The present invention relates generally to the localization and treatment of cardiac arrhythmias, and more particularly to devices and methods for the geometric determination of electrical dipole densities on the cardiac wall.
Systems used to localize the origin of cardiac arrhythmias measure potentials (e.g. in millivolts) in the cardiac chambers and localize them on a three dimensional representation of the cardiac chamber wall. The measurement of the electrical activity present on the cardiac walls is called mapping. For this purpose, a multiple electrode mapping catheter may be positioned within the heart such that multiple potentials can be simultaneously measured at different locations on the wall of the cardiac chamber without having direct wall contact (non-contact mapping). The cardiac chamber is visualized as a three dimensional structure, either directly by moving one or more mapping electrodes within the corresponding heart chamber or by importing an anatomical geometry of the cardiac chamber from an imaging device (e.g. Computed Tomography, MRI, or ultrasound). The electrical activity within the heart can be measured with the multi-electrode mapping catheter, which may be able to simultaneously measure potentials at different points in three dimensional space. In the current systems, the measured potentials from the non-contact multi-electrode mapping catheter do not directly correspond to the electrical activity on the cardiac wall as measured with an electrode with direct wall contact (contact mapping). The measured potentials of the non-contact mapping system have to be converted with computer programs and extrapolated into virtual electrograms projected on the heart chamber of the mapping system.
The current conversion methods are inaccurate, and further processing, termed regularization methods, have to be used. These regularization methods decrease spatial resolution. Another limitation of the current methods is that the provided potentials represent only the mean electrical activity that emanates from different cells, consisting of membranes separating electrical dipoles.
Since the localization of cardiac arrhythmias by the use of potentials is imprecise, the successful treatment of cardiac arrhythmias has been difficult and has demonstrated limited success and reliability. There is, therefore, a need for improved methods of localizing cardiac arrhythmias.
Several unique devices, systems, and methods for creating a database of dipole densities at a surface of a patient's heart are provided. Dipole density information can be used by a clinician to diagnose and treat heart diseases such as arrhythmias. The dipole density information is based on anatomical models of the patient's heart and mapping information recorded by multiple electrodes, such as electrodes included on the distal end of a three dimensional mapping catheter.
According to a first aspect of the invention, a device for creating a database of dipole densities at the surface of one or more cardiac chambers of a patient is provided. The device includes a first receiver that receives mapping information from multiple electrodes included in one or more mapping catheters. The electrodes are placed in a cardiac chamber of the patient's heart. The device further includes a second receiver that receives anatomical information. The anatomical information may be a generic heart model, or more preferably tissue contour and other anatomical information recorded from the patient's own heart. A dipole density module determines the database of dipole densities, in the table form d(y), where y represents the location on the heart tissue including that particular dipole density. The potential at various locations x, within a cardiac chamber and termed V(x), are recorded by the multiple electrodes. Solid angle {acute over (ω)}(x,y) represents the solid angle for a triangle projection between location x (electrode location in chamber) and y (triangle location on chamber wall). The dipole density module determines the dipole density for individual triangle shaped projections onto the cardiac chamber wall based on the following: each triangle projection at location y contributes {acute over (ω)}(x,y) times the dipole density d(y) to the potential V(x) at the point x.
In a preferred embodiment, the device comprises a software program, e.g., such as a software program loaded onto a personal computer; an ECG system; a cardiac tissue ablation system and/or an imaging system. The number of triangles determined by the dipole density module is sufficiently large (triangle area small enough) such that the dipole density for each triangle projection is relatively constant. Typically 1000 or more triangles are used in the calculations, such as a calculation based on a standard sized Left Atrium. Larger numbers of triangles are used for larger sized chambers.
In another preferred embodiment, the patient is being diagnosed and/or treated for a heart condition, such as an arrhythmia. The electrodes are included at the distal end of one or more mapping catheters and are placed into a chamber of the patient's heart to record potentials. An imaging instrument, such as an instrument that provides a generic model of a heart, or an instrument which provides an anatomical model of the patient's heart, delivers the anatomical information to the second receiver. In a preferred embodiment, the imaging instrument is one or more of: Computed Tomography; MRI; ultrasound; and an ECG system with mapping catheter.
In another preferred embodiment, the dipole density module implements an algorithm configured to assist in the creation of the database of dipole densities. The algorithm may be a progressive algorithm configured to be modified or refined to improve spatial and/or time resolution of the database. The dipole density module may determine a map of dipole densities at corresponding time intervals. A synthesis of maps represents a cascade of activation sequences of each corresponding heart beat.
In another preferred embodiment, the device includes a third receiver. The third receiver receives mapping information from one or more skin electrodes. The dipole density module uses the skin electrode signals to calculate or recalculate the database of dipole densities, using equations listed herebelow.
According to another aspect of the invention, a system for creating a database of dipole densities at the surface of one or more cardiac chambers of a patient's heart is provided. In addition to the device of the present invention, the system includes one or more of a multiple electrode catheter; an imaging instrument; an ablation device; and at least one surface or skin electrode. In a preferred embodiment, the mapping catheter is also used for ablating tissue identified by the database of dipole densities. The system includes a monitor to display the dipole density information, such as information displayed in relative geometry to the chamber of the patient's heart.
According to another aspect of the invention, a method of creating a database of dipole densities at the surface of one or more cardiac chambers of a patient's heart is provided. The method can be used to diagnose and/or treat cardiac disease. In a preferred embodiment, the method is used to diagnose and treat Atrial Fibrillation (AF). In another preferred embodiment, the method is used to detect ventricular ischemia and/or quantify myocardial function. The method includes placing an array of multiple electrodes within a chamber of the patient's heart to measure potentials. The array of multiple electrodes may or may not be repositioned to determine dipole densities.
In another preferred embodiment, the method further includes placing one or more skin electrodes. The information recorded by the skin electrodes is used to determine the database of dipole densities.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various embodiments in accordance with the present invention, and, together with the description, serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to the embodiments in accordance with aspects of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
A device for calculating surface charge densities has been described in detail in PCT International Application Number PCT/CH2007/000380 (hereinafter the '380 Patent Application) naming Scharf as inventor, filed Aug. 3, 2007, and entitled METHOD AND DEVICE FOR DETERMINING AND PRESENTING SURFACE CHARGE AND DIPOLE DENSITIES ON CARDIAC WALLS, and is incorporated by reference herein in its entirety. The present invention provides an improved device, system and method for calculating and visualizing the distribution and activity of dipole charge densities on a cardiac wall. The dipole densities are directly determined geometrically, avoiding the errors encountered using previous extrapolation algorithms.
In accordance with the present invention, provided is a device that measures and calculates a database of dipole densities d(y) on the cardiac wall. The actual measured potentials in the heart result from electrical activity of cells, which can be regarded as dipoles. The dipoles consist of ion charges on both sides of biological membranes. The use of dipole densities offers a precise representation of the electrical activity. Systems and methods in accordance with the present invention efficiently and effectively calculate the dipole densities utilizing one or more mathematical theorems. This calculation is significantly more precise than calculations of virtual potentials produced by current systems, which lose spatial precision because of the required numerical methods and the use of potentials instead of dipole densities. Systems and methods in accordance with the present invention are efficient in calculating dipole densities geometrically, such as through the use of computer systems, or similar microcontroller and/or mathematical processing equipment.
Definitions. To facilitate an understanding of the invention, a number of terms are defined below.
As used herein, the terms “subject” and “patient” refer to any animal, such as a mammal like livestock, pets, and preferably a human. Specific examples of “subjects” and “patients” include, but are not limited, to individuals requiring medical assistance, and in particular, patients with an arrhythmia such as atrial fibrillation (AF).
As used herein, the term “solid angle” is the angle subtended by a triangle on the heart wall at the position x of observation. When viewed from location x, straight lines are drawn from point x to the boundaries of the triangle, and a sphere is constructed of radius r=1 with center of x. The straight lines then define the spherical triangle on the surface of the sphere. The solid angle is proportional to the surface area of the projection of that object onto a sphere centered at the point x.
The methods and devices of the present invention have advantages over previous prior art devices.
Referring now to
The geometrical model of the cardiac chamber is processed by dipole density module 130 into multiple small triangles (triangularization). When the triangles are sufficiently small, the dipole density at each triangle can be regarded as constant. In a preferred embodiment, a standard cardiac chamber of 4-6 cm diameter is divided up into over 1000 triangles. In another preferred embodiment, the number of triangles determined by dipole density module 130 is based on the size of the heart chamber. With the electrodes positioned in a cardiac chamber by a clinician, such as an electrophysiologist, the potentials at each electrode are recorded. Each triangle is seen by the corresponding electrode under a certain solid angle. The dipole density module 130 computes the solid angle {acute over (ω)}(x,y) subtended by each triangle at position y on each electrode at position x on the multi-electrode catheter. If the dipole density at the triangle is d(y), the triangle contributes {acute over (ω)}(x,y) times d(y) to the potential V(x) at the position x on the multi-electrode catheter. The total measured potential V(x) is the sum resulting from all the triangles. A detailed description is provided in reference to
In a preferred embodiment, dipole density module 130 implements a progressive algorithm that can be modified and/or refined in order to improve spatial and/or time resolution of the database of dipole densities that are produced. The dipole densities d(y) are obtained by solving a linear system of equations. This calculation requires some care to avoid numerical instabilities. Thereby a map of dipole densities can be created at each corresponding time interval. The synthesis of the maps generates a cascade of the activation sequence of each corresponding heart beat that can be used to define the origin of the electrical activity, arrhythmias or diagnose cardiac disease.
The measuring electrodes used in the present invention are placed in the blood flow in a heart chamber, a relatively homogeneous condition, such that the mathematical analysis of the present invention is well applicable. In a preferred embodiment, skin electrodes are also implemented such that dipole density module 130 can use the information received from the skin electrodes to calculate and/or recalculate the dipole densities for the cardiac wall. The spatial resolution which can be obtained by invasive (i.e., placed in the heart chamber) multi-electrode potential measurements is limited by the number of electrodes that can be placed in any cardiac chamber, such as the Left Atrium (LA). Skin placed electrodes, such as electrodes placed on the thorax, are not as space limited. However, due mainly to the inhomogeneous structure of the body, it is difficult to localize the actual sources of the skin electrode measured potentials. A highly complicated boundary value problem must be solved with boundary conditions that are poorly known, and previous attempts at determining the “action potential” from body surface ECG (alone) have not been very successful.
The badly defined boundary value problem can be avoided by an additional measurement (in addition to the skin electrode measurements) of the multi-electrode array of the present invention. A small sinusoidal voltage Vi is applied to each electrode l=1, . . . L on the electrode array in the heart, and the resulting voltages Wk, k=1, . . . K is measured at the surface electrodes. This yields the K×L transition matrix Akl
Calculating solid angles produces the linear transformation Bln between the electrode array potentials Vl and the dipole densities dn, n=1, . . . N of N regions of the heart wall:
N is chosen to be N=K+L where K is the number of surface electrodes and L is the number of internally placed array electrodes.
Substituting equation (2) into (1) we have:
Therefore, by simultaneous measuring of the potentials of the cardiac activity with all K+L electrodes, N=K+L dipole densities of N regions on the heart wall can be calculated. This method yields a higher spatial resolution than the L array electrodes alone. In the solution of the linear system of equations (2)+(3), regularization techniques must be used (e.g. Tikhonov regularization and its modifications) in order to avoid numerical instabilities.
Referring now to
In Step 30, the dipole density d(y) can be calculated from the measured potential values and the calculated solid angles. The measurements can be repeated successively during the cardiac cycle giving a high timely resolution during each millisecond. The information of the timely dependent dipole densities can be depicted as an activation map of the corresponding heart chamber for the given heart beat. The information can be used to diagnose and/or treat a patient with a cardiac arrhythmia, such as an atrial fibrillation patient.
In a preferred embodiment, the information is used to determine cardiac wall treatment locations for lesion creation, such as a lesion created in the Left or Right atrium, by an RF, ultrasound or cryogenic ablation catheter. In another preferred embodiment, the multiple electrode mapping array is placed in a ventricle and the dipole densities are determined for the ventricular wall, such as to detect ischemia or quantify myocardial function.
Referring now to
System 500 further includes mapping catheter 310, which includes shaft 311, shown inserted into a chamber of a patient's heart, such as the Left Atrium (LA). At the distal end of shaft 311 is an electrode array 315 including multiple electrodes 316. Electrode array 315 is shown in a basket construction, but numerous other constructions can be used including multiple independent arms, spiral arrays, electrode covered balloons, and other constructions configured to place multiple electrodes into a three-dimensional space. In a preferred embodiment, any catheter with a three-dimensional array of electrodes can be used to supply the mapping information to device 100.
In this embodiment, electrodes 316 are connected to wires, not shown, but traveling proximally to cable 317, which is electrically connected to a mapping unit 210, such as an electrocardiogram (ECG) unit. ECG unit 210 includes a monitor for displaying information, such as the potentials recorded by electrodes 316, as well as the dipole density information produced by device 100. In an alternative embodiment, device 100 further includes a monitor, not shown, but configured to display one or more of: dipole density information; potentials recorded by electrodes 316; and cardiac chamber contours and other geometry information. In a preferred embodiment, dipole density and or recorded potentials information is shown in reference to a three-dimensional representation of the heart chamber into which catheter 310 is inserted. In an alternative embodiment, imaging unit 220 may include a device configured to create an image of the cardiac chamber from signals recorded from an electrode catheter, such as catheter 310.
System 500 may include a device for treating a cardiac arrhythmia, such as ablation source 230, which is electrically attached to electrodes 316 via cable 318. Alternatively or additionally, ablation source 230 can be attached to a different ablation catheter, such as a single or multiple ablation element catheter configured to deliver ablation energy such as RF energy, cryogenic energy, or other tissue disrupting energy.
As shown in
When sufficient potentials values V(x) are measured (e.g. from 10 to 10,000 with increasing number of measured potentials providing more accurate results), the dipole density d(y) at many equally distributed regions y on the cardiac wall is calculated by solving a linear equation system. By interpolation of the measured potentials (e.g. with help of splines) their number can be increased to a higher number of regions. The solid angle {acute over (ω)}(x,y) of a region is the sum of the solid angles of the individual triangles in the region on the cardiac wall. This calculation of dipole density results, such as via an automatic computer program forming at least part of dipole density module 130.
In a preferred embodiment, the results are presented in a visual, anatomical format, such as depicting the dipole densities on a geometric image of the cardiac wall in relation to time (t). This format allows a clinician, such as an electrophysiologist, to determine the activation sequence on the cardiac wall, such as to determine treatment locations for a cardiac arrhythmia. The results may be shown on a display of mapping unit 210, or on a separate unit such as a display included with device 100, display not shown but preferably a color monitor. In a preferred embodiment, the device of the present invention is implemented as, or includes, a software program that is executable by at least one processor. The software program can be integrated into one or more of: an ECG system; a cardiac tissue ablation system; an imaging system; a computer; and combinations of these.
In a preferred embodiment, the multi-electrode catheter includes at least 10 electrodes, configured to represent a three dimensional body with known geometry. The electrodes are preferably positioned in a spherical geometry, such as a spherical geometry created in a basket catheter. Elliptical electrode array geometries may be used, such as those provided in the Ensite Array Catheter, manufactured by St. Jude Medical of St. Paul Minn. In an alternative embodiment, multiple catheters are inserted into the heart chamber to provide the multiple electrodes.
In an alternative embodiment, the electrodes of the multi-electrode mapping array are repositioned during the method of determining dipole densities. Repositioning of electrodes can be beneficial to increase the number of measured potential values, if electrode positions are known. Therefore, repositioning is in concordance with adjustment of the geometry map in relation to the multi-electrode mapping catheter.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims. In addition, where this application has listed the steps of a method or procedure in a specific order, it may be possible, or even expedient in certain circumstances, to change the order in which some steps are performed, and it is intended that the particular steps of the method or procedure claims set forth herebelow not be construed as being order-specific unless such order specificity is expressly stated in the claim.
Number | Date | Country | Kind |
---|---|---|---|
68/08 | Jan 2008 | CH | national |
The present application is a continuation application of U.S. patent application Ser. No. 15/333,378 filed on Oct. 25, 2016, now U.S. Pat. No. 9,913,589, which is a continuation application of U.S. patent application Ser. No. 14/886,449 filed on Oct. 19, 2015, now U.S. Pat. No. 9,504,395, which is a continuation application of U.S. patent application Ser. No. 13/946,712 filed on Jul. 19, 2013, now U.S. Pat. No. 9,192,318, which is a continuation application of U.S. patent application Ser. No. 12/836,411, filed on Jul. 16, 2010, now U.S. Pat. No. 8,512,255, which is a 371 national stage application of Patent Cooperation Treaty Application No. PCT/162009/000071 filed Jan. 16, 2009, entitled A DEVICE AND METHOD FOR THE GEOMETRIC DETERMINATION OF ELECTRICAL DIPOLE DENSITIES ON THE CARDIAC WALL, which in turn claims priority to Swiss Patent Application 00068/08 filed Jan. 17, 2008, each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5041973 | Lebron et al. | Aug 1991 | A |
5156151 | Imran | Oct 1992 | A |
5293868 | Nardella | Mar 1994 | A |
5482472 | Garoni et al. | Jan 1996 | A |
5499981 | Kordis | Mar 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5601084 | Sheehan et al. | Feb 1997 | A |
5647367 | Lum et al. | Jul 1997 | A |
5662108 | Budd et al. | Sep 1997 | A |
5722402 | Swanson et al. | Mar 1998 | A |
5722416 | Swanson et al. | Mar 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5749833 | Hakki et al. | May 1998 | A |
5759158 | Swanson | Jun 1998 | A |
5795298 | Vesley et al. | Aug 1998 | A |
5795299 | Eaton et al. | Aug 1998 | A |
5820568 | Willis | Oct 1998 | A |
5830144 | Vesely | Nov 1998 | A |
5876336 | Swanson et al. | Mar 1999 | A |
5928228 | Kordis et al. | Jul 1999 | A |
5968040 | Swanson et al. | Oct 1999 | A |
6014590 | Whayne et al. | Jan 2000 | A |
6024703 | Zanelli et al. | Feb 2000 | A |
6066096 | Smith et al. | May 2000 | A |
6086532 | Panescu et al. | Jul 2000 | A |
6107699 | Swanson | Aug 2000 | A |
6115626 | Whayne et al. | Sep 2000 | A |
6187032 | Ohyu | Feb 2001 | B1 |
6188928 | Noren et al. | Feb 2001 | B1 |
6216027 | Willis et al. | Apr 2001 | B1 |
6216043 | Swanson et al. | Apr 2001 | B1 |
6240307 | Beatty et al. | May 2001 | B1 |
6301496 | Reisfeld | Oct 2001 | B1 |
6400981 | Govari | Jun 2002 | B1 |
6490474 | Willis et al. | Dec 2002 | B1 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6574492 | Ben-Haim et al. | Jun 2003 | B1 |
6640119 | Budd et al. | Oct 2003 | B1 |
6716166 | Govari | Apr 2004 | B2 |
6728562 | Budd et al. | Apr 2004 | B1 |
6772004 | Rudy | Aug 2004 | B2 |
6773402 | Govari et al. | Aug 2004 | B2 |
6824515 | Suorsa et al. | Nov 2004 | B2 |
6826420 | Beatty et al. | Nov 2004 | B1 |
6826421 | Beatty et al. | Nov 2004 | B1 |
6839588 | Rudy | Jan 2005 | B1 |
6895267 | Panescu et al. | May 2005 | B2 |
6939309 | Beatty et al. | Sep 2005 | B1 |
6950689 | Willis et al. | Sep 2005 | B1 |
6970733 | Willis et al. | Nov 2005 | B2 |
6978168 | Beatty et al. | Dec 2005 | B2 |
6990370 | Beatty et al. | Jan 2006 | B1 |
7187964 | Khoury | Mar 2007 | B2 |
7187973 | Hauck | Mar 2007 | B2 |
7258674 | Hillstead et al. | Aug 2007 | B2 |
7263397 | Hauck et al. | Aug 2007 | B2 |
7285119 | Stewart et al. | Oct 2007 | B2 |
7289843 | Beatty et al. | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7479141 | Kleen et al. | Jan 2009 | B2 |
7505810 | Harlev et al. | Mar 2009 | B2 |
7573182 | Savage | Aug 2009 | B2 |
7689261 | Mohr et al. | Mar 2010 | B2 |
7766838 | Yagi et al. | Aug 2010 | B2 |
7841986 | He et al. | Nov 2010 | B2 |
7918793 | Altmann et al. | Apr 2011 | B2 |
7953475 | Harlev et al. | May 2011 | B2 |
8103327 | Harlev et al. | Jan 2012 | B2 |
8147486 | Honour et al. | Apr 2012 | B2 |
8150499 | Gelbart et al. | Apr 2012 | B2 |
8208998 | Beatty et al. | Jun 2012 | B2 |
8233972 | Zhang | Jul 2012 | B2 |
8311613 | Danehorn | Nov 2012 | B2 |
8320711 | Altmann et al. | Nov 2012 | B2 |
8346339 | Kordis et al. | Jan 2013 | B2 |
8360786 | Duryea | Jan 2013 | B2 |
8364234 | Kordis et al. | Jan 2013 | B2 |
8412307 | Willis et al. | Apr 2013 | B2 |
8417313 | Scharf | Apr 2013 | B2 |
8428690 | Li et al. | Apr 2013 | B2 |
8447377 | Harlev et al. | May 2013 | B2 |
8454596 | Ma et al. | Jun 2013 | B2 |
8465433 | Zwirn | Jun 2013 | B2 |
8478388 | Nguyen et al. | Jul 2013 | B2 |
8512255 | Scharf | Aug 2013 | B2 |
8571647 | Harlev et al. | Oct 2013 | B2 |
8700119 | Scharf | Apr 2014 | B2 |
8755861 | Harlev et al. | Jun 2014 | B2 |
8825130 | Just et al. | Sep 2014 | B2 |
8825134 | Danehorn | Sep 2014 | B2 |
8918158 | Scharf | Dec 2014 | B2 |
8934988 | Persson et al. | Jan 2015 | B2 |
8948837 | Harlev et al. | Feb 2015 | B2 |
8968299 | Kauphusman et al. | Mar 2015 | B2 |
8979839 | De La Rama et al. | Mar 2015 | B2 |
8989842 | Li et al. | Mar 2015 | B2 |
9011423 | Brewster et al. | Apr 2015 | B2 |
9026196 | Curran et al. | May 2015 | B2 |
9031642 | Ghosh | May 2015 | B2 |
9037259 | Mathur | May 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9167982 | Scharf | Oct 2015 | B2 |
9186081 | Afonso et al. | Nov 2015 | B2 |
9186212 | Nabutovsky et al. | Nov 2015 | B2 |
9192318 | Scharf | Nov 2015 | B2 |
9220432 | Bukhman | Dec 2015 | B2 |
9241687 | Mcgee | Jan 2016 | B2 |
9351789 | Novichenok et al. | May 2016 | B2 |
D758596 | Perryman et al. | Jun 2016 | S |
9380953 | Houben et al. | Jul 2016 | B2 |
9474486 | Eliason et al. | Oct 2016 | B2 |
9480525 | Lopes et al. | Nov 2016 | B2 |
9486355 | Gustus et al. | Nov 2016 | B2 |
9492227 | Lopes et al. | Nov 2016 | B2 |
9492228 | Lopes et al. | Nov 2016 | B2 |
9504395 | Scharf | Nov 2016 | B2 |
9526573 | Lopes et al. | Dec 2016 | B2 |
9549708 | Mercanzini et al. | Jan 2017 | B2 |
9579149 | Kelly et al. | Feb 2017 | B2 |
D782686 | Werneth et al. | Mar 2017 | S |
9585588 | Marecki et al. | Mar 2017 | B2 |
9603651 | Ghosh | Mar 2017 | B2 |
9610024 | Scharf et al. | Apr 2017 | B2 |
9675266 | Afonso et al. | Jun 2017 | B2 |
9713730 | Mathur et al. | Jul 2017 | B2 |
9717555 | Chan et al. | Aug 2017 | B2 |
9717559 | Ditter et al. | Aug 2017 | B2 |
9757044 | Scharf et al. | Sep 2017 | B2 |
9827039 | Dandler et al. | Nov 2017 | B2 |
9913589 | Scharf | Mar 2018 | B2 |
9968268 | Scharf et al. | May 2018 | B2 |
10004459 | Werneth et al. | Jun 2018 | B2 |
10082395 | Koyrakh et al. | Sep 2018 | B2 |
20010007070 | Stewart et al. | Jul 2001 | A1 |
20020026118 | Govari | Feb 2002 | A1 |
20020128565 | Rudy | Sep 2002 | A1 |
20020165441 | Coleman et al. | Nov 2002 | A1 |
20030036696 | Willis et al. | Feb 2003 | A1 |
20030065271 | Khoury | Apr 2003 | A1 |
20030120318 | Hauck | Jun 2003 | A1 |
20030153907 | Suorsa et al. | Aug 2003 | A1 |
20030158477 | Panescu | Aug 2003 | A1 |
20030176799 | Beatty | Sep 2003 | A1 |
20030231789 | Willis et al. | Dec 2003 | A1 |
20030236466 | Tarjan et al. | Dec 2003 | A1 |
20040039312 | Hillstead et al. | Feb 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040254437 | Hauck et al. | Dec 2004 | A1 |
20050059880 | Mathias et al. | Mar 2005 | A1 |
20050101874 | Beatty et al. | May 2005 | A1 |
20050113665 | Mohr et al. | May 2005 | A1 |
20050148836 | Kleen et al. | Jul 2005 | A1 |
20050203375 | Willis et al. | Sep 2005 | A1 |
20060052716 | Beatty et al. | Mar 2006 | A1 |
20060058663 | Willis et al. | Mar 2006 | A1 |
20060058676 | Yagi et al. | Mar 2006 | A1 |
20060058692 | Beatty et al. | Mar 2006 | A1 |
20060058693 | Beatty et al. | Mar 2006 | A1 |
20060084884 | Beatty et al. | Apr 2006 | A1 |
20060084970 | Beatty et al. | Apr 2006 | A1 |
20060084971 | Beatty et al. | Apr 2006 | A1 |
20060084972 | Beatty et al. | Apr 2006 | A1 |
20060116576 | McGee et al. | Jun 2006 | A1 |
20070060832 | Levin | Mar 2007 | A1 |
20070083194 | Kunis et al. | Apr 2007 | A1 |
20070106146 | Altmann et al. | May 2007 | A1 |
20070232949 | Saksena | Oct 2007 | A1 |
20080009758 | Voth | Jan 2008 | A1 |
20080146937 | Lee et al. | Jun 2008 | A1 |
20080287777 | Li et al. | Nov 2008 | A1 |
20080319297 | Danehorn | Dec 2008 | A1 |
20090024086 | Zhang et al. | Jan 2009 | A1 |
20090076483 | Danehorn | Mar 2009 | A1 |
20090131930 | Gelbart et al. | May 2009 | A1 |
20090143651 | Kallback et al. | Jun 2009 | A1 |
20090148012 | Altmann et al. | Jun 2009 | A1 |
20090171274 | Harlev et al. | Jul 2009 | A1 |
20090264781 | Scharf | Oct 2009 | A1 |
20100076426 | de la Rama et al. | Mar 2010 | A1 |
20100094279 | Kauphusman et al. | Apr 2010 | A1 |
20100168578 | Garson, Jr. et al. | Jul 2010 | A1 |
20100256627 | Ma et al. | Oct 2010 | A1 |
20100279263 | Duryea | Nov 2010 | A1 |
20100286551 | Harlev et al. | Nov 2010 | A1 |
20100298690 | Scharf | Nov 2010 | A1 |
20110045130 | Edens et al. | Feb 2011 | A1 |
20110077526 | Zwirn | Mar 2011 | A1 |
20110092809 | Nguyen et al. | Apr 2011 | A1 |
20110118726 | De La Rama et al. | May 2011 | A1 |
20110125172 | Gelbart et al. | May 2011 | A1 |
20110172658 | Gelbart et al. | Jul 2011 | A1 |
20110201951 | Zhang | Aug 2011 | A1 |
20110213231 | Hall et al. | Sep 2011 | A1 |
20110270237 | Werneth et al. | Nov 2011 | A1 |
20120078077 | Harlev et al. | Mar 2012 | A1 |
20120082969 | Schwartz et al. | Apr 2012 | A1 |
20120136231 | Markel | May 2012 | A1 |
20120143298 | Just et al. | Jun 2012 | A1 |
20120165667 | Altmann et al. | Jun 2012 | A1 |
20120172859 | Condie et al. | Jul 2012 | A1 |
20120184863 | Harlev et al. | Jul 2012 | A1 |
20120271138 | Kordis et al. | Oct 2012 | A1 |
20120271139 | Kordis et al. | Oct 2012 | A1 |
20120310064 | Mcgee | Dec 2012 | A1 |
20130006238 | Ditter et al. | Jan 2013 | A1 |
20130085361 | Mercanzini et al. | Apr 2013 | A1 |
20130096432 | Hauck | Apr 2013 | A1 |
20130158537 | Deladi et al. | Jun 2013 | A1 |
20130165916 | Mathur | Jun 2013 | A1 |
20130172715 | Just et al. | Jul 2013 | A1 |
20130190587 | Lopes et al. | Jul 2013 | A1 |
20130197614 | Gustus et al. | Aug 2013 | A1 |
20130225983 | Willis et al. | Aug 2013 | A1 |
20130226017 | Scharf et al. | Aug 2013 | A1 |
20130245621 | Persson et al. | Sep 2013 | A1 |
20130253298 | Harlev et al. | Sep 2013 | A1 |
20130267853 | Dausch et al. | Oct 2013 | A1 |
20130274582 | Afonso et al. | Oct 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20130304062 | Chan et al. | Nov 2013 | A1 |
20130304065 | Lopes et al. | Nov 2013 | A1 |
20130310827 | Brewster et al. | Nov 2013 | A1 |
20130330701 | Rubinstein et al. | Dec 2013 | A1 |
20140024910 | Scharf et al. | Jan 2014 | A1 |
20140095105 | Koyrakh et al. | Apr 2014 | A1 |
20140121470 | Scharf et al. | May 2014 | A1 |
20140148677 | Liempde et al. | May 2014 | A1 |
20140180150 | Scharf et al. | Jun 2014 | A1 |
20140235988 | Ghosh | Aug 2014 | A1 |
20140249505 | Bukhman | Sep 2014 | A1 |
20140257069 | Eliason et al. | Sep 2014 | A1 |
20140257071 | Curran et al. | Sep 2014 | A1 |
20140275921 | Harlev et al. | Sep 2014 | A1 |
20140276733 | VanScoy et al. | Sep 2014 | A1 |
20140276746 | Nabutovsky et al. | Sep 2014 | A1 |
20140276789 | Dandler et al. | Sep 2014 | A1 |
20140358143 | Novichenok et al. | Dec 2014 | A1 |
20150038862 | Gijsbers et al. | Feb 2015 | A1 |
20150196219 | Scharf et al. | Jul 2015 | A1 |
20150208938 | Houben et al. | Jul 2015 | A1 |
20150223757 | Werneth et al. | Aug 2015 | A1 |
20150223863 | Ghosh | Aug 2015 | A1 |
20150257732 | Ryan | Sep 2015 | A1 |
20150257825 | Kelly et al. | Sep 2015 | A1 |
20150342491 | Marecki et al. | Dec 2015 | A1 |
20150366508 | Chou et al. | Dec 2015 | A1 |
20150374252 | dela Rama et al. | Dec 2015 | A1 |
20160007869 | Scharf et al. | Jan 2016 | A1 |
20160038051 | Scharf et al. | Feb 2016 | A1 |
20160051321 | Salahieh et al. | Feb 2016 | A1 |
20160100770 | Afonso et al. | Apr 2016 | A1 |
20160128771 | Ditter et al. | May 2016 | A1 |
20160128772 | Reinders et al. | May 2016 | A1 |
20160192902 | Werneth et al. | Jul 2016 | A1 |
20170035486 | Lopes et al. | Feb 2017 | A1 |
20170100049 | Scharf et al. | Apr 2017 | A1 |
20170202469 | Scharf et al. | Jul 2017 | A1 |
20170258347 | Scharf et al. | Sep 2017 | A1 |
20170311833 | Afonso et al. | Nov 2017 | A1 |
20170319180 | Henneken et al. | Nov 2017 | A1 |
20180055374 | Scharf et al. | Jan 2018 | A1 |
20180146948 | Chou et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2829626 | Sep 2012 | CA |
201223445 | Apr 2009 | CN |
201275144 | Jul 2009 | CN |
104462650 | Mar 2015 | CN |
1166714 | Jan 2002 | EP |
1760661 | Mar 2007 | EP |
1779787 | May 2007 | EP |
2051625 | Apr 2009 | EP |
2252203 | Nov 2010 | EP |
2683293 | Jan 2014 | EP |
08501477 | Feb 1996 | JP |
10137207 | May 1998 | JP |
2000510030 | Aug 2000 | JP |
2000510250 | Aug 2000 | JP |
2001070269 | Mar 2001 | JP |
2002051998 | Feb 2002 | JP |
2002113004 | Apr 2002 | JP |
2002522106 | Jul 2002 | JP |
2003511098 | Mar 2003 | JP |
2004350702 | Dec 2004 | JP |
2005536313 | Dec 2005 | JP |
2006-511296 | Apr 2006 | JP |
2008149132 | Jul 2008 | JP |
2009136679 | Jun 2009 | JP |
2011504363 | Feb 2011 | JP |
2011507656 | Mar 2011 | JP |
2014506171 | Mar 2014 | JP |
199406349 | Mar 1994 | WO |
199905971 | Feb 1999 | WO |
200007501 | Feb 2000 | WO |
200245608 | Jun 2002 | WO |
2002045608 | Jun 2002 | WO |
2003026722 | Apr 2003 | WO |
2004026134 | Apr 2004 | WO |
2006060613 | Jun 2006 | WO |
2008014629 | Feb 2008 | WO |
2009065042 | May 2009 | WO |
2009090547 | Jul 2009 | WO |
2011136867 | Nov 2011 | WO |
2012092016 | Jul 2012 | WO |
2012100184 | Jul 2012 | WO |
2012100185 | Jul 2012 | WO |
2012110942 | Aug 2012 | WO |
2012122517 | Sep 2012 | WO |
2014124231 | Feb 2013 | WO |
2014036439 | Mar 2014 | WO |
2014124231 | Aug 2014 | WO |
2014130169 | Aug 2014 | WO |
2015148470 | Oct 2015 | WO |
2016183285 | Nov 2016 | WO |
2017192769 | Nov 2017 | WO |
Entry |
---|
European Office Action dated Apr. 23, 2018 issued in corresponding European Application No. 07785075.8. |
Canadian Office Action dated Oct. 29, 2018 issued in corresponding Canadian Application No. 2829626. |
Extended European Search Report dated Dec. 5, 2018 issued in corresponding European Application No. 16793622.8. |
Canadian Office Action dated Nov. 7, 2018 issued in corresponding Canadian Application No. 2932956. |
Japanese Office Action dated Dec. 11, 2018 issued in corresponding Japanese Application No. 2018-024907, with machine translation to English. |
Extended European Search Report dated Oct. 4, 2018 issued in corresponding European Application No. 16793503.0. |
European Office Action dated Feb. 6, 2019 issued in corresponding European Application No. 14843283.4. |
Australian Examination Report dated Feb. 8, 2019 issued in corresponding Australian Application No. 2018250516. |
Australian Examination Report dated Jun. 28, 2018, issued in corresponding Australian Patent Application No. 2014318872. |
Office Action dated Apr. 27, 2016 in corresponding Canadian Application No. 2,747,859. |
Anoop Kumar Gupta, et al., “Point of View Cardiac Mapping: Utility or Futility?, Non-contact Endocardial Mapping” Indian Pacing and Electrophysiology Journal, vol. 2, No. 1, Jan. 1, 2002, pp. 20-32 XP055128732. |
Dhristoph Scharf, et al. Declaration under 37 C.F.R. 1.132, Nov. 15, 2012. |
Australian Office Action dated Feb. 26, 2018 issued in Australian Application No. 2017201560. |
Australian Office Action dated Mar. 17, 2018 issued in corresponding Australian Application No. 2013308531. |
Canadian Office Action dated Apr. 26, 2017 issued in corresponding Canadian Application No. 2932956. |
Canadian Office Action dated Jan. 22, 2018 issued in corresponding Canadian Application No. 2932956. |
Canadian Office Action dated Mar. 30, 2017 issued in corresponding Canadian Application No. 2747859. |
Canadian Office Action dated Nov. 27, 2017 issued in corresponding Canadian Application No. 2829626. |
Chinese Office Action dated Apr. 17, 2017 issued in corresponding Chinese Application No. 201480018328.4. |
Decision dated Jan. 16, 2018 issued for European Patent Application No. 09702094.5. |
Decision dated Jan. 18, 2018 issued for European Patent Application No. 13176658.6. |
International Search Report in related Application No. PCT/IB2009/000071 dated Oct. 7, 2009. |
European Office Action dated Apr. 28, 2014, issued in corresponding European Application No. 09 702 094.5-1660. |
European Office Action dated Feb. 29, 2016 issued in corresponding European Application No. 07 785 075.8-1657. |
European Office Action dated Jan. 31, 2018, issued in corresponding European Application No. 13763151.1. |
European Office Action dated Mar. 21, 2017 issued in corresponding European Application No. 07785075.8. |
Extended European Search Report dated Mar. 14, 2017 issued in corresponding European Application No. EP14843283.4. |
Extended European Search Report dated Oct. 18, 2017, issued in European Application No. 15768711. |
International Search Report and Written Opinion dated Aug. 4, 2017 issued in corresponding International Application No. PCT/US17/30915. |
International Search Report and Written Opinion dated Dec. 12, 2017 issued in corresponding International Application No. PCT/US2017/056064. |
International Search Report and Written Opinion dated Jun. 26, 2015 issued in International Application No. PCT/US2015/022187. |
International Search Report and Written Opinion dated Sep. 25, 2017, issued in corresponding Application No. PCT/US17/30922. |
International Search Report dated Mar. 10, 2015 issued in corresponding International Application No. PCT/US14/54942. |
International Search Report dated Apr. 21, 2008 in related International Application No. PCT/CH2007/000380. |
Invitation to Pay Additional Fees dated Jan. 8, 2014 in corresponding International Application No. PCT/US2013/057579. |
ISRWO dated Aug. 8, 2016 issued in corresponding European Application No. PCT/US2016/031823. |
ISRWO dated Aug. 11, 2016 issued in corresponding International Application No. PCT/US2016/032017. |
ISRWO dated Aug. 18, 2016 issued in corresponding International Application No. PCT/US16/32420. |
ISRWO dated May 20, 2014 in International application No. PCT/US14/15261. |
Japanese Notice of Allowance dated Feb. 27, 2018 issued in corresponding Japanese Application No. 2015-530101, with English language translation. |
Japanese Office Action dated Jan. 31, 2017 issued in corresponding Japanese Application No. 2013-557-926, with English language summary. |
Japanese Office Action dated Jun. 27, 2017 issued in corresponding Japanese Application No. 2015-530101, with English language translation. |
Japanese Office Action dated Sep. 26, 2017 issued in corresponding Japanese Application No. 2017-155346, with English translation. |
Office Action dated Nov. 7, 2017, issued in European Application No. 15768711. |
Office Action dated Oct. 10, 2017, issued in Application No. 2015-557091 with machine translation to English. |
Office Action dated Mar. 9, 2016 in corresponding European Patent Application No. 13176658.6. |
Office Action dated May 30, 2016 in related Australian Patent Application No. 2012225250. |
Office Action dated Oct. 4, 2013 in corresponding Canadian Patent Application No. 2,659,898. |
PCT ISRWO dated Jun. 5, 2014, issued in corresponding PCT Application No. PCT/US2013/057579. |
Della Bella et al. “Non-contact mapping to guide catheter ablation of untolerated ventrical tachycardia” European Heart Journal, May 2002, 23(9)742-752. |
Examination report dated Jul. 6, 2017 issued in Australian Patent Application No. 2014214756. |
Examination Report dated Jun. 27, 2017 issued in Australian Application No. 2013308531. |
Examiner's Report dated Dec. 22, 2015 in related Canadian Application No. 2656898. |
Extended European Search Report for related Application No. 13176658 dated Sep. 29, 2014. |
Extended European Search Report dated Jul. 8, 2016 in related European Application No. 14748567.6. |
He et al. “An equivalent body surface charge model representing three-dimensional bioelectrical activity” IEEE Transactions on Biomedical Engineering, 42.7 (Jul. 7, 1995) pp. 637-646. |
International Search Report and Written Opinion in related Application No. PCT/US2012/028593 dated Mar. 5, 2013. |
Wolfgang Nolting: Elektrodynamik—Grundkurs Theoretische Physik 3, Springer Spectrum, Feb. 28, 2016, p. 89-91, XP009188752. |
William G. Stevenson et al: “Recording Techniques for Clinical Electrophysiology” Journal of Cardiovascular Electrophysiology. vol. 16 No. 91, Sep. 2005, pp. 1017-1022. |
European Office Action dated Jan. 28, 2019 issued in corresponding European Application No. 14748567.6. |
Australian Office Action dated Jan. 26, 2019 issued in corresponding Australian Application No. 2018211348. |
Japanese Office Action dated Aug. 28, 2018 issued in corresponding Japanese Application No. 2016-542062, with machine translation into English. |
Japanese Notice of Allowance dated Sep. 18, 2018 issued in corresponding Japanese Application No. 2015-557091, with English language translation. |
Patent Examination Report No. 2 dated Jun. 14, 2018 in related Australian Application No. 2014214756. |
Jackson, JD, “Surface Distributions of Charges and Dipoles and Discontinuities in the Electric Field and Potential”, Classical Electrodynamics, 3rd edition, Dec. 1998, pp. 31-34. |
Leif et al., “Geometric modeling based on polygonal meshes”. Eurographics 2000 Tutorial, Aug. 21, 2000. |
Office Action dated Mar. 9, 2016 in corresponding European Patent Application No. 09702094.5. |
Partial European Search Report dated Apr. 29, 2014 in corresponding European Application No. 13176658. |
Patent Examination Report No. 3 dated Sep. 21, 2016 in related Australian Application No. 2012225250. |
Pullan et al. “The inverse problem of electrocardiology” Northeastern University Electrical and Computer Engineering, Feb. 23, 2007. |
Van Oosterom A: “Solidifying the solid angle.” 2002 Journal of Electrocardiology 2002 vol. 35 Suppl pp. 181-192 ISSN: 0022-0736. |
Japanese Office Action dated Feb. 16, 2016 issued in corresponding Japanese Application No. 2013-557-926, with English language summary. |
Japanese Notice of Allowance Jul. 11, 2017 issued in corresponding Japanese Application No. 2013-557-926, with English language summary. |
International Search Report and Written Opinion dated Apr. 8, 2019, issued in corresponding International Application No. PCT/US19/14498. |
Japanese Office Action dated Feb. 19, 2019 issued in corresponding Japanese Application No. 2016-558799, with machine translation to English. |
Japanese Notice of Allowance dated Mar. 5, 2019 issued in corresponding Japanese Application No. 2018061040, with English translation. |
Japanese Notice of Allowance dated Jun. 11, 2019 issued in corresponding Japanese Application No. 2018-024907, with English translation. |
Anatomy Warehouse, “Axis Heart Model”, 2014, pp. 1-3, at http://www.anatomywarehouse.com/axis-scientific-2-part-deluxe-life-size-human-heart-a-104269. (Year: 2014). |
Japanese Office Action dated Jul. 23, 2019 issued in corresponding Japanese Application No. 2016-542062, with machine translation to English. |
International Search Report and Written Opinion dated Jul. 23, 2019 issued in corresponding International Application No. PCT/US2019/031131. |
Number | Date | Country | |
---|---|---|---|
20180214044 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15333378 | Oct 2016 | US |
Child | 15882097 | US | |
Parent | 14886449 | Oct 2015 | US |
Child | 15333378 | US | |
Parent | 13946712 | Jul 2013 | US |
Child | 14886449 | US | |
Parent | 12863411 | US | |
Child | 13946712 | US |