting the lubricating oil pressure.





The drawings illustrate the invention using an exemplary embodiment.



FIG. 1 shows a perspective view of a device for supplying an internal combustion engine with lubricating oil in a partially open state, a partially exploded view and with a connection installation,



FIG. 2 shows a cross section through the device of FIG. 1,



FIG. 3 shows a longitudinal section through an oil pressure regulating apparatus of the device of FIG. 1, and



FIG. 4 shows a longitudinal section through another exemplary embodiment of an oil pressure regulating apparatus of the device of FIG. 1.






FIG. 1 shows a device 100 for supplying an internal combustion engine with lubricating oil. Device 100 comprises a lubricating oil pump 101 and an oil pressure regulating apparatus 102 as well as a connection installation 115, which latter is described in detail with reference made to FIG. 3.


According to FIG. 2 device 100 comprises a common housing 103 for lubricating oil pump 101 and oil pressure regulating apparatus 102 in which housing a control element 104 is mounted that forms a control ring 105. Outer rotor 106 is rotatably mounted in control ring 105 and forms a stroke ring 107. Inner rotor 108 is located inside stroke ring 107 and supports radially movable reciprocating piston valves 109 on one end whereas the other ends of reciprocating piston valves 109 are guided in grooves of stroke ring 107. Pressure chambers 110 and suction chambers 111 are formed between each two adjacent reciprocating piston valves 109 as well as the associated surfaces of outer rotor 106 and inner rotor 108. The volume of these pressure chambers 110 and suction chambers 111 can be continuously varied by shifting the eccentric position, visible in FIG. 2, of outer rotor 6 to inner rotor 8 into a concentric position of these two components in such a manner that in the concentric position no delivery of the lubricating oil to be delivered takes place on account of the steady volumes of pressure chambers 110 and of section chambers 111 and, depending on the degree of the eccentricity, a corresponding volume of lubricating oil is delivered.


Not only lubricating oil pump 101 but also oil pressure regulating apparatus 102 are integrated into housing 103. This can be gathered from FIGS. 1 and 2.



FIG. 3 illustrates oil pressure regulating apparatus 102 in a schematic view. It comprises cylinder 3 inside material block 2, in which cylinder control piston 4 is guided in a longitudinally movable manner. Cylinder 3 comprises a first partial cylinder 18 and a second partial cylinder 19 connected to it in a longitudinal extension. Partial cylinders 18, 19 are concentric to one another. Control piston 4 comprises a first partial piston 5 and a second partial piston 6. The first partial piston 5 is guided in partial cylinder 18 and the second partial piston 6 in the second partial cylinder 19. Second partial piston 6 is followed by regulating element 7 that comprises head surface 8 that faces away from second partial piston 6 and is loaded by return spring 9 designed as pressure spring 9′. Control piston 4, that assumes a regulating task, is guided in cylinder 3 in a longitudinally shiftable manner. The diameters of partial pistons 5, 6 have different sizes, that is, first partial piston 5 has a smaller diameter than second partial piston 6. Consequently, the diameter of first partial cylinder 18 is smaller than that of second partial cylinder 19. First partial piston 5 has a first front surface 10 that faces away from second partial piston 6. First front surface 10 forms a first partial surface 11 (first active surface 11′) of a pressure surface of control piston 4. Second partial piston 6 comprises a differential surface 16 that forms a second partial surface 17 of control piston 4. Second partial surface 17 forms a second active surface 17′. Second partial surface 17 results from the difference between first front surface 10 and the cross-sectional surface of the second partial piston 6.


A first pressure connection 20 empties into first partial cylinder 18. A second pressure connection 21 empties radially into the second partial cylinder 19. A third pressure connection 24 runs into a part of cylinder 3 designed as regulating chamber 23 in which regulating element 7 is located. System pressure connection 30 conducting lubricating oil is connected to a system regulating connection 31 and to the first pressure connection 20 as well as the third pressure connection 24. System pressure connection 30 runs to the lubricating oil pressure discharge side of lubricating oil pump 101 that is not shown in FIG. 3 but is apparent from FIGS. 1, 2. System pressure connection 30 therefore stands under pump pressure. System regulating connection 31 also runs like the first pressure connection 21 to a 3/2-way valve 29. A discharge line 32 is connected to 3/2-way valve 29 which line empties into an oil catch container, e.g., an oil pan (not shown). Furthermore, a leakage line 26 is connected to discharge line 32, which leakage line empties into regulating chamber 23 in the area of regulating element 7, namely in an area between regulating element 7 and the second partial piston 6. A regulating line 25 is connected to regulating chamber 23 and runs to adjustment cylinder 33 of lubricating oil pump 101 not shown in FIG. 2.


Lubricating oil pump 101 apparent from FIGS. 1 and 2 is, as is apparent from the previous description, designed as a reciprocating piston valve pump 112. Oil pressure regulating apparatus 102 forms a multistage oil pressure regulating apparatus 113, namely a two-stage oil pressure regulating apparatus 114, on account of the two active surfaces 11′, 17′.


The following operation results: At first, the function of two-stage oil pressure regulating apparatus 14 will be discussed. In a position of the 3/2-way valve 29 for a lower system pressure level of the lubricating oil the second pressure connection 21 and the system regulating connection 31 are connected to one another. In the first pressure connection 20 and the system regulating connection 31 the system pressure brought about via system pressure connection 30 and generated by reciprocating piston valve pump 112 is present as first hydraulic pressure P1 and loads the first partial surface 11 of the first partial piston 5. This first hydraulic pressure P1 is also switched to the second pressure connection 21 via 3/2-way valve 29 and results in a second hydraulic pressure P2 that is just as great as P1. Second partial surface 17 of second partial cylinder 6 is loaded with hydraulic pressure P2. Altogether, this adjusts an active pressure Pw that acts on regulating piston 4 and brings about its longitudinal shifting counter to the force of return spring 9 until an equilibrium of force has been adjusted between active pressure Pw and the force of return spring 9. As a result of the longitudinal shifting a regulating slot 22 is closed to a greater or lesser extent in regulating chamber 23 by regulating element 7 so that the system pressure is present only in a corresponding magnitude via a regulating line 25 on adjustment cylinder 33 of reciprocating piston valve pump 112. This brings about a change of the amount of lubricating oil delivered by reciprocating piston valve pump 112. The lubricating oil pressure is adjusted to a selectable amount by means of the cited control- or regulating apparatus and the transported amount of the reciprocating piston valve pump is adjusted in such a manner thereby that a suitable supplying of the internal combustion engine is present at a low power consumption of the reciprocating piston valve pump.


If the internal combustion engine of the motor vehicle requires a certain amount of lubricating oil at a certain pressure on account of a change of the operating point, the absorption behavior of the motor changes in the direction of a greater oil pressure and thus the consequence is a reduction of pressure in system pressure connection 30. As a result, a reduced first hydraulic pressure P1 is also present on the first partial surface 11 via first pressure connection 20 and a reduced second hydraulic pressure P2 is present on the second partial surface 17 via second pressure connection 21. The resulting active pressure Pw is therefore less, so that now the force of return spring 9 prevails over active pressure P1w and a longitudinal moving of control piston 4 in the direction of return spring 9 is brought about, as a result of which regulating element 7 enlarges regulating slot 22. As a consequence thereof, the pressure loading of adjustment cylinder 33 of reciprocating piston valve pump 112 is increased via regulating line 25, so that this pump compensates its delivery to the increased requirement. The pressure drop is compensated by this increased delivery and the system pressure regulated to the desired level.


If a higher pressure level of the system pressure becomes necessary given a totally higher system load, this can be adjusted by switching 3/2-way valve 29. When 3/2-way valve 29 is switched, the hydraulic pressure P2 present on first partial surface 17 and prevailing in second partial cylinder 19 is connected to discharge line 32. At the same time system regulating connection 31 is closed. Consequently, the first hydraulic pressure P1 is present on first partial surface 11 and on the other hand the second partial surface 17 is without pressure. As a consequence, the first hydraulic pressure P1 opposes the force of return spring 9 only with a lesser force so that a longitudinal shifting of control piston 4 takes place in the pressure direction of return spring 9. As a result of this longitudinal shifting, regulating element 7 will release regulating slot 22 further. The system pressure now loads regulating line 25 via released regulating chamber 23 and regulating slot 22 so that a higher system pressure is adjusted via adjusting cylinder 33 of reciprocating piston valve pump 112. Alternatively, it is also possible that the first partial surface 11 is without pressure and only the second partial surface 17 is loaded with hydraulic pressure.


The exemplary embodiment of FIG. 4 corresponds substantially to the exemplary embodiment of FIG. 3. However, instead of a hydraulic coupling between oil pressure regulating apparatus 114 and a transport volume adjustment apparatus of reciprocating piston valve pump 112 a mechanical coupling is provided. To this extent regulating line 25, leakage line 26, adjustment cylinder 33 and the third pressure connection 24 are eliminated in FIG. 4.


The differences between the exemplary embodiment of FIG. 4 from the exemplary embodiment of FIG. 3 are presented in the following. Regarding the design of FIG. 4 the comments regarding FIG. 3 are referred to as regards the coinciding features. Control piston 4 is provided according to FIG. 4 with an oblique surface 116 standing at an angle to its direction of longitudinal movement against which surface a feeler member 118 of control ring 105 of reciprocating piston valve pump 112 rests by means of spring 117. Feeler member 118 is mounted in such a manner that it can shift according to double arrow 119. If control piston 4 shifts, feeler member 119 and therewith control ring 105 are shifted in a corresponding manner due to oblique surface 116 with the consequence that as a result the relative position of outer rotor 6 to inner rotor 8 of reciprocating piston valve pump 112 is changed. As explained above, these two components can continuously change their eccentric position into a concentric position. Therefore, control ring 105 brings about a corresponding adjustment of outer rotor 6 to inner rotor 8 as a function of the position of control piston 4, as a result of which the delivery amount of lubricating oil of reciprocating piston valve pump 112 is determined. It is preferable if a continuous possibility of adjusting the delivery amount is present.


An optimal adaptation of the power consumption of lubricating oil pump 101 to the requirements of the internal combustion engine can be achieved on account of the previously cited design of lubricating oil pump 101 as reciprocating piston valve pump 112 and of multistage oil pressure regulating apparatus 113.


LIST OF REFERENCE NUMERALS




  • 2 material block


  • 3 cylinder


  • 4 control piston


  • 5 first partial piston


  • 6 second partial piston


  • 7 regulating element


  • 8 head surface


  • 9 return spring


  • 9′ pressure spring


  • 10 first front surface


  • 11 first partial surface


  • 11′ first active surface


  • 16 differential surface


  • 17 second partial surface


  • 17′ second active surface


  • 18 first partial cylinder


  • 19 second partial cylinder


  • 20 first pressure connection


  • 21 second pressure connection


  • 23 regulating chamber


  • 24 third pressure connection


  • 25 regulating line


  • 26 leakage line


  • 29 3/2-way valve


  • 30 system pressure connection


  • 31 system regulating connection


  • 32 discharge line


  • 33 adjustment cylinder


  • 100 device


  • 101 lubricating oil pump


  • 102 oil pressure regulating apparatus


  • 103 housing


  • 104 control element


  • 105 control ring


  • 106 outer rotor


  • 107 stroke ring


  • 108 inner rotor


  • 109 piston valve


  • 110 pressure chamber


  • 111 suction chamber


  • 112 reciprocating piston valve pump


  • 113 multistage oil pressure regulating apparatus


  • 114 two-stage oil pressure regulating apparatus


  • 115 connection installation


  • 116 oblique surface


  • 117 spring


  • 118 feeler member


  • 119 double arrow


Claims
  • 1. A device for supplying an internal combustion engine of a motor vehicle with lubricating oil, with a lubricating oil pump and an oil pressure regulating apparatus, characterized in that the lubricating oil pump is designed as a reciprocating piston valve pump and that the oil pressure regulating apparatus is designed as a multistage oil pressure regulating apparatus.
  • 2. The apparatus according to claim 1, wherein the coupling between the oil pressure regulating apparatus and a delivery volume adjustment apparatus of the reciprocating piston valve pump is designed to be of mechanical and hydraulic.
  • 3. The device according to claim 1 wherein the oil pressure regulating apparatus is designed as a two-stage oil pressure regulating apparatus is designed as a two-stage oil pressure regulating apparatus.
  • 4. The device according to claim 1 wherein the oil pressure regulating apparatus comprises a control piston spool with several, especially two bearing surfaces for loading with control pressure.
  • 5. The device according to claim 1 wherein the control piston spool is loaded in one direction by the control pressure and in the opposite direction by a pressure spring.
  • 6. The device according to claim 1 wherein a multiple-way valve for cutting in or out the loading of bearing with the control pressure or with at least one control pressure.
  • 7. The device according to claim 1 wherein the reciprocating piston valve pump forms a structural unit with the oil pressure regulating apparatus.
  • 8. The device according to claim 1 wherein a common housing for the reciprocating piston valve pump and the oil pressure regulating apparatus is provided.
  • 9. A method for supplying an internal combustion engine of a motor vehicle with lubricating oil, with a lubricating oil pump and an oil pressure regulating apparatus, for operating a device in accordance with claim 1 wherein a reciprocating piston valve pump is used as a lubricating oil pump and a multistage oil pressure regulating apparatus is used as an oil pressure regulating apparatus.
  • 10. The method according to claim 9 wherein the delivery volume of the lubricating oil delivered by the reciprocating piston valve pump and/or the lubricating oil pressure of the lubricating oil delivered by the reciprocating piston valve pump is/are adjusted, controlled or regulated, in such a manner, taking the operating state of the internal combustion engine into consideration, that the power consumption of the lubricating oil pump is as low as possible, especially minimized.
  • 11. The method according to claim 1 wherein the adjusting of the delivery volume of the lubricating oil takes place by adjusting the delivery amount of the reciprocating piston valve pump and/or by adjusting the lubricating oil pressure by adjusting a pressure value from several selectable pressure stages of the oil pressure regulating apparatus.
  • 12. An apparatus for supplying oil to an internal combustion engine, comprising: a variable displacement type vane pump including biased means for eccentrically displacing a vane carrying ring thereof relative to a rotor thereof to provide first and second output flow rates; anda regulator including means defining a chamber, a spool axially displaceable in said chamber, having a first reduced section providing a bearing surface of a first area disposed at an angle to the axis of said spool cooperating with a portion of said chamber to provide a first variable volume chamber, a second reduced section providing a bearing surface of a second area disposed at an angle to the axis of said spool cooperating with a portion of said chamber to provide a second variable chamber and a third reduced section cooperating with said chamber to provide an annular chamber, means for axially biasing said spool in a first direction, tending to decrease the volumes of said variable volume chambers, a first passageway including said annular chamber intercommunicating an output of said pump in said means for displacing said vane carrying ring, a second passageway intercommunicating said first passageway and said first variable volume chamber, and a third passageway including a valve intercommunicating said first passageway and said second variable volume chamber,wherein said third reduced section of said spool is spaced a selected distance from said first and second reduced sections of said spool whereby upon closure of said valve, said spool shall obstruct said first passageway a fixed amount to correspondingly supply a volume of oil at a first pressure to said vane carrying ring and upon opening said valve said spool shall obstruct said first passageway a second amount to correspondingly supply a volume of oil at a second pressure to said vane carrying ring.
  • 13. An apparatus for supplying oil to an internal combustion engine, comprising: a variable displacement type vane pump including biased means for eccentrically displacing a vane carrying ring thereof relative to a rotor thereof to provide first and second output flow rates; anda regulator including means defining a chamber, a spool axially displaceable in said chamber, having a first reduced section providing a bearing surface disposed at an angle to the axis of said spool cooperating with a portion of said chamber to provide a first variable volume chamber, a second reduced section providing a bearing surface disposed at an angle to the axis of said spool cooperating with a portion of said chamber to provide a second variable volume chamber and a cam surface disposed at an angle relative to the axis of said spool, means for axially biasing said spool in a direction tending to decrease the volume of said variable volume chambers, a follower operatively connected to said vane control ring and engaging said cam surface of said spool, means for urging said follower into engagement with said cam surface, a first passageway intercommunicating an output of said pump and said first variable volume chamber, and a second passageway including a valve intercommunicating said first passageway and said second variable volume chamber,whereas upon closure of said valve, said spool will be displaced a first amount against the first of said biasing means to correspondingly cause said follower to displace longitudinally and eccentrically displace said vane control ring a first amount and upon opening of said valve said spool shall displace a second amount against the force of said first of said biasing means and correspondingly said follower will be displaced longitudinally a second amount and said vane controlled ring will be displaced a second amount.
  • 14. A method of controlling the operation of a variable displacement type vane pump utilizing a control ring eccentrically displaceable relative to a rotor thereof for varying the output thereof, in supplying lubricating oil to an internal combustion engine, comprising: applying oil discharged from said pump through a first passageway to said vane controlled ring, causing said vane control ring to displace eccentrically relative to said rotor;providing an axially displaceable spool having means for partially obstructing said first passageway;providing a biasing force on said spool in a first direction for at least partially obstructing said first passageway;directing oil from said first passageway to a first surface of said spool through a second passageway to provide a force opposing said biasing force, causing said spool to displace and provide a smaller obstruction to said first passageway;directing oil from said second passageway to a second surface of said spool through a third passageway to provide an additional force opposing said biasing force, causing said spool to displace additionally and thus provide a yet smaller obstruction to said first passageway; andselectively obstructing said third passageway.
Priority Claims (1)
Number Date Country Kind
102005006703.4 Feb 2005 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP06/01263 2/11/2006 WO 00 8/15/2007