The present invention relates generally to surgical treatment of heart disease, and more specifically to a device and method for the surgical treatment of ischemic (functional) mitral regurgitation.
Ischemic mitral regurgitation (IMR), also called functional mitral regurgitation, is caused by a damaged left ventricular wall following myocardial infarct. Following the infarct the left ventricular wall in the area of the infarct becomes thinned, bulges outwardly and is either akinetic or has reduced contractility. Hence the left ventricle becomes enlarged and, the adjacent papillary muscle or muscles move outwardly. Also, because the ventricular wall is stretched, the papillary muscle often moves axially towards the left ventricular apex relative to the mitral annulus so that the distances between the papillary muscle(s) and the mitral annulus increase markedly. In turn, the papillary muscles displace the bases of the chordae tendineae. The chordae connect the mitral valve leaflets to the papillary muscles. Therefore the coaptive area of the mitral leaflets is pulled downwards and outwards so that the area of coaptation of the anterior to posterior leaflets becomes first reduced and later lost. When coaptation is lost the valve leaflets fail to meet during systole and the valve becomes regurgitant. The pulling of the leaflets downwards and outwards is called “tenting”. In advance IMR the ventricle become somewhat spherical in shape rather than its normal ellipsoidel form. The incidence of IMR in the United States is estimated to be 1.2 to 2.1 million patients, with approximately 425,000 patients having moderate or severe IMR with heart failure. Such patients with class II or worse IMR receiving current surgical treatment have a poor prognosis, with a five years survival of only about 50%. Implanting an undersized mitral annuloplasty ring or an unusually shaped mitral annuloplasty ring may, when tenting is minimal, temporarily mitigate mitral regurgitation, but after a few months IMR often returns and progresses. The failure of the use of a mitral annuloplasty ring alone, or in conjunction with coronary artery bypass grafting, is because the root cause of the problem is ventricular, not annular in nature. While coronary artery bypass grafting helps prevent further infarctions it does not significantly address the already damaged portion of the left ventricle. In patients with IMR the valve annulus may be normal, and the leaflets may be normal, and the chordae tendineae may be normal, and sometimes even the papillary muscles may be normal but severe mitral regurgitation is present because the leaflets cannot coapt due to ventricular distortions.
Current surgical methods of treating IMR include one or more of the following: coronary artery bypass grafting surgery; implanting undersized or unusually shaped annuloplasty rings (discussed above); implanting a cloth band around the opposing papillary muscles to draw and retain the distance between them to near normal; and severing secondary chordae tendineae. Another method that has been tried is to use a suture between the papillary muscle and the annulus in an attempt to raise the papillary muscle relative to the annulus. However, the suture may pull out of the tissue or abrade the ventricular wall. The implantation of a prosthetic or bioprosthetic mitral valve is sometimes used to replace the healthy but regurgitant valve and thus treats the mitral regurgitation. However this technique does not address the ventricular disorder. Thus in spite of surgical intervention ventricular dysfunction often increases as the ventricle further dilates.
Various embodiments of the invention disclosed herein overcome at least some of the drawbacks of current methods of treatment by addressing the ventricular disorder while sparing the natural mitral valve without over restriction of the valve area.
One embodiment is a method for the treatment of mitral regurgitation of a damaged left ventricle of a heart, the left ventricle having at least one of first and second opposing papillary muscles displaced laterally or axially relative to the mitral annulus as compared to normal lateral and axial positions of the opposing papillary muscles relative to the mitral annulus of a healthy heart. The method comprises halting of the beating heart and extending a segment of a first lateral limb across opposing sides of the ventricle at locations whereby the first and second opposing papillary muscles may be drawn together laterally by shortening the segment of the first lateral limb. The segment of the first lateral limb is then shortened as needed to put the at least one of the first and second opposing papillary muscles into a substantially normal lateral position relative to the mitral annulus. The length of the segment of the first lateral limb is then fixed. A segment of a first axial limb is extended between the first lateral limb near a first opposing papillary muscle and the mitral annulus. A segment of a second axial limb is extended between the first lateral limb near a second opposing papillary muscle and the mitral annulus. The segments of the first and second axial limbs are shortened as needed to put the at least one of the first and second opposing papillary muscles into a substantially normal axial position relative to the mitral annulus and the length of the segments of the first and second axial limbs are fixed.
This embodiment may further include the first lateral limb protruding through the ventricle wall to outside the ventricle and the shortening of the first lateral limb may be performed by moving the ventricle wall inward. The fixing step may be performed by securing the at least one end of the first lateral limb to an outside surface of the ventricle wall. This embodiment may further include resuming the beating of the heart and then adjusting the length of the first lateral limb by un-securing the at least one end of the first lateral limb from the outside surface of the ventricle wall and moving the ventricle wall inward or outward, as desired, and re-securing the at least one end of the first lateral limb to the outside surface of the ventricle wall.
This embodiment may also include attaching a first line to the segment of the first axial limb at a point spaced from the first lateral limb and extending the line axially of the first axial limb opposite the mitral annulus through the wall of the ventricle substantially opposite the mitral annulus to outside the ventricle. In a similar manner, a second line is attached to the second axial limb. The first and second lines are then secured on an outside surface of the ventricle wall. The beating of the heart may be resumed and the length of the segment of the first lateral limb may be adjusted as needed by un-securing the at least one end of the first lateral limb from the outside surface of the ventricle wall, moving the ventricle wall inward or outward, as needed, and re-securing the at least one end of the first lateral limb to the outside surface of the heart. The limb segments of the first axial limb and the second axial limb may also be adjusted, as needed, by un-securing the first or second lines from the outside surface of the ventricle wall and drawing the first and second lines into or out of the ventricle to lengthen or shorten the segment of the first and second axial limbs, respectively, as needed, and re-securing the first or second lines on the outside surface of the ventricle wall.
Another embodiment is a device for the treatment of schemic mitral regurgitation of a damaged left ventricle having a first and second opposing papillary muscles displaced laterally or axially relative to a mitral annulus as compared to a normal lateral and axial position of opposing papillary muscles relative to a mitral annulus of a healthy heart. The device comprises a first lateral limb configured to extend between opposing papillary muscles of a left ventricle and first and second axial limbs extending from spaced points on the lateral limb to form an essentially U-shaped configuration. The first and second axial limbs are configured to extend between the lateral limb and the mitral annulus. The lateral limb and the first and second axial limbs may further comprise a biocompatible, axially compressible housing extending axially of each limb. The device may further comprise the lateral limb further comprising a folded suture defining a drawstring pair joined to the lateral housing at the suture fold near an axial limb with free ends of the drawstring pair extending form the housing. The device may further comprise the first and second axial limbs each comprising folded suture defining a first drawstring pair joined to the axial limb housing at the suture fold near the lateral limb with free ends of the drawstring pair extending axially from a distal end of the axial housing. The first pair of drawstrings may each have an axle operatively associated therewith at a point within the axial housing intermediate a proximal end of housing in a distal end of the housing. The first and second axial limbs may further comprise second folded sutures defining a second drawstring pair, the second folded sutures being draped over the axle with the free ends of the second drawstring pairs extending axially from the proximal ends of the axial housing.
Another embodiment comprises a U-shaped or “Trapeze” shaped body member or housing having a lateral limb and two or more axial limbs. The limbs comprise a housing that may be of a fixed length or may be contractible. The axial limb housings may be of equal length, or one limb housing may be longer than the other. The axial limbs are separated by a lower lateral limb. In an embodiment where the limb housings are contractible the axial limb housings have a length in the approximate range of 25 mm to 50 mm in un-contracted length, and the lateral limb housing has a length of approximately 75 mm in un-contracted length, but the actual dimensions depend in part on the size of the heart into which the device is to be implanted. It may be necessary to have more than one size available for surgical use. The housing may be a hollow braided Polyester tubular form and preferably has small loops terminating the upper ends of the axial members. The body may further comprise three drawstring loops, one in each axial limb housing, and the third in the lateral limb housing. The drawstring loops in each of the first and second axial limb housings may be anchored near the bottom of its respective limb housing and the free ends or tails of the drawstring loop emerges at the apex of the respective loop in the axial limb housing. The lateral limb, having a first end and a second end, will be placed in the left ventricle at the approximate level of the first and second papillary muscles, though it may be at the base of the papillary muscles. The drawstring loop in the lateral limb housing may be anchored near to the first end of the lateral body and adjacent to the bottom of first axial limb, and the two tails of the drawstring loop may be passed through the body wall and emerge near the second end of the lateral portion and adjacent to the bottom of the second axial limb. The first end of the lateral body is sewn or otherwise attached to the papillary muscles by a suture passed through the papillary muscle. The drawstring tails of the lateral portion of the device may emanate from the lateral limb and be shortened from within the ventricular cavity. In an alternative embodiment, the lateral drawstrings are passed through the ventricular wall near a papillary muscle to emerge from the endocardium. These drawstrings are secured to the outside wall of the ventricle, typically by means of a pledget, and may be tied or clipped to the pledget. The drawstrings associated with the first axial limb are passed upwards through the mitral annulus into the left atrium approximately directly above and in line with the first papillary muscle, and likewise the drawstrings associated with the second axial limb are passed upwards through the mitral annulus into the left atrium approximately directly in line with the second papillary muscle. Following implantation the lateral drawstrings are tightened to draw the papillary muscles inwardly towards each other until they are a near normal distance apart. Likewise the drawstrings associated with each axial limb are tightened to pull the papillary muscles axially towards the mitral annulus until near normal distances are achieved. These maneuvers eliminate the “tenting” and allow the mitral valve leaflets to coapt correctly.
In the embodiment where the lateral drawstring tails are passed through the ventricular wall the drawstrings may have cardiovascular surgical needles attached to their distal ends, and the suture is passed through the ventricular wall near a papillary muscle.
In one embodiment of the invention the two pairs of drawstrings from the axial limbs are also passed through the sewing ring portion of a mitral annuloplasty ring implanted on the atrial aspect of the mitral annulus, and following suitable adjustment are tied off and the excess drawstrings are cut off. The annuloplasty ring or band may be a rigid structure in the lateral and posterior segments. The purpose of the annuloplasty ring is to both fix and stabilize the dimensions and shape of the annulus, and also to act as a supporting strut for the subvalvular component of the device, and hence spread the vertical axial load around the annulus.
In an embodiment of the invention the sub-valvular housing is composed of a single braided axially collapsible Polyester tube containing at least three pairs of drawstrings. The polyester tube may be heat set in a U-shaped or trapeze configuration. Alternatively, two or three lengths of braided tubing joined together could be used. The collapsible tube or tubes could be made of other suitable biocompatible material such as PTFE. The braided tube may have loops formed or sewn at each end of the axial limb housing, from each of which two distal ends of a drawstrings emerge. The distal ends of the drawstrings are passed through the braided tube and each drawstring passes through an opposing position of the loop to space the drawstrings and to form anchor points.
In one embodiment a hollow thin wall tube that may include a removable trochar is pushed through the mitral annulus at the appropriate point above the papillary muscles. Upon removal of the trochar a loop of a thin flexible wire loop (which may be a self expanding super-elastic Nitinol wire loop) is pushed through the tube into the left ventricle. The drawstring tail of an aligned axial limb is threaded into the wire loop, and the wire loop is then pulled back into the left atrium bringing the drawstring with it. The other axial limb drawstring tails are likewise pulled into the left atrium. These drawstring tails may be passed through a sewing cushion of the annuloplasty ring.
In another embodiment, tabs, which may be made of a biocompatible fabric, are attached to the bottom of the axial limbs near the lateral limb. The tabs are configured to wrap around an adjacent papillary muscle during implanting of the device, and each tab may be stitched into a loop sutured to the papillary muscle. The tabs help prevent the sutures attaching the device to the papillary muscles from being torn from the papillary muscles.
The various embodiments may be employed in any combination recognized as appropriate to one of skill in the art. Discussion as “another” embodiment or “one” embodiment does not necessarily mean alternatively or distinct from other embodiments discussed herein. As used herein “or” is intended to mean and/or and not singular alternatives unless specified.
An embodiment of the invention shown in
The flexible, collapsible housing 32 contains three drawstrings formed of lengths of surgical suture material 34, 36, 38 that may be of size 2 braided Polyester surgical suture of two distinct colors for easy identification. For example, the drawstrings 34, 36 may be white and the drawstring 38 may be green. These three lengths form three sets of drawstring pairs 40, 42, 44 as shown in
In an embodiment where the flexible and collapsible housing 32 is a polyester tube, it may be heat set (or folded) into a generally “U” or “Trapeze” shaped form as shown in
With the device implanted as shown in
In the embodiment illustrated herein, a rigid mitral annuloplasty ring or band may be implanted at the same time as the device as the annuloplasty ring acts as a load bearing strut to distribute axial downwards pull exerted by drawstrings pairs 40, 44 and prevents unwanted dilation or distortion of the mitral annulus. Alternatively, other structures such as buttons, pledgets, ring segments (rigid or flexible) or a flexible or semi-rigid annuloplasty ring may be used if the annulus is healthy and not distorted, provided they can effectively distribute the axial loads without undue distortion of the mitral annulus. “Undue” means distortion interfering with the long term integrity of the mitral valve.
The normal implantation sutures used to complete the attachment of the annuloplasty ring to the annulus are not shown. Drawstring pairs 40 and 44 are terminated in knots 82, 84 abutting the annuloplasty ring 80. It may be seen in
Yet another embodiment of the ventricular device for mitral valve regurgitation 110 is illustrated in
Referring to
A lateral drawstring pair 138 is defined by a length of suture material 140 which has its ends extending from the lateral limb 114 as illustrated in
The embodiment 110 is installed in the heart in virtually the same manner as discussed above with the embodiment 30 and as illustrated in
As discussed above, having the four axial limbs allows for four points of attachment to the annuloplasty ring. More or less limbs could be provided for more or less points of attachment as deemed necessary. More than four could complicate installation. Thus, providing three or four axial limbs may be the most desirable though this is not yet determined with certainty.
The difficulty of placing the axial drawstrings correctly through the mitral annulus approximately in line with the papillary muscles is addressed by the implanting device 166 in
In use the trochar 172 is fully inserted into the tube 168 as shown in
A further embodiment of the ventricular device for mitral valve regurgitation 200 is illustrated in
The particular embodiment 200 illustrated in
The further embodiment of the ventricular device 200 benefits from the tabs 202, 204 acting as reinforcing members to prevent implantation sutures from tearing out of the papillary muscles, as shown in
The embodiment 250 may be installed in the left ventricle of a heart in a similar manner that the embodiment 200 is installed as discussed above. The primary difference is the additional steps of passing the drawstring pairs 258, 260 through the wall of the ventricle and securing the drawstring pairs to the epicardium or the surface of the outside wall of the ventricle by, for example, tying the drawstrings to a pledget or other similar load distributing device. This feature enables further axial adjustment of the distance between the papillary muscles and the mitral annulus following installation of the embodiment 250 in the left ventricle, closure of the heart, and cecession of cardiopulmonary bypass, i.e., on a beating, functioning heart.
An advantage of the embodiment 250 is that the drawstring pairs 216, 258 and 224, 260 are cooperatively used to raise the papillary muscles toward the mitral annulus to a “normal” position. In other words, an amount estimated to promote coaption of the mitral valve leaflets 14 once the heart begins beating again. Once the papillary muscles are returned to a substantially normal position, the drawstring pair 216 is then fixed by being tied or otherwise secured to the mitral annulus (or more commonly a load-bearing strut such as an annuloplastry ring) and the ends are cut. The drawstring pair 258 is tied to the pledget on the outside surface of the ventricle and the drawstring ends are cut in a manner leaving a length of the drawstrings at the pledget. In a like manner, the drawstring pairs 224, 260 are attached to secure the second axial limb 228 and reposition the papillary muscles. Likewise, the drawstring pair 234 are drawn to bring the papillary muscles to a substantially normal position further promoting coaption of the leaflet valves 14. This “drawing” may involve pushing the ventricle wall inward at the protruding drawstring. Drawstring pair 234 is then tied and cut leaving a length extending from the outside wall of the ventricle. The principle advantage of the embodiment 250 is that once the embodiment 250 is installed as described above, the drawstring pairs 258, 260 and 234 can be accessed outside the ventricle to allow for further manipulation of the position of the papillary muscles 268 relative to the mitral annulus. This may be desired when what was believed to be a “normal” positioning of the papillary muscles relative to the mitral annulus does not actually promote adequate coaption of the valve leaflets 14. In such a case, the drawstring pairs 258, 260 and 234 can be drawn tighter or released, as necessary, to tighten or lengthen the housing segments of the lateral and axial limbs within the ventricle to optimize the position of the papillary muscles to minimize or eliminate mitral regurgitation.
For example, after installation of the embodiment 250, after the heart is closed, the heart beat is restarted and the patient is weaned off cardiopulmonary bipass, an echo-cardio graph can be taken of the beating heart to determine whether there is any sign of mitral regurgitation. If so, further axial adjustment of the papillary muscles can be made by drawing tighter or releasing the drawstring pairs 258, 260 and re-securing them to their respective pledgets. Similarly, the lateral position of the papillary muscles can be adjusted by tightening or lengthening the lateral limb 70 by drawing out or releasing somewhat the drawstring pair 234 and re-securing the drawstring pair 234 to the associated pledget. If necessary, further echo-cardio graphs can be taken and further readjustment of the position of the papillary muscles relative to the mitral annulus can be made. It should be noted that the drawstring pairs 258, 260 and 234 can be secured to the outside wall of the ventricle tying a knot to a pledget or by the use of clips or any other suitable bio-compatible fastener to allow for ready adjustment of the length of the drawstring pairs as described above.
A further embodiment 300 shown in
The flexible, collapsible housing contains three pairs of drawstrings 311, 312, 313 as shown in
The polyester tube may be heat set (or folded) into a generally “U” shaped form as shown in
The device is preferably implanted as shown in
In the embodiment illustrated herein, a rigid mitral annuloplasty ring or band 366 may be implanted at the same time as the device as the annuloplasty ring acts as a load bearing strut to distribute axial downwards pull exerted by drawstrings pairs 312, 313, and prevents unwanted dilation or distortion of the mitral annulus. Alternatively, other structures such as buttons, pledgets, ring segments (rigid or flexible) or a flexible or semi-rigid annuloplasty ring may be used if the annulus is healthy and not distorted, provided they can effectively distribute the axial loads without undue distortion of the mitral annulus. “Undue” means distortion interfering with the long term integrity of the mitral valve.
The normal implantation sutures used to complete the attachment of the annuloplasty ring to the annulus are not shown. Suture 323 and drawstring 313 knots 368, 374 are preferably reinforced with pledgets 370, 372 or other suitable means such as implantable “buttons”. Drawstring 311 and 312 are terminated in knots 376, 378 abutting the annuloplasty ring 366. It may be seen in
In one embodiment not illustrated herein the suture 323 and the suture 313 can be attached to the lateral portion of the braided polyester near the middle of the braided polyester to act as drawstrings.
The embodiment 405 may be further modified as illustrated in
The disclosure also encompasses all possible permutations of the claim set, as if the dependent claims were multiple dependent claims of the independent and dependent claims. The disclosure further extends to interpretation of elements of each embodiment into other embodiments.
While the invention has been particularly shown and described with reference to a number of embodiments, it would be understood by those skilled in the art that changes in the form and details may be made to the various embodiments disclosed herein without departing from the spirit and scope of the invention and that the various embodiments disclosed herein are not intended to act as limitations on the scope of the claims. All references cited herein are incorporated in their entirety by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/43660 | 5/12/2009 | WO | 00 | 11/12/2010 |
Number | Date | Country | |
---|---|---|---|
61052590 | May 2008 | US | |
61096521 | Sep 2008 | US | |
61060712 | Jun 2008 | US |