Device and method for training users of ambulatory medical devices

Information

  • Patent Grant
  • 11676694
  • Patent Number
    11,676,694
  • Date Filed
    Monday, April 13, 2020
    4 years ago
  • Date Issued
    Tuesday, June 13, 2023
    11 months ago
Abstract
Apparatuses and methods for training users of ambulatory medical devices. The methods relate to improving user interactions with the touchscreens of devices. In one embodiment there is an operating mode that records all user interactions along with various device parameters and allows the clinician to review the patient's performance for the initial use period. Automated analysis software may be employed to analyze the data generated by the device. The results of the analysis may be used by the clinician to improve the patient and device interaction.
Description
BACKGROUND

Portable ambulatory medical devices have proved useful for treating patients with medical conditions that require continuous monitoring and/or treatment. One example of such a portable ambulatory medical device is a device that involves the delivery of fluids. There are many applications in academic, industrial, and medical fields, as well as others, that involve devices capable of accurately and controllably delivering fluids, including liquids and gases, that have a beneficial effect when administered in known and controlled quantities. This is particularly true in the medical field, where treatments for many patients include the administration of a known amount of a substance at predetermined intervals. For example, the treatment of diabetes involves just such a regimented dosage of medicaments such as insulin. In addition, diabetes is one of a few medical indications wherein the patients routinely administer the medicament to themselves by a subcutaneous modality, such as a hypodermic syringe injection or by an ambulatory infusion pump. As such, providing a patient with the means to safely, reliably, and comfortably administer required doses of medication such as, e.g., insulin, may be particularly important in order to facilitate patient compliance and accurate treatment of the condition.


Ambulatory infusion pumps have been developed for the administration of medicaments such as insulin for those diagnosed with both type I and type II diabetes. These pumps offer an alternative to multiple daily injections of insulin by an insulin syringe or an insulin pen. They also allow for continuous insulin therapy. In addition, some ambulatory infusion devices can include data collection and storage mechanisms, which allow a diabetic patient/user and/or a caregiver (e.g., doctor, health care worker, family member, and so forth) to easily monitor and adjust insulin intake. The infusion device may be powered by a rechargeable battery that requires periodic recharging.


Ambulatory medical devices may include a keypad, buttons, and/or touchscreen with a display on which symbols may be displayed and from which inputs may be received for operation of the device. A series of display screens or windows may be displayed on the touchscreen, showing alphanumeric text and symbols and providing menu screens through which the user can control operation of the device and receive information regarding the device and its operation, history, settings, interaction with the user, and the like. User interaction, such as by touching the alphanumeric text and symbols, provides user input and facilitates navigation through the menu screens and selection of the device functions.


With the advancement of medical devices and the increasing complexity of the user interfaces, some users may experience difficulty interacting with the user interface of the device, such as, for example, when entering inputs to operate the device. It is desirable to reduce the number of user errors and minimize the consequences of such errors. One difficulty users can experience, particularly when interacting with touch screen user interfaces, is the accidental touch of adjacent buttons/icons. A unique complication that may be present with respect to diabetic users for ambulatory insulin pumps is that these users may build up calluses on the tips of their fingers as a result of repeated blood glucose testing. Such calluses may be especially problematic for the operation of capacitive-based touch screen pump configurations. For example, calluses may prevent or hinder the transfer of energy that the capacitive screens use to receive input, thus preventing or hindering proper use of the touch screen to control the pump by the user.


To compensate for such difficulties in operation and provide improved user interface configurations, it is common in user interface research to observe and record the user inputs for performing a given task. One of the primary methods employed to aid this analysis is the use of external video cameras to record the user input over a period of time. The resulting data analysis can be tedious, as the analysis requires, e.g., comparison of the recorded touch sequence to an ideal task sequence. Any deviation from the expected task pathway may be noted as user error. Analysis of such deviations is then used as a design input to improve the accuracy of the human interface input.


Ambulatory infusion pumps with user interfaces implemented and incorporated therein enable the patient to administer the medicament, such as insulin, to themselves. For proper operation by a user of the device, it is important that the user be adequately trained with regard to the device operation. Some users, including patients and/or caregivers, may not be adept at operating such pumps, even if they are designed for simplicity and ease of use, and may require training to ensure proper operation of the device and efficacious treatment of their medical condition. Users, including patients and/or caregivers, may experience further complications with particular devices, such as insulin delivery systems, because each individual user responds uniquely to a given insulin dosage and rate of dosage. Such devices often require training so the patient does not over-medicate or under-medicate in myriad unique “real life” scenarios. Thus, with the rapid advancement and proliferation of such portable ambulatory medical devices, there is an associated need for increased training and clinician support.


Current trends in the delivery of health care are toward reduced patient medical support and, for operation of devices such as ambulatory medicament pumps, reduced training of users. This reduction is due in part to the overloading of health care resources such as hospitals, medical professionals, and caregivers, increasing financial limitations for access to medical care, rising healthcare costs, and a shortage of well-trained clinicians and caregivers.


In view of the discussion above, there is a need for systems and methods to more effectively train users, including patients and caregivers, for efficacious operation of ambulatory medical devices to accommodate each individual patient with unique circumstances and responses to therapy and to do so with reduced support from clinicians and others, including, e.g., representatives from the manufacturer of such ambulatory medical devices (such as field clinical support personnel, customer service representatives, certified diabetes educators (CDEs), sales representatives, etc.).


In view of the discussion above, there is also a need for systems and methods to improve the accuracy, efficiency and capability of the user interface system beyond the recording and play back analysis methods currently used in touch interface development.


SUMMARY

Disclosed herein are devices, such as ambulatory portable medical devices (e.g., ambulatory pumps for the administration of insulin and other medicaments for the treatment of diabetes), and methods of improving the interaction of such devices with users. The portable device may include control features such as buttons or switches to control pumping and other factors, and the portable device may include a touch screen on which are displayed alphanumeric text, symbols, menu screens, data, alerts and other information. While in operation, the device provides features such that it receives user input and detects device parameter values at the time of the user input. The device writes the received user input and the device parameter values into memory of the device. The features may be provided in an operating mode of the device, or the features may be provided as a function or application within an operating mode of the device.


For example, the device may have one or more modes of operation including a training simulation mode, a normal operating mode, and an initial operating mode. The device may include a processor and system bus, and may also connect compatible external sensors to the system bus for gathering and storing device parameter data. In one embodiment, a normal operating mode of the device detects user interactions and records the interactions along with various device parameters at the time of the interaction, and allows a clinician to review the user's performance for the initial use period. Automated analysis software may operate to analyze the data generated by the user during the normal operating mode. The results of the analysis may be used by the clinician to improve the user and device interaction. This can be done by changing settings in the device, and/or providing additional training to the user.


Other features and advantages of the present invention should be apparent from the following description of preferred embodiments that illustrate, by way of example, the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a portable device according to an embodiment of the present invention that is coupled to a patient for infusing medication thereto.



FIG. 2 is a block diagram of circuitry and components for the portable medical device of FIG. 1.



FIG. 3 is a schematic that depicts the circuitry and components of a portable medical device with the front side housing removed as in FIG. 1.



FIG. 4 is a schematic that depicts a perspective view of the device of FIG. 1, having the back face


of the housing removed.



FIG. 5 is a flowchart showing an embodiment of the invention wherein there is an operating mode that provides a method to record all user interactions and allow the clinician to review the patient's performance for the initial use period.



FIG. 6 depicts a keyboard-equipped portable device that is coupled to a patient for infusing medication thereto.





The drawings illustrate embodiments of the technology and are not limiting. For clarity and ease of illustration, the drawings may not be made to scale and, in some instances, various aspects may be shown exaggerated or enlarged to facilitate an understanding of particular embodiments.


DETAILED DESCRIPTION

Disclosed herein are embodiments directed to a portable medical device having an interactive display screen, such as a touchscreen, for control by the user, and having a connecting tube with an infusion port for administering medication to a patient.



FIG. 1 depicts an electrically-powered portable device 100 that is coupled to a host power source 102, such as a desktop or laptop computer, through a cable 104. The cable may comprise, for example, a coupling through which both data and electrical energy are received at the portable device 100. Examples of such combined power and data cables include a Universal Serial Bus (USB) connection, an IEEE 1499 connection, a “THUNDERBOLT” connection (i.e., from Apple, Inc., of Cupertino, Calif., USA), PCI Express, eSATA and Ethernet. The host power source 102 is a source of electrical energy and the host computing device can be any type of computing device that includes a port 106 that receives a connector 108 of the cable 104. The port of the host computing device may comprise, for example, a USB port, or IEEE 1499 port, or port for THUNDERBOLT, PCI Express, eSATA and Ethernet. A compatible connector port 110 of the portable device 100 is coupled to the cable 104 at an opposite end 112 of the cable. In a USB implementation, for example, the cable 104 is a USB 5 cable and associated connections and ports may support one or more of USB version 1.1, 2.0, or 3.0 data transfer speeds.


The portable device 100 may be coupled to a patient 114 via an infusion port 116 and a connecting tube or cannula 118. The connecting tube is coupled to the portable device 100 at a fluid dispensing port 120. The portable device may include control features, such as buttons or switches 121 to receive user input and control pumping and other functions, and may include a display screen 122 on which messages and alerts are displayed. The display 122 may comprise, for example, a touchscreen on which user inputs may be received. A housing 124 of the portable device encloses internal components, such as fluid reservoirs, electrical components, battery, and the like. The portable device 100 illustrated in FIG. 1 comprises a portable medical device of the type worn by a patient 114 such that fluid such as insulin is delivered via the connecting tube 118 and the fluid dispensing port 120. Exemplary ambulatory medical devices and features include those, e.g., disclosed in U.S. patent application Ser. No. 13/557,163, U.S. patent application Ser. No. 12/714,299, U.S. patent application Ser. No. 12/538,018, U.S. Provisional Patent Application No. 61/655,883, U.S. Provisional Patent Application No. 61/656,967 and U.S. Pat. No. 8,287,495. Each of the aforementioned documents is hereby incorporated herein by reference in its entirety.


The portable device 100 can be coupled to a host power source such as a desktop or laptop computer, through a cable connected to the connector port 110. The cable may comprise, for example, a coupling through which both data and electrical energy are received at the portable device 100. Examples of such combined power and data cables include a Universal Serial Bus (USB) connection, an IEEE 1499 (FireWire) connection, a “THUNDERBOLT” connection (from Apple, Inc. of Cupertino, Calif., USA), PCI Express, eSATA and Ethernet.


The device 100 may also include a capability to operatively couple to one or more other devices via a wired or wireless (e.g., infrared, electronic, optical, etc.) link, locally or via a network, such as, e.g., a portable or non-portable medical device, a control unit, external monitor or display, a personal, laptop, tablet or mainframe computer, or mobile communication device such as a smartphone or personal digital assistant (PDA). Such other devices may control or be controlled by device 100 and/or may otherwise communicate for the transfer of data including device parameters between or among device 100 and other device(s) for analysis of data (e.g., user data for physician review, device diagnostic data for troubleshooting or repair), programming, or other uses.


The portable device 100 may include control features such as buttons, panels, screens, and/or switches to control pumping and other functions, or any combination of such control features. For example, the portable device 100 illustrated in FIG. 1 shows a touchscreen 122 on which can be displayed alphanumeric text, symbols, menu screens, data, alerts and other information for receiving control input. The portable device may include a processor with memory, wherein the processor executes program instructions to provide an operating system that supports programs that execute and provide the specified features. The touchscreen 122 may be interactive, wherein user input may be received such as by pressing the outer surface of the touchscreen. The touchscreen 122 may be configured to display menu screens or pages that allow the user to input data fields to, e.g., select device parameters, so as to allow the program to produce a suggested delivery amount, rate, profile, and/or the like in an intuitive, manipulatable, and/or graphic representation. The user can therefore interact with the screen to shape the characteristic/form of the delivery amount, rate, and/or graphic delivery profile, e.g., by manipulating the delivery estimate or pattern displayed on the screen to effectuate the actual delivery.



FIG. 6 depicts an embodiment of a portable device 600 that is coupled to a host power source 102, such as a desktop or laptop computer, through a cable 104, and is similar in construction to the embodiment illustrated in FIG. 1, except that the FIG. 6 device 600 has control features that are physical buttons, including a power switch 621 and a keypad 622 that the user presses to control the device, including actions such as pumping and the like. The device 600 includes a display 630 on which indications are displayed. Structures in FIG. 6 with like reference numerals to those in FIG. 1 relate to like structures.


Device parameters provided by the portable infusion device may be presented on the display screen 122 as any number of objects, including one or more numeric and/or alphanumeric values, a range, a value or range that is presented in the form of a drop-down menu, a toggle that can be adjusted by the user, a graphical representation (e.g., icon) or an animated graphic. For instance, in certain embodiments, the value is a range of values that are presented on a screen of the display as a toggle, wherein the toggle may be adjusted upwards or downwards by the user swiping a finger over the screen to select the appropriate value range, e.g. appropriate range of amounts of medicament such as insulin to be delivered and/or the appropriate rate, time, or interval of medicament delivery. In certain instances, the values presented in the range may be adjusted by the processor (illustrated in FIG. 2). Other device parameters will be readily apparent to those skilled in the art.


If the device includes a touchscreen 122 as in FIG. 1, the type of touchscreen may be selected as desired to be useful for a particular application, such as touchscreens comprising LCD displays, LED displays, plasma displays, organic LED (OLED) displays, and the like. The touchscreen 122 may be implemented with a capacitance screen, a resistive screen, or other such display/input technology. The portable device 100 may additionally include a keyboard or other input device known in the art for data entry, which may be separate from the display.



FIG. 2 depicts a block diagram of some of the components within the portable device 100 of FIG. 1. The portable device 100 includes a power management system 202 that is connected to the connector port 110 that receives a combined data/power cable, such as the USB cable 104 illustrated in FIG. 1. That is, the cable 104 has the capability of simultaneously providing electrical energy for charging and data transmission for communications. A connector interface 206 supports data exchange and receives electrical power through the connector port 110, and controls a connector data element 208 and a connector power element 210. The device may be powered by battery power in place of or in addition to the connector interface. The connector interface 206 passes data communications from the connector port 110 through the connector data element 208 to a system bus 212. The connector interface 206 passes electrical power from the connector port 110 through the connector power element 210 to a battery charger 214, which in turn is coupled to a battery 216 and which recharges the battery. In one embodiment, the connector data element 208 is implemented in the FIG. 2 device with a USB Isolation Chip ADUM4160 product from Analog Devices, Inc. of Norwood, Mass., USA, and the connector power element 210 is implemented in the FIG. 2 device with a USB Power Isolation Chip LT3573 product from Linear Technology Corporation of Milpitas, Calif., USA. Those skilled in the art will be aware of alternative suitable devices.


A control processor 218 is connected to the system bus 212 and receives the data communications from the connector data element 208 for processing. The control processor controls operation of the various elements of the portable device 100 that are connected to the system bus. The control processor operates according to mode instructions that may be stored in device memory 220.


During operation of the device according to typical usage, such as when the device provides the actions for which it is designed, the device provides features such that it receives user input and detects device parameter values at the time of the user input and writes the received user input and the device parameter values into memory of the device. In the case of a portable infusion pump, for example, the operational actions include pumping medicaments such as insulin to a patient. The parameter detecting and memory writing features of the device may be provided in an operating mode of the device, or they may be provided as a function or application within an operating mode of the device. The phrases “mode” and “function” may be used interchangeably, as required by context, as will be known to those skilled in the art.


The devices of FIG. 1 and FIG. 6 may each have one or more modes of operation. That is, each device may be capable of operating in one mode exclusively or in one or more modes simultaneously. The parameter detecting and memory writing features of the device, however, are provided in conjunction with a mode or function of the device in which the device provides the actions for which it is designed. For example, the parameter detecting and memory writing features may be provided in an operating mode of the device, such as a normal operating mode, or may be provided in a function, such as a recording function, of a single or of multiple modes.


For example, the device may have a normal operating mode where the device is attached to the patient and the device is capable of receiving and responding to user interaction, and delivering medicament as required. The device may also have a training mode in which the device may or may not be coupled to the patient and the clinician can simulate scenarios on the device while monitoring the patient's interactions with the device. The parameter detecting and memory writing features of the device as described herein would not ordinarily be available in the training mode, absent a function that permits the device to operate so as to provide the actions (e.g., pumping) for which it is designed.


The parameter detecting and memory writing features may be provided autonomously by the device, without input from the user, or providing the parameter detecting and memory writing features may require specific input from the user. In the case of specific input from the user, the parameter detecting and memory writing features may be provided as a function of the normal operating mode, initiated through a special configuration by an authorized clinician or other suitable person and comprising a temporary modification to the normal operating mode. Alternatively, the parameter detecting and memory writing features can be initiated from the time of initial power-on of the device, and continuing on for a predetermined subsequent time, at which time the parameter detecting and memory writing features are terminated. Alternatively, the device may continually monitor patient performance, without termination of the parameter detecting and memory writing features, providing a mode of operation that facilitates review of user performance at the time of a call to customer service or other request for assistance. The device may also have a playback function, wherein a user, caregiver, clinician, or the like can review data stored in the device memory.


Program instructions may be stored in processor memory incorporated in the control processor 218. The control processor also stores data including device parameters, from its operations in the device memory 220. The control processor 218 controls a data communications element 222 that may comprise a receiver/transmitter for wireless RF communications, such as “WiFi” communications or “Bluetooth” communications between the portable device 100 and compatible external systems and networks. The communications may take place over proprietary networks or links, or may take place using secure links over public networks. The device 100 includes an output/display element 122 such as a touchscreen display, operating buttons or switches. The device 100 of FIG. 1 comprises an infusion pump device, and therefore also includes a drive/pump element 226 such as a pumping mechanism for delivery of fluid such as insulin to the connecting tube 118, as described above in connection with FIG. 1. To meet industry standards and governmental regulations, the connector data element 208 and the connector power element 210 are both electrically isolated from the other device components, so as to provide a device that can be safely connected to the power source and the patient at the same time.


The device may also connect compatible external sensors to the system bus 212 for gathering and storing device parameter data. The device parameter data can be used as an input to the processor to make automated decisions, it can be reported to the user through the touchscreen 122 to aid the user in making self-medicating decisions, or it can be recorded into memory 220 for later analysis. The data may also be sent to a third party or another device for monitoring the patient's status. Other uses of such data are well known and are readily apparent to those skilled in the art. The external sensors can be any type of sensors useful for the operation of the device, such as optical, electrical, mechanical, electro-mechanical and chemical. The external sensors may be, e.g., traditional physical sensors that monitor body temperature, blood pressure, and the like, or they can be sensors that utilize chemical or biological reactions. Chemical and biological sensors differ from physical sensors, which are limited to the measurement of basic physical parameters. An exemplary and well-known chemical or biosensor is an enzyme electrode for the detection of glucose. These sensors are typically comprised of a bioactive surface consisting of immobilized glucose oxidase sandwiched between a polycarbonate and cellulose acetate membrane. The transducer is a platinum electrode and the output is typically a low current on the order of microamperes. Myriad chemical and biological sensors are available and are well known in the art such as Ph sensors for in vivo blood gasses, fiber-optic glucose sensors, biosensors based on transition metal hexcyanoferrates and chemically prepared grapheme-based nanomaterials.


The memory 220 of the device 100 may be any type of memory capable of storing data and retrieving that data for transfer to one or more other components of the device, such as the control processor 218. The memory may comprise one or more of a Flash memory, SRAM, ROM, DRAM, RAM, EPROM and dynamic storage. For the illustrated portable fluid delivery device 100 of FIG. 1, the device memory 220 may be coupled to the control processor 218 and may be configured to receive and store one or more device parameters comprising, e.g., user input data from the touchscreen, user input from buttons or switches, time, date, external sensor readings, device operating status, device messages to the user, user templates or predetermined fluid delivery patterns. The device parameters may be stored as a discrete data set at a particular point in time, a multitude of sequential discrete data sets separated by a period of time, or what is effectively termed “real-time” or continuous recording of the device parameters as fast as the system will allow. Other methods of recording device parameters such as initiating a recording based upon a trigger event are readily apparent and well known to those of skill in the art.


The memory can also be configured to store one or more personalized (e.g., user defined) delivery profiles, such as a profile based on a user's selection and/or grouping of various input parameters; past generated delivery profiles; recommended delivery profiles and one or more traditional delivery profiles, e.g., square wave, dual square wave, basal and bolus rate profiles. The memory can also store other device parameters such as user information, history of use, glucose measurements including blood glucose data and continuous glucose monitoring data, compliance and a calendar of events. An infusion workflow, or protocol, may be at least part of a program that displays a sequence of menu pages to assist a user to at least program or control the portable infusion device and/or at least one operation comprising input, change, confirm, or view various information within the device. Any part of a workflow or protocol may include any number of queries for prompting the user to enter, modify, or confirm information, which are typically presented to the user on the touchscreen display. In some embodiments, the memory 220 of the portable medical device 100 may have a data capacity of up to about 10 GB, more specifically, up to about 3 GB, even more specifically, about 1 MB to about 200 MB. In some embodiments, the memory of the infusion device 200 may be up to about 3 GB, more specifically, up to about 500 MB or more, and even more specifically, about 200 kB to about 200 MB. Larger memory sizes will permit more extensive use and operating modes, such as continual use in recording device parameters and/or user interactions, rather than initial use.



FIG. 3 provides a schematic representation of the device depicted in FIG. 1 with the front face of the housing 124 removed and the internal components exposed. As shown, the portable medical device 100 includes a printed circuit board (PCB) assembly including a flex serpentine board 302, a main board 304, a connector for the flex board and main board to direct current (DC) 306, a pressure board 303, and a connector for the flex board to the pressure board 309. Additionally, the device includes a Bluetooth PCB assembly 305 for short wave, such as radio frequency (RF) communication. Such communication can be useful if a user of the device wishes to transfer data to, for example, a Bluetooth-enabled mobile telephone, such as a Smart Phone.



FIG. 4 is a schematic view of the back of the portable medical device in FIG. 1 with the rear face removed. As shown in FIG. 4, the various elements controlled by the PCB on the front schematic view in FIG. 3 are provided. The device can include a speaker 406 and vibrate mechanism 413 for providing alerts and other sounds indicating a function has been performed on the device. Additionally, the device can include a micro-valve assembly 414, including, for example, a venting system and a thermal leak platform for the insulin cartridge. The insulin cartridge can be covered by a cartridge door 405 and the housing of the portable medical device can include a cartridge shroud 409 in which the connecting tube 118 delivering the insulin to the patient may be inserted. Additionally, the device can include a power charging system, which receives the controlled current from the power isolation chip. The power charging system may be used to charge a power storage cell such as a rechargeable battery 400 of the portable medical device. Some embodiments may use a rechargeable battery such as a NiCad battery, LiPo battery or NiMH battery.


The device 100 comprises an infusion pump device, and therefore also includes a drive/pump element such as a pumping mechanism for delivery of fluid such as insulin to the connecting tube 118, as described above in connection with FIG. 1. In FIG. 4 several of the pump device components are depicted such as a pump motor 411, rack bushing 401, rack pushrod 408 and gear box 407. The device is not limited to these components and fewer or additional components may be employed depending upon the particular operating requirements of a device.



FIG. 5 is a flowchart that illustrates a method of use of a device such as the devices 100, 600 described herein. The operations are performed such that all user interactions are detected and recorded. Such parameter detecting and memory writing features, as described previously, permit a user, caregiver, clinician, trainer, and the like to review the recorded user performance. After the portable medical device as described herein is attached to a patient, at the operation 502, the device is placed in operation. Next, at step 504, the user interacts with the device either through a button, a touchscreen, or other input mechanism. The user interaction may comprise, for example, selecting a function, providing an input or navigating through the user interface. In step 506 the device detects the user interaction and stores the user interaction, including any button press, touchscreen interaction, etc., in the device memory. Optionally, additional device parameters can be stored in memory, such as a timestamp for time of day, external sensor readings indicating body temperature, blood glucose level, blood pressure, glucose level data from a continuous glucose monitor and others, as described herein above. The recording can simply be a “snapshot” of the user input and selected device parameters at that particular time, or the device may take numerous sequential “snapshots” separated by a period of time. For a sequence of snapshots, the timestamp recorded with each interaction will indicate the passage of time between consecutive user interactions. Optionally the device may be programmed to continuously record data for a predetermined period of time after a first user interaction. Further, the device may be programmed with a continuous F.I.F.O. (first in first out) buffer that maintains a predetermined amount of data in memory and, upon user interaction, stores data starting at a predetermined period of time (e.g. initiated by the user) and continuing to 5 a period of time after the user interaction. Numerous other methods of capturing data are readily known by those of skill in the art.


In step 508 the stored data can be played back in a playback mode on the device itself, or the stored data can be transferred from device memory to a separate device, such as a computer, for playback. In step 510 the user interaction with the device can be analyzed for potential or actual errors. The analysis can be performed on a screen-by-screen basis or through analysis software that processes all the stored user interactions and provides an automatic summary of the patient's therapy. The analysis software may reside on an external device or may be installed at the device itself. The analysis operations of the software may be applied to stored or historical data. The analysis may be applied in real-time as the patient is operating the device, to provide an indication of how well the patient is operating the device. The automated analysis can identify “close calls” where the patient changes the therapy at the last moment, “difficulties” where the patient deviates significantly from an optimum path or “errors” where the patient initiates a therapy or setting that does not match the instructions of a trainer or caregiver. The analysis software may provide an indication of trending, that is, an evaluation of how well the patient is interacting with the user interface. It would be expected that patient performance in terms of errors would improve most greatly during an initial period and then would stabilize over time. If the system detects that the patient is regressing, such as an increase in observed errors, then the system may provide a notification of patient difficulty or regression. Other pertinent issues can readily be identified by the analysis software and are known to those of skill in the art. In step 512, the results of the analysis are used by the trainer, patient, clinician, caregiver or the like, to improve the user-device interaction. For example, improvement may be achieved by changing settings in the device, and/or providing additional training to the user.


The benefits of the parameter detecting and memory writing features during operation should be readily apparent as compared to a conventional training mode of operation. In a training mode, the device may not be coupled to the patient, or if coupled, may not be operational, and thus the user interaction scenarios are simulated and are likely not representative of that particular user's responses in a medicament delivery context. Complications can arise with medicament delivery devices such as insulin pumps because each individual user or patient responds uniquely to a given insulin dosage and rate of dosage. Additionally, each patient has a unique lifestyle, which may not be considered in the training mode. For instance, some patients have the ability to self-manage their dependency on insulin such as sensing when blood sugar is low and eating particular foods with carbohydrate levels and types adequate to safely increase their blood sugar levels. In such a scenario, the insulin delivery device may initiate therapy when it is not required, hence risking over-medication of the patient. Conversely, other patients may require significant dependence on insulin because of poor eating habits or the lack of the ability to self-manage their disease. In these scenarios the insulin delivery device may deliver too little insulin too late, thus risking under-medication of the patient.


Therefore the parameter detecting and memory writing features of operation described herein provide an individualized “fine tuning” or customization of the relationship between a patient and their device. This kind of fine tuning typically requires extensive support from trainers, clinicians, and/or other caregivers to interact with the patient on a frequent basis. However, with the ability of the device to capture user interactions along with the device parameters, the trainer, clinician and/or other caregiver can expediently identify and analyze only the relevant areas for improvement. Further, with automated analysis software, the trainer, clinician, and/or other caregiver can even more expediently identify the areas of concern and efficiently fine tune those particular areas of the user interaction. Thus, this method can effectively train patients, each with their unique circumstances and individualized response to therapy, how to efficaciously operate ambulatory medical devices while requiring reduced support from clinicians.


Although the aforementioned description specifically describes a portable medical device for administering insulin to a patient, it should be understood that such a device is only one embodiment of the invention. The device can also include any portable device having a display and a processor. For example, the device can include a mobile computing device, such as a Smartphone. In one embodiment, such a mobile computing device can function as a remote control for a portable medical device as described herein. Alternatively, a dedicated remote control specifically designed for use with a portable medical device can be used to control the device.


The methods, systems, and devices discussed above are intended merely to be examples. Various embodiments may omit, substitute, or add various procedures or components as appropriate. For example, it should be appreciated that, in alternative embodiments, the methods may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to certain embodiments may be combined in various other embodiments. Different aspects and elements of the embodiments may be combined in a similar manner. Also, it should be emphasized that technology evolves and, thus, many of the elements are examples and should not be interpreted to limit the scope of the invention.


Specific details are given in this description to provide a thorough understanding of the embodiments. Nevertheless, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, well-known circuits, processes, algorithms, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring the embodiments. Further, the headings provided herein are intended merely to aid in the clarity of the descriptions of various embodiments, and should not be construed as limiting the scope of the invention or the functionality of any part of the invention. For example, certain methods or components may be implemented as part of other methods or components, even though they are described under different headings.


It is noted that embodiments may have been described as a process that is depicted as a flow diagram or block diagram. Although each diagram may describe the process as a sequential series of operations, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional steps not included in the figures. Each operation of a process is performed or executed by the processor of the device.


The description above has been provided in terms of presently preferred embodiments so that an understanding of the present invention can be conveyed. There are, however, many configurations and techniques for data management systems that were not specifically described herein, but with which the present invention is applicable. The present invention should therefore not be seen as limited to the particular embodiments described herein, but rather, it should be understood that the present invention has wide applicability with respect to data management generally. All modifications, variations, or equivalent arrangements and implementations that are within the scope of the attached claims should therefore be considered within the scope of the invention.

Claims
  • 1. A method of improving a user's treatment of diabetes, comprising: receiving parameters relating to programming and operation of an ambulatory infusion pump;receiving glucose level data of the user;analyzing the parameters relating to the user's programming and operation of the ambulatory infusion pump and the glucose level data with automated analysis software in real-time as the user is operating the ambulatory infusion pump;identifying with the automated analysis software one or more trends in user operation of the device based on the analysis; andproviding user-specific recommendations based on the user's lifestyle for improving treatment of the user based on the one or more trends.
  • 2. The method of claim 1, wherein analyzing the parameters relating to programming and operation of the ambulatory infusion pump includes analyzing insulin dosages delivered to the user.
  • 3. The method of claim 1, wherein the automated analysis software further analyzes data relating to a physical state of the user in identifying the one or more trends.
  • 4. The method of claim 1, wherein receiving glucose level data of the user includes receiving the glucose level data from a continuous glucose monitor.
  • 5. The method of claim 1, wherein providing user-specific recommendations for improving treatment of the user based on the one or more trends includes providing the user-specific recommendations on a display.
  • 6. The method of claim 5, wherein providing the user-specific recommendations on a display includes providing the recommendations on a display of a smartphone.
  • 7. The method of claim 1, further comprising transferring the parameters relating to the user's programming and operation of the ambulatory infusion pump and the glucose level data to a separate device and wherein the automated analysis software resides on the separate device.
  • 8. The method of claim 1, wherein the one or more trends in user operation of the device identified based on the analysis includes one or more errors where user operation does not match caregiver instructions.
  • 9. The method of claim 1, wherein the one or more trends in user operation of the device identified based on the analysis includes one or more difficulties where user operation deviates significantly from an optimum path for operation of the ambulatory infusion pump.
  • 10. The method of claim 1, wherein the user-specific recommendations for improving treatment of the user based on the one or more trends include recommendations for changing settings of the ambulatory infusion pump.
  • 11. A method of improving a user's treatment of diabetes, comprising: receiving information pertaining to a user's treatment of diabetes, the information including glucose levels of the user;analyzing the information pertaining to the user's treatment of diabetes with automated analysis software in real-time as the information pertaining to the user's treatment of diabetes is received;identifying with the automated analysis software one or more areas where the user can improve treatment of the user based on the analysis; andproviding user-specific recommendations based on the user's lifestyle for improving treatment of the user based on the one or more areas.
  • 12. The method of claim 11, wherein the automated analysis software further analyzes insulin dosages delivered to the user in identifying the one or more areas where the user can improve treatment of the user.
  • 13. The method of claim 11, wherein the automated analysis software further analyzes data relating to a physical state of the user in identifying the one or more areas where the user can improve treatment of the user.
  • 14. The method of claim 11, further comprising receiving the glucose levels of the user from a continuous glucose monitor.
  • 15. The method of claim 11, wherein providing user-specific recommendations for improving treatment of the user based on the one or more areas includes providing the user-specific recommendations on a display.
  • 16. The method of claim 15, wherein providing the user-specific recommendations on a display includes providing the recommendations on a display of a smartphone.
  • 17. The method of claim 11, further comprising transferring the information pertaining to the user's treatment of diabetes to a separate device and wherein the automated analysis software resides on the separate device.
  • 18. The method of claim 11, wherein the one or more areas where the user can improve treatment identified based on the analysis includes one or more errors where user operation does not match caregiver instructions.
  • 19. The method of claim 11, wherein the one or more areas where the user can improve treatment identified based on the analysis includes one or more difficulties where user operation deviates significantly from an optimum path for operation of the ambulatory infusion pump.
  • 20. The method of claim 11, wherein the user-specific recommendations for improving treatment of the user based on the one or more areas include recommendations for changing settings of an ambulatory infusion pump.
RELATED APPLICATIONS

This application is a continuation of application Ser. No. 15/808,286 filed Nov. 9, 2017, which in turn is a continuation of application Ser. No. 14/992,709 filed Jan. 11, 2016, now U.S. Pat. No. 9,814,835 issued Nov. 14, 2017, which in turn is a continuation of application Ser. No. 13/828,958 filed Mar. 14, 2013, now U.S. Pat. No. 9,238,100 issued Jan. 19, 2016, which claims the benefit of U.S. Provisional Application No. 61/656,984 filed Jun. 7, 2012, each of which is incorporated herein in its entirety by reference.

US Referenced Citations (992)
Number Name Date Kind
80576 Yu et al. Aug 1868 A
2462596 Bent Feb 1949 A
2629376 Pierre et al. Feb 1953 A
2691542 Chenoweth Oct 1954 A
3059639 Blackman et al. Oct 1962 A
3189125 Windsor et al. Jun 1965 A
3227311 Rowell Jan 1966 A
3847178 Keppel Nov 1974 A
4392849 Petre et al. Jul 1983 A
4393365 Kondo et al. Jul 1983 A
4475901 Kraegen et al. Oct 1984 A
4492339 Kreitzberg Jan 1985 A
4529401 Leslie et al. Jul 1985 A
4741736 Brown May 1988 A
5000664 Lawless et al. Mar 1991 A
5050612 Matsumura Sep 1991 A
5122362 Phillips et al. Jun 1992 A
5131816 Brown et al. Jul 1992 A
5153827 Coutre et al. Oct 1992 A
5181910 Scanlon Jan 1993 A
5207666 Idriss et al. May 1993 A
5219330 Bollish et al. Jun 1993 A
5240603 Frank et al. Aug 1993 A
5247434 Peterson et al. Sep 1993 A
5311175 Waldman May 1994 A
5322626 Frank et al. Jun 1994 A
5338157 Blomquist Aug 1994 A
5356379 Vaillancourt Oct 1994 A
5364346 Schrezenmeir Nov 1994 A
5368562 Blomquist et al. Nov 1994 A
5376070 Purvis et al. Dec 1994 A
5389078 Zalesky et al. Feb 1995 A
5464392 Epstein et al. Nov 1995 A
5478211 Dominiak Dec 1995 A
5482446 Williamson et al. Jan 1996 A
5485408 Blomquist Jan 1996 A
5497772 Schulman et al. Mar 1996 A
5522798 Johnson et al. Jun 1996 A
5551850 Williamson et al. Sep 1996 A
5558638 Evers et al. Sep 1996 A
5569186 Lord et al. Oct 1996 A
5582593 Hultman Dec 1996 A
5658250 Blomquist et al. Aug 1997 A
5658252 Johnson Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665065 Colman et al. Sep 1997 A
5669877 Blomquist Sep 1997 A
5681285 Ford et al. Oct 1997 A
5685844 Marttila Nov 1997 A
5695473 Olsen Dec 1997 A
5713856 Eggers et al. Feb 1998 A
5718562 Lawless et al. Feb 1998 A
5719761 Gatti et al. Feb 1998 A
5728396 Peery et al. Mar 1998 A
5745378 Barker et al. Apr 1998 A
5770149 Raible Jun 1998 A
5779122 Martinelli Jul 1998 A
5782805 Meinzer et al. Jul 1998 A
5795327 Wilson et al. Aug 1998 A
5807336 Russo et al. Sep 1998 A
5810771 Blomquist Sep 1998 A
5814015 Gargano et al. Sep 1998 A
5822715 Worthington et al. Oct 1998 A
5823746 Johnson Oct 1998 A
5837220 Blake et al. Nov 1998 A
5863187 Bensley et al. Jan 1999 A
5876370 Blomquist Mar 1999 A
5879143 Cote et al. Mar 1999 A
5885211 Eppstein et al. Mar 1999 A
5919209 Schouten Jul 1999 A
5935099 Peterson et al. Aug 1999 A
5935106 Olsen Aug 1999 A
5960403 Brown Sep 1999 A
5985305 Peery et al. Nov 1999 A
6023629 Tamada Feb 2000 A
6024539 Blomquist Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6053887 Levitas et al. Apr 2000 A
6077055 Vilks Jun 2000 A
6093172 Funderburk et al. Jul 2000 A
RE36871 Epstein et al. Sep 2000 E
6120460 Abreu Sep 2000 A
6122536 Sun et al. Sep 2000 A
6135949 Russo et al. Oct 2000 A
6142939 Eppstein et al. Nov 2000 A
6144869 Berner et al. Nov 2000 A
6175752 Say et al. Jan 2001 B1
6179583 Weston Jan 2001 B1
6198383 Sekura et al. Mar 2001 B1
6231560 Bui et al. May 2001 B1
6233471 Berner et al. May 2001 B1
6241704 Peterson et al. Jun 2001 B1
6248057 Mavity et al. Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6249717 Nicholson et al. Jun 2001 B1
6270478 Mern.o slashed.e Aug 2001 B1
6272364 Kurnik Aug 2001 B1
6298254 Tamada Oct 2001 B2
6306420 Cheikh Oct 2001 B1
6358225 Butterfield Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6368272 Porumbescu Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6395292 Peery et al. May 2002 B2
6422057 Anderson Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6438408 Mulligan et al. Aug 2002 B1
6458256 Zhong Oct 2002 B1
6467267 Kanazawa et al. Oct 2002 B2
6468242 Wilson et al. Oct 2002 B1
6470234 McGrady Oct 2002 B1
6475180 Peterson et al. Nov 2002 B2
6475750 Han et al. Nov 2002 B1
6505059 Kollias et al. Jan 2003 B1
6514689 Han et al. Feb 2003 B2
6517482 Elden et al. Feb 2003 B1
6535714 Melker et al. Mar 2003 B2
6539250 Bettinger Mar 2003 B1
6544212 Galley et al. Apr 2003 B2
6544229 Danby et al. Apr 2003 B1
6546269 Kurnik Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6553244 Lesho et al. Apr 2003 B2
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6558902 Hillenkamp May 2003 B1
6562001 Lebel et al. May 2003 B2
6564104 Nelson et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6577899 Lebel et al. Jun 2003 B2
6582366 Porumbescu Jun 2003 B1
6587705 Kim et al. Jul 2003 B1
6589229 Connelly et al. Jul 2003 B1
6594514 Berner et al. Jul 2003 B2
6595919 Berner et al. Jul 2003 B2
6623698 Kuo Sep 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650951 Jones et al. Nov 2003 B1
6653091 Dunn et al. Nov 2003 B1
6656114 Poulsen et al. Dec 2003 B1
6656158 Mahoney et al. Dec 2003 B2
6656159 Flaherty Dec 2003 B2
6659978 Kasuga et al. Dec 2003 B1
6666665 Nguyen et al. Dec 2003 B1
6668196 Villegas et al. Dec 2003 B1
6669669 Flaherty et al. Dec 2003 B2
6687522 Tamada Feb 2004 B2
6692457 Flaherty Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6723072 Flaherty et al. Apr 2004 B2
6740059 Flaherty May 2004 B2
6740072 Starkweather et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6744152 Kroll Jun 2004 B2
6744350 Blomquist Jun 2004 B2
6749587 Flaherty Jun 2004 B2
6768425 Flaherty et al. Jul 2004 B2
6771250 Oh Aug 2004 B1
6773412 O'Mahony et al. Aug 2004 B2
6790198 White et al. Sep 2004 B1
6796956 Hartlaub et al. Sep 2004 B2
6801420 Talbot et al. Oct 2004 B2
6805687 Dextradeur et al. Oct 2004 B2
6809563 Schaal Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6821249 Casscells, III et al. Nov 2004 B2
6830558 Flaherty et al. Dec 2004 B2
6835175 Porumbescu Dec 2004 B1
6850252 Hoffberg Feb 2005 B1
6852104 Blomquist Feb 2005 B2
6872200 Mann et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6880564 Erickson Apr 2005 B2
6882940 Potts et al. Apr 2005 B2
6886556 Fuchs May 2005 B2
6895263 Shin et al. May 2005 B2
6902905 Burson et al. Jun 2005 B2
6928338 Buchser et al. Aug 2005 B1
6934220 Cruitt et al. Aug 2005 B1
6936029 Mann et al. Aug 2005 B2
6949081 Chance Sep 2005 B1
6950708 Bowman, IV et al. Sep 2005 B2
6953323 Childers et al. Oct 2005 B2
6957655 Erickson et al. Oct 2005 B2
6958705 Lebel et al. Oct 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6966325 Erickson Nov 2005 B2
6970742 Mann et al. Nov 2005 B2
6974437 Lebel et al. Dec 2005 B2
6979326 Mann et al. Dec 2005 B2
6997920 Mann et al. Feb 2006 B2
6998387 Goke et al. Feb 2006 B1
6999810 Berner et al. Feb 2006 B2
6999854 Roth Feb 2006 B2
7004928 Aceti et al. Feb 2006 B2
7008413 Kovach et al. Mar 2006 B2
7011630 Desai et al. Mar 2006 B2
7015782 Kincaid et al. Mar 2006 B2
7018360 Flaherty et al. Mar 2006 B2
7025743 Mann et al. Apr 2006 B2
7029455 Flaherty Apr 2006 B2
7031772 Condie et al. Apr 2006 B2
7033338 Vilks et al. Apr 2006 B2
7041082 Blomquist et al. May 2006 B2
7053761 Schofield et al. May 2006 B2
7056179 Courtney Jun 2006 B2
7092796 Vanderveen Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7107706 Bailey, Sr. et al. Sep 2006 B1
7109878 Mann et al. Sep 2006 B2
7128727 Flaherty et al. Oct 2006 B2
7137964 Flaherty Nov 2006 B2
7144384 Gorman et al. Dec 2006 B2
7150741 Erickson et al. Dec 2006 B2
7174199 Berner et al. Feb 2007 B2
7179226 Crothall et al. Feb 2007 B2
7181505 Haller et al. Feb 2007 B2
7183068 Burson et al. Feb 2007 B2
7187528 Talbot et al. Mar 2007 B2
7193521 Moberg et al. Mar 2007 B2
7204823 Estes et al. Apr 2007 B2
7229288 Stuart et al. Jun 2007 B2
7231263 Choi Jun 2007 B2
7232435 Hildebrand et al. Jun 2007 B2
7247702 Gardner et al. Jul 2007 B2
7264730 Connell et al. Sep 2007 B2
7267665 Steil et al. Sep 2007 B2
7278983 Ireland et al. Oct 2007 B2
7282029 Poulsen et al. Oct 2007 B1
7291107 Hellwig et al. Nov 2007 B2
7295867 Berner et al. Nov 2007 B2
7303549 Flaherty et al. Dec 2007 B2
7303680 Connell et al. Dec 2007 B2
7307245 Faries, Jr. et al. Dec 2007 B2
7318892 Connell et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7341577 Gill Mar 2008 B2
7351340 Connell et al. Apr 2008 B2
7354420 Steil et al. Apr 2008 B2
7384410 Eggers et al. Jun 2008 B2
7385443 Denison Jun 2008 B1
7390311 Hildebrand et al. Jun 2008 B2
7390458 Burow et al. Jun 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7404796 Ginsberg Jul 2008 B2
7405055 Dunn et al. Jul 2008 B2
7445616 Petrakis Nov 2008 B2
7446091 Van Den Berghe Nov 2008 B2
7460350 Talbot et al. Dec 2008 B2
7465375 Demers et al. Dec 2008 B2
7469383 Busch Dec 2008 B2
7471994 Ford et al. Dec 2008 B2
7483743 Mann et al. Jan 2009 B2
7491187 Van Den Berghe et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7514075 Hedrick et al. Apr 2009 B2
7515060 Blomquist Apr 2009 B2
7524287 Bharmi Apr 2009 B2
7553281 Hellwig et al. Jun 2009 B2
7556613 Wittmann et al. Jul 2009 B2
7559926 Blischak Jul 2009 B1
7588046 Erickson Sep 2009 B1
7590443 Bharmi Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7594889 St. Ores et al. Sep 2009 B2
7602310 Mann et al. Oct 2009 B2
7621893 Moberg et al. Nov 2009 B2
7647237 Malave et al. Jan 2010 B2
7651489 Estes et al. Jan 2010 B2
7651845 Doyle, III et al. Jan 2010 B2
7668731 Martucci et al. Feb 2010 B2
7674485 Bhaskaran et al. Mar 2010 B2
7678071 Lebel et al. Mar 2010 B2
7678762 Green et al. Mar 2010 B2
7678763 Green et al. Mar 2010 B2
7687272 Buchwald et al. Mar 2010 B1
7699775 Desai et al. Apr 2010 B2
7704226 Mueller, Jr. et al. Apr 2010 B2
7711402 Shults et al. May 2010 B2
7714757 Denison et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7715917 Chinchoy et al. May 2010 B2
7717903 Estes et al. May 2010 B2
7734323 Blomquist et al. Jun 2010 B2
7751907 Blomquist Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7766873 Moberg et al. Aug 2010 B2
7768386 Hayter et al. Aug 2010 B2
7768408 Reggiardo et al. Aug 2010 B2
7774038 Wang et al. Aug 2010 B2
7774145 Brauker et al. Aug 2010 B2
7776031 Hartlaub et al. Aug 2010 B2
7785313 Mastrototaro Aug 2010 B2
7801582 Peyser Sep 2010 B2
7806853 Wittmann et al. Oct 2010 B2
7806886 Kanderian, Jr. et al. Oct 2010 B2
7811279 John Oct 2010 B2
7815602 Mann et al. Oct 2010 B2
7819843 Mann et al. Oct 2010 B2
7831310 Lebel et al. Nov 2010 B2
7837647 Estes et al. Nov 2010 B2
7860583 Condurso et al. Dec 2010 B2
7869851 Hellwig et al. Jan 2011 B2
7875022 Wenger et al. Jan 2011 B2
7879026 Estes et al. Feb 2011 B2
7884729 Reggiardo et al. Feb 2011 B2
7887505 Flaherty Feb 2011 B2
7890295 Shin et al. Feb 2011 B2
7892206 Moberg et al. Feb 2011 B2
7896704 Stafford et al. Mar 2011 B2
7912674 Killoren Clark et al. Mar 2011 B2
7914499 Gonnelli et al. Mar 2011 B2
7920907 McGarraugh et al. Apr 2011 B2
7922458 Rush et al. Apr 2011 B2
7922899 Vasta et al. Apr 2011 B2
7935076 Estes et al. May 2011 B2
7935104 Yodfat et al. May 2011 B2
7935499 Dunn et al. May 2011 B2
7938792 Roger et al. May 2011 B2
7938797 Estes May 2011 B2
7941200 Weinert et al. May 2011 B2
7942844 Moberg et al. May 2011 B2
7946985 Mastrototaro et al. May 2011 B2
7955295 Lee et al. Jun 2011 B2
7959598 Estes Jun 2011 B2
7963946 Moubayed et al. Jun 2011 B2
7967773 Amborn et al. Jun 2011 B2
7972296 Braig et al. Jul 2011 B2
7976492 Brauker et al. Jul 2011 B2
7979136 Young et al. Jul 2011 B2
7981034 Jennewine et al. Jul 2011 B2
7985330 Wang et al. Jul 2011 B2
7988660 Byland et al. Aug 2011 B2
7988849 Biewer et al. Aug 2011 B2
7988850 Roncadi et al. Aug 2011 B2
7991625 Rosenfeld et al. Aug 2011 B2
7991627 Hutchinson et al. Aug 2011 B2
7993108 Rush et al. Aug 2011 B2
7996158 Hayter et al. Aug 2011 B2
7998111 Moberg et al. Aug 2011 B2
7999674 Kamen Aug 2011 B2
8005524 Brauker et al. Aug 2011 B2
8012119 Estes et al. Sep 2011 B2
8025634 Moubayed et al. Sep 2011 B1
8029245 Rush et al. Oct 2011 B2
8029250 Rush et al. Oct 2011 B2
8029459 Rush et al. Oct 2011 B2
8029460 Rush et al. Oct 2011 B2
8030891 Welsch et al. Oct 2011 B2
8032226 Miller et al. Oct 2011 B2
8034026 Grant et al. Oct 2011 B2
8047811 Rush et al. Nov 2011 B2
8047812 Rush et al. Nov 2011 B2
8060185 Hunter et al. Nov 2011 B2
8062249 Wilinska et al. Nov 2011 B2
8062257 Moberg et al. Nov 2011 B2
8062513 Yu et al. Nov 2011 B2
8065096 Moberg et al. Nov 2011 B2
8066665 Rush et al. Nov 2011 B2
8070742 Woo Dec 2011 B2
8075527 Rush et al. Dec 2011 B2
8079983 Rush et al. Dec 2011 B2
8079984 Rush et al. Dec 2011 B2
8083718 Rush et al. Dec 2011 B2
8088098 Yodfat et al. Jan 2012 B2
8090435 Gill et al. Jan 2012 B2
8093212 Gardner et al. Jan 2012 B2
8109893 Lande Feb 2012 B2
8109921 Estes et al. Feb 2012 B2
8114350 Silver et al. Feb 2012 B1
8118770 Galley et al. Feb 2012 B2
8119593 Richardson et al. Feb 2012 B2
8123717 Weinert et al. Feb 2012 B2
8127046 Grant et al. Feb 2012 B2
8129429 Sporn et al. Mar 2012 B2
8140312 Hayter et al. Mar 2012 B2
8140356 Dicks et al. Mar 2012 B2
8147446 Yodfat et al. Apr 2012 B2
8147451 Brockman et al. Apr 2012 B2
8152789 Starkweather et al. Apr 2012 B2
8170721 Nickerson May 2012 B2
8182445 Moubayed et al. May 2012 B2
8182447 Moberg et al. May 2012 B2
8192394 Estes et al. Jun 2012 B2
8192395 Estes et al. Jun 2012 B2
8202267 Field et al. Jun 2012 B2
8204729 Sher Jun 2012 B2
8206296 Jennewine Jun 2012 B2
8206350 Mann et al. Jun 2012 B2
8208984 Blomquist et al. Jun 2012 B2
8219222 Blomquist Jul 2012 B2
8221345 Blomquist Jul 2012 B2
8226891 Sloan et al. Jul 2012 B2
8231562 Buck et al. Jul 2012 B2
8231578 Fathallah et al. Jul 2012 B2
8234126 Estes Jul 2012 B1
8234128 Martucci et al. Jul 2012 B2
8236242 Drucker et al. Aug 2012 B2
8237715 Buck et al. Aug 2012 B2
8246540 Ginsberg Aug 2012 B2
8249683 Wang et al. Aug 2012 B2
8249894 Brown Aug 2012 B2
8250483 Blomquist Aug 2012 B2
8251904 Zivitz et al. Aug 2012 B2
8251906 Brauker et al. Aug 2012 B2
8257259 Brauker et al. Sep 2012 B2
8257300 Budiman et al. Sep 2012 B2
8260630 Brown Sep 2012 B2
8262617 Aeschlimann et al. Sep 2012 B2
8267892 Spencer et al. Sep 2012 B2
8267893 Moberg et al. Sep 2012 B2
8275438 Simpson Sep 2012 B2
8277435 Estes Oct 2012 B2
8285328 Caffey et al. Oct 2012 B2
8287454 Wolpert et al. Oct 2012 B2
8287495 Michaud et al. Oct 2012 B2
8287514 Miller et al. Oct 2012 B2
8294581 Kamen Oct 2012 B2
8298184 DiPerna et al. Oct 2012 B2
8311749 Brauker et al. Nov 2012 B2
8313433 Cohen et al. Nov 2012 B2
8321366 West et al. Nov 2012 B2
8328754 Estes et al. Dec 2012 B2
8328793 Birkenbach et al. Dec 2012 B2
8340792 Condurso et al. Dec 2012 B2
8343092 Rush et al. Jan 2013 B2
8344847 Moberg et al. Jan 2013 B2
8346399 Blomquist Jan 2013 B2
8348885 Moberg et al. Jan 2013 B2
8348886 Kanderian, Jr. et al. Jan 2013 B2
8348923 Kanderian, Jr. et al. Jan 2013 B2
8372040 Huang et al. Feb 2013 B2
8376943 Kovach et al. Feb 2013 B2
8385972 Bochenko et al. Feb 2013 B2
8401194 Nierzwick et al. Mar 2013 B2
8402151 Young et al. Mar 2013 B2
8414523 Blomquist et al. Apr 2013 B2
8451230 Celentano et al. May 2013 B2
8452413 Young et al. May 2013 B2
8452953 Buck et al. May 2013 B2
8454510 Yodfat et al. Jun 2013 B2
8454554 Reinke Jun 2013 B2
8454576 Mastrototaro et al. Jun 2013 B2
8454581 Estes et al. Jun 2013 B2
8457901 Beshan et al. Jun 2013 B2
8460231 Brauker et al. Jun 2013 B2
8465460 Yodfat et al. Jun 2013 B2
8469933 Zhang et al. Jun 2013 B2
8533475 Frikart et al. Sep 2013 B2
8552880 Kopp et al. Oct 2013 B2
8562558 Kamath et al. Oct 2013 B2
8573027 Rosinko et al. Nov 2013 B2
8579853 Reggiardo et al. Nov 2013 B2
8601465 Bernstein et al. Dec 2013 B2
8650937 Brown Feb 2014 B2
8657779 Blomquist Feb 2014 B2
8712748 Thukral et al. Apr 2014 B2
8718949 Blomquist et al. May 2014 B2
8775877 Mcvey et al. Jul 2014 B2
8801657 Blomquist et al. Aug 2014 B2
8882701 DeBelser et al. Nov 2014 B2
8929823 Mears et al. Jan 2015 B2
8938306 Lebel et al. Jan 2015 B2
8986253 DiPerna Mar 2015 B2
9008803 Blomquist Apr 2015 B2
9037254 John May 2015 B2
9238100 Kruse et al. Jan 2016 B2
9335910 Farnan et al. May 2016 B2
9364679 John Jun 2016 B2
9381297 Brown Jul 2016 B2
9486171 Saint Nov 2016 B2
9492608 Saint Nov 2016 B2
9669160 Harris et al. Jun 2017 B2
9715327 Rosinko et al. Jul 2017 B2
9814835 Kruse et al. Nov 2017 B2
9833177 Blomquist Dec 2017 B2
9867937 Saint et al. Jan 2018 B2
9867953 Rosinko Jan 2018 B2
9980140 Spencer et al. May 2018 B1
10016561 Saint et al. Jul 2018 B2
10052049 Blomquist et al. Aug 2018 B2
10213547 Rosinko Feb 2019 B2
10357606 Rosinko et al. Jul 2019 B2
10357607 Blomquist et al. Jul 2019 B2
10549051 Rosinko Feb 2020 B2
10569016 Rosinko Feb 2020 B2
10653834 Kruse et al. May 2020 B2
10864322 Saint et al. Dec 2020 B2
10943687 Blomquist Mar 2021 B2
20010001144 Kapp May 2001 A1
20010031944 Peterson et al. Oct 2001 A1
20010037217 Abensour et al. Nov 2001 A1
20010041831 Starkweather et al. Nov 2001 A1
20020002326 Causey, III et al. Jan 2002 A1
20020016568 Lebel et al. Feb 2002 A1
20020019606 Lebel et al. Feb 2002 A1
20020040208 Flaherty et al. Apr 2002 A1
20020065454 Lebel et al. May 2002 A1
20020072733 Flaherty Jun 2002 A1
20020072932 Swamy Jun 2002 A1
20020076679 Aman Jun 2002 A1
20020077852 Ford et al. Jun 2002 A1
20020107476 Mann et al. Aug 2002 A1
20020117214 Tucker et al. Aug 2002 A1
20020126036 Flaherty Sep 2002 A1
20020143290 Bui Oct 2002 A1
20020143580 Bristol et al. Oct 2002 A1
20020183693 Peterson et al. Dec 2002 A1
20020193679 Malave et al. Dec 2002 A1
20030032867 Crothall et al. Feb 2003 A1
20030036683 Kehr et al. Feb 2003 A1
20030050621 Lebel et al. Mar 2003 A1
20030055380 Flaherty Mar 2003 A1
20030060765 Campbell et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030088238 Poulsen et al. May 2003 A1
20030104982 Wittmann et al. Jun 2003 A1
20030114836 Estes et al. Jun 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030145854 Hickle Aug 2003 A1
20030159945 Miyazaki et al. Aug 2003 A1
20030160683 Blomquist Aug 2003 A1
20030161744 Vilks et al. Aug 2003 A1
20030163088 Blomquist Aug 2003 A1
20030163090 Blomquist et al. Aug 2003 A1
20030163223 Blomquist Aug 2003 A1
20030163789 Blomquist Aug 2003 A1
20030199854 Kovach et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030212364 Mann et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030236489 Jacobson et al. Dec 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040015102 Cummings et al. Jan 2004 A1
20040015132 Brown Jan 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040068230 Estes et al. Apr 2004 A1
20040073095 Causey, III et al. Apr 2004 A1
20040078028 Flaherty et al. Apr 2004 A1
20040092865 Flaherty et al. May 2004 A1
20040100507 Hayner et al. May 2004 A1
20040115067 Rush et al. Jun 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040180810 Pilarski Sep 2004 A1
20040193025 Steil et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040220551 Flaherty et al. Nov 2004 A1
20040225252 Gillespie et al. Nov 2004 A1
20040235446 Flaherty et al. Nov 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040260233 Garibotto et al. Dec 2004 A1
20050021006 Tonnies Jan 2005 A1
20050022274 Campbell et al. Jan 2005 A1
20050027182 Siddiqui et al. Feb 2005 A1
20050030164 Blomquist Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050050621 Thomas Mar 2005 A1
20050065464 Talbot et al. Mar 2005 A1
20050065760 Murtfeldt et al. Mar 2005 A1
20050081847 Lee et al. Apr 2005 A1
20050095063 Fathallah et al. May 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050143864 Blomquist Jun 2005 A1
20050171512 Flaherty Aug 2005 A1
20050171513 Mann et al. Aug 2005 A1
20050177135 Hildebrand Aug 2005 A1
20050182358 Veit et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050197553 Cooper Sep 2005 A1
20050197621 Poulsen et al. Sep 2005 A1
20050203349 Nanikashvili Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050228234 Yang Oct 2005 A1
20050238507 Diianni et al. Oct 2005 A1
20050272640 Doyle, III et al. Dec 2005 A1
20050277872 Colby, Jr. et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060001550 Mann et al. Jan 2006 A1
20060014670 Green et al. Jan 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060041229 Garibotto et al. Feb 2006 A1
20060047192 Hellwig et al. Mar 2006 A1
20060047538 Condurso et al. Mar 2006 A1
20060080059 Stupp et al. Apr 2006 A1
20060085223 Anderson et al. Apr 2006 A1
20060094985 Aceti et al. May 2006 A1
20060122577 Poulsen et al. Jun 2006 A1
20060132292 Blomquist Jun 2006 A1
20060137695 Hellwig et al. Jun 2006 A1
20060167345 Vespasiani Jul 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060178633 Garibotto et al. Aug 2006 A1
20060184154 Moberg et al. Aug 2006 A1
20060202859 Mastrototaro et al. Sep 2006 A1
20060224109 Steil et al. Oct 2006 A1
20060253097 Braig et al. Nov 2006 A1
20060264895 Flanders Nov 2006 A1
20060271020 Huang et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060276771 Galley et al. Dec 2006 A1
20060282290 Flaherty et al. Dec 2006 A1
20070016127 Staib et al. Jan 2007 A1
20070016449 Cohen et al. Jan 2007 A1
20070021733 Hansen et al. Jan 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070060796 Kim Mar 2007 A1
20070060871 Istoc et al. Mar 2007 A1
20070060874 Nesbitt et al. Mar 2007 A1
20070066956 Finkel Mar 2007 A1
20070083152 Williams et al. Apr 2007 A1
20070083335 Moerman Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070112298 Mueller, Jr. et al. May 2007 A1
20070112299 Smit et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070124002 Estes et al. May 2007 A1
20070149861 Crothall et al. Jun 2007 A1
20070149926 Moberg et al. Jun 2007 A1
20070156033 Causey, III et al. Jul 2007 A1
20070156457 Brown Jul 2007 A1
20070173712 Shah et al. Jul 2007 A1
20070179355 Rosen Aug 2007 A1
20070203454 Shermer et al. Aug 2007 A1
20070213657 Jennewine et al. Sep 2007 A1
20070233051 Hohl et al. Oct 2007 A1
20070251835 Mehta et al. Nov 2007 A1
20070253021 Mehta et al. Nov 2007 A1
20070253380 Jollota et al. Nov 2007 A1
20070254593 Jollota et al. Nov 2007 A1
20070255116 Mehta et al. Nov 2007 A1
20070255125 Moberg et al. Nov 2007 A1
20070255126 Moberg et al. Nov 2007 A1
20070255250 Moberg et al. Nov 2007 A1
20070255348 Holtzclaw Nov 2007 A1
20070258395 Jollota et al. Nov 2007 A1
20070287985 Estes et al. Dec 2007 A1
20070299389 Halbert et al. Dec 2007 A1
20080004601 Jennewine et al. Jan 2008 A1
20080030369 Mann et al. Feb 2008 A1
20080033357 Mann et al. Feb 2008 A1
20080033360 Evans et al. Feb 2008 A1
20080033361 Evans et al. Feb 2008 A1
20080051709 Mounce et al. Feb 2008 A1
20080051714 Moberg et al. Feb 2008 A1
20080051716 Stutz Feb 2008 A1
20080058773 John Mar 2008 A1
20080065007 Peterson et al. Mar 2008 A1
20080065016 Peterson et al. Mar 2008 A1
20080071209 Moubayed et al. Mar 2008 A1
20080071210 Moubayed et al. Mar 2008 A1
20080071217 Moubayed et al. Mar 2008 A1
20080071251 Moubayed et al. Mar 2008 A1
20080071580 Marcus et al. Mar 2008 A1
20080076969 Kraft et al. Mar 2008 A1
20080082363 Habashi Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080106431 Blomquist May 2008 A1
20080114299 Damgaard-Sorensen et al. May 2008 A1
20080119705 Patel et al. May 2008 A1
20080132844 Peterson et al. Jun 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080147004 Mann et al. Jun 2008 A1
20080147041 Kristensen Jun 2008 A1
20080147042 Pettis et al. Jun 2008 A1
20080147050 Mann et al. Jun 2008 A1
20080154513 Kovatchev et al. Jun 2008 A1
20080160492 Campbell et al. Jul 2008 A1
20080171697 Jacotot et al. Jul 2008 A1
20080171967 Blomquist et al. Jul 2008 A1
20080172026 Blomquist Jul 2008 A1
20080172027 Blomquist Jul 2008 A1
20080172028 Blomquist Jul 2008 A1
20080172029 Blomquist Jul 2008 A1
20080172030 Blomquist Jul 2008 A1
20080172031 Blomquist Jul 2008 A1
20080177165 Blomquist et al. Jul 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080201325 Doniger Aug 2008 A1
20080206799 Blomquist Aug 2008 A1
20080221523 Moberg et al. Sep 2008 A1
20080222246 Ebling et al. Sep 2008 A1
20080228056 Blomquist et al. Sep 2008 A1
20080249470 Malave et al. Oct 2008 A1
20080255438 Saidara et al. Oct 2008 A1
20080255517 Nair et al. Oct 2008 A1
20080269585 Ginsberg Oct 2008 A1
20080269714 Mastrototaro et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080287922 Panduro Nov 2008 A1
20080288115 Rusnak et al. Nov 2008 A1
20080294024 Cosentino et al. Nov 2008 A1
20080294142 Patel et al. Nov 2008 A1
20080294294 Blomquist Nov 2008 A1
20080300534 Blomquist Dec 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312585 Brukalo et al. Dec 2008 A1
20090005726 Jones et al. Jan 2009 A1
20090006061 Thukral et al. Jan 2009 A1
20090018779 Cohen et al. Jan 2009 A1
20090030733 Cohen et al. Jan 2009 A1
20090036753 King Feb 2009 A1
20090037020 Brown Feb 2009 A1
20090054475 Chen et al. Feb 2009 A1
20090062729 Woo Mar 2009 A1
20090069745 Estes et al. Mar 2009 A1
20090069749 Miller et al. Mar 2009 A1
20090069784 Estes et al. Mar 2009 A1
20090069787 Estes et al. Mar 2009 A1
20090088731 Campbell et al. Apr 2009 A1
20090093756 Minaie et al. Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090105646 Hendrixson et al. Apr 2009 A1
20090112626 Talbot et al. Apr 2009 A1
20090131860 Nielsen May 2009 A1
20090131861 Braig et al. May 2009 A1
20090143661 Taub et al. Jun 2009 A1
20090150186 Cohen et al. Jun 2009 A1
20090150865 Young et al. Jun 2009 A1
20090156990 Wenger et al. Jun 2009 A1
20090157003 Jones et al. Jun 2009 A1
20090157202 Roberts et al. Jun 2009 A1
20090158274 Roberts Jun 2009 A1
20090163855 Shin et al. Jun 2009 A1
20090164239 Hayter et al. Jun 2009 A1
20090171269 Jennewine et al. Jul 2009 A1
20090177142 Blomquist et al. Jul 2009 A1
20090177147 Blomquist et al. Jul 2009 A1
20090177154 Blomquist Jul 2009 A1
20090177180 Rubalcaba, Jr. et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090212966 Panduro Aug 2009 A1
20090216100 Ebner et al. Aug 2009 A1
20090221890 Saffer et al. Sep 2009 A1
20090247931 Damgaard-Sorensen Oct 2009 A1
20090247982 Krulevitch et al. Oct 2009 A1
20090254037 Bryant, Jr. et al. Oct 2009 A1
20090256527 Welsch et al. Oct 2009 A1
20090267774 Enegren et al. Oct 2009 A1
20090267775 Enegren et al. Oct 2009 A1
20090270705 Enegren et al. Oct 2009 A1
20090275887 Estes Nov 2009 A1
20090281393 Smith Nov 2009 A1
20100008795 DiPerna Jan 2010 A1
20100010330 Rankers et al. Jan 2010 A1
20100022937 Bedingfield et al. Jan 2010 A1
20100030045 Gottlieb et al. Feb 2010 A1
20100030387 Sen Feb 2010 A1
20100037680 Moberg et al. Feb 2010 A1
20100056993 Chase Mar 2010 A1
20100057043 Kovatchev et al. Mar 2010 A1
20100064257 Buck et al. Mar 2010 A1
20100069730 Bergstrom et al. Mar 2010 A1
20100081993 O'Connor Apr 2010 A1
20100094110 Heller et al. Apr 2010 A1
20100095229 Dixon et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100114015 Kanderian, Jr. et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100121170 Rule May 2010 A1
20100121415 Skelton et al. May 2010 A1
20100125241 Prud'Homme et al. May 2010 A1
20100130933 Holland et al. May 2010 A1
20100138197 Sher Jun 2010 A1
20100145276 Yodfat et al. Jun 2010 A1
20100146300 Brown Jun 2010 A1
20100160740 Cohen et al. Jun 2010 A1
20100161236 Cohen et al. Jun 2010 A1
20100161346 Getschmann et al. Jun 2010 A1
20100162786 Keenan et al. Jul 2010 A1
20100168539 Palerm et al. Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100174553 Kaufman et al. Jul 2010 A1
20100179402 Goode, Jr. et al. Jul 2010 A1
20100185142 Kamen et al. Jul 2010 A1
20100185152 Larsen et al. Jul 2010 A1
20100185175 Kamen et al. Jul 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100205001 Knudsen et al. Aug 2010 A1
20100217192 Moberg et al. Aug 2010 A1
20100217193 Moberg et al. Aug 2010 A1
20100218132 Soni et al. Aug 2010 A1
20100222765 Blomquist et al. Sep 2010 A1
20100228186 Estes et al. Sep 2010 A1
20100248706 Potkonjak et al. Sep 2010 A1
20100249566 Suess et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262078 Blomquist Oct 2010 A1
20100262117 Magni et al. Oct 2010 A1
20100262434 Shaya Oct 2010 A1
20100274218 Yodfat et al. Oct 2010 A1
20100274592 Nitzan et al. Oct 2010 A1
20100274751 Blomquist Oct 2010 A1
20100277119 Montague et al. Nov 2010 A1
20100280442 Shahmirian et al. Nov 2010 A1
20100286601 Yodfat et al. Nov 2010 A1
20100286653 Kubel et al. Nov 2010 A1
20100292556 Golden Nov 2010 A1
20100292634 Kircher, Jr. et al. Nov 2010 A1
20100295686 Sloan et al. Nov 2010 A1
20100298685 Hayter et al. Nov 2010 A1
20100298765 Budiman Nov 2010 A1
20100305545 Kanderian, Jr. et al. Dec 2010 A1
20100312085 Andrews et al. Dec 2010 A1
20100324382 Cantwell et al. Dec 2010 A1
20100324398 Tzyy-Ping Dec 2010 A1
20100324853 Wang et al. Dec 2010 A1
20100331651 Groll Dec 2010 A1
20100331652 Groll et al. Dec 2010 A1
20110004188 Shekalim Jan 2011 A1
20110015509 Peyser Jan 2011 A1
20110021898 Wei et al. Jan 2011 A1
20110033833 Blomquist et al. Feb 2011 A1
20110034792 Williams et al. Feb 2011 A1
20110040247 Mandro et al. Feb 2011 A1
20110040251 Blomquist et al. Feb 2011 A1
20110046697 Gerber et al. Feb 2011 A1
20110047499 Mandro et al. Feb 2011 A1
20110053121 Heaton Mar 2011 A1
20110054390 Searle et al. Mar 2011 A1
20110054391 Ward et al. Mar 2011 A1
20110056264 Kaplan et al. Mar 2011 A1
20110058485 Sloan Mar 2011 A1
20110060281 Aeschlimann et al. Mar 2011 A1
20110071372 Sloan et al. Mar 2011 A1
20110071464 Palerm Mar 2011 A1
20110071765 Yodfat et al. Mar 2011 A1
20110077963 Knudsen et al. Mar 2011 A1
20110082439 Wenger et al. Apr 2011 A1
20110087165 Amborn et al. Apr 2011 A1
20110092788 Long et al. Apr 2011 A1
20110093286 Dicks et al. Apr 2011 A1
20110098548 Budiman et al. Apr 2011 A1
20110098637 Hill Apr 2011 A1
20110098638 Chawla et al. Apr 2011 A1
20110098674 Vicente et al. Apr 2011 A1
20110106011 Cinar et al. May 2011 A1
20110106050 Yodfat et al. May 2011 A1
20110112505 Starkweather et al. May 2011 A1
20110112506 Starkweather et al. May 2011 A1
20110118578 Timmerman May 2011 A1
20110118699 Yodfat et al. May 2011 A1
20110124996 Reinke et al. May 2011 A1
20110124999 Reggiardo et al. May 2011 A1
20110125095 Lebel et al. May 2011 A1
20110126188 Bernstein et al. May 2011 A1
20110130716 Estes et al. Jun 2011 A1
20110130746 Budiman Jun 2011 A1
20110133946 Kopp et al. Jun 2011 A1
20110137239 Debelser et al. Jun 2011 A1
20110144586 Michaud et al. Jun 2011 A1
20110144616 Michaud et al. Jun 2011 A1
20110152770 DiPerna et al. Jun 2011 A1
20110152824 DiPerna et al. Jun 2011 A1
20110160650 Chong et al. Jun 2011 A1
20110160654 Hanson et al. Jun 2011 A1
20110160666 Hanson et al. Jun 2011 A1
20110163881 Halff et al. Jul 2011 A1
20110166544 Verhoef et al. Jul 2011 A1
20110166875 Hayter et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110178462 Moberg et al. Jul 2011 A1
20110178717 Goodnow et al. Jul 2011 A1
20110184342 Pesach et al. Jul 2011 A1
20110190701 Remde et al. Aug 2011 A1
20110196213 Thukral et al. Aug 2011 A1
20110202040 Remde et al. Aug 2011 A1
20110205065 Strachan et al. Aug 2011 A1
20110208123 Gray et al. Aug 2011 A1
20110208155 Palerm et al. Aug 2011 A1
20110213306 Hanson et al. Sep 2011 A1
20110224522 Fennell Sep 2011 A1
20110256024 Cole et al. Oct 2011 A1
20110257625 Jasperson et al. Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110266999 Yodfat et al. Nov 2011 A1
20110320595 Konishi et al. Dec 2011 A1
20120022452 Welsch et al. Jan 2012 A1
20120029433 Michaud et al. Feb 2012 A1
20120029941 Malave et al. Feb 2012 A1
20120030610 DiPerna et al. Feb 2012 A1
20120041415 Estes et al. Feb 2012 A1
20120053522 Yodfat et al. Mar 2012 A1
20120059353 Kovatchev et al. Mar 2012 A1
20120059673 Cohen et al. Mar 2012 A1
20120095315 Tenbarge et al. Apr 2012 A1
20120095393 Reinke Apr 2012 A1
20120096451 Tenbarge Apr 2012 A1
20120109100 Estes et al. May 2012 A1
20120123230 Brown et al. May 2012 A1
20120163481 Ebner et al. Jun 2012 A1
20120165614 Strickland Jun 2012 A1
20120165728 Strickland et al. Jun 2012 A1
20120184907 Smith Jul 2012 A1
20120185267 Kamen et al. Jul 2012 A1
20120191061 Yodfat et al. Jul 2012 A1
20120191063 Brauker et al. Jul 2012 A1
20120226124 Blomquist Sep 2012 A1
20120232484 Blomquist Sep 2012 A1
20120232485 Blomquist Sep 2012 A1
20120232520 Sloan et al. Sep 2012 A1
20120232521 Blomquist Sep 2012 A1
20120238852 Brauker et al. Sep 2012 A1
20120238854 Blomquist et al. Sep 2012 A1
20120239362 Blomquist Sep 2012 A1
20120245524 Estes et al. Sep 2012 A1
20120265722 Blomquist Oct 2012 A1
20120296269 Blomquist Nov 2012 A1
20120330227 Budiman et al. Dec 2012 A1
20130012917 Miller et al. Jan 2013 A1
20130053816 DiPERNA et al. Feb 2013 A1
20130096953 Beverly et al. Apr 2013 A1
20130116649 Breton et al. May 2013 A1
20130131630 Blomquist May 2013 A1
20130142367 Berry et al. Jun 2013 A1
20130172710 Mears Jul 2013 A1
20130231711 Kaib Sep 2013 A1
20130237947 Amirouche Sep 2013 A1
20130283196 Farnan Oct 2013 A1
20130324928 Kruse Dec 2013 A1
20130331790 Brown Dec 2013 A1
20130332874 Rosinko et al. Dec 2013 A1
20130345625 Causey, III et al. Dec 2013 A1
20140012511 Mensinger et al. Jan 2014 A1
20140019396 Carlsgaard et al. Jan 2014 A1
20140039392 Geipel et al. Feb 2014 A1
20140066890 Sloan et al. Mar 2014 A1
20140074059 Howell et al. Mar 2014 A1
20140100829 Mould Apr 2014 A1
20140137641 Brown May 2014 A1
20140171772 Blomquist Jun 2014 A1
20140187890 Mensinger et al. Jul 2014 A1
20140273042 Saint Sep 2014 A1
20140275419 Ward et al. Sep 2014 A1
20140276419 Rosinko et al. Sep 2014 A1
20140276420 Rosinko Sep 2014 A1
20140276531 Walsh Sep 2014 A1
20140276553 Rosinko et al. Sep 2014 A1
20140276556 Saint et al. Sep 2014 A1
20140276570 Saint Sep 2014 A1
20140276574 Saint Sep 2014 A1
20140350371 Blomquist et al. Nov 2014 A1
20140378898 Rosinko Dec 2014 A1
20150073337 Saint et al. Mar 2015 A1
20150182693 Rosinko Jul 2015 A1
20150182695 Rosinko Jul 2015 A1
20150217044 Blomquist Aug 2015 A1
20150314062 Blomquist et al. Nov 2015 A1
20160030669 Harris et al. Feb 2016 A1
20160082188 Blomquist et al. Mar 2016 A1
20160119210 Koehler et al. Apr 2016 A1
20160199571 Rosinko et al. Jul 2016 A1
20160228041 Heller et al. Aug 2016 A1
20160256622 Day Sep 2016 A1
20160271325 Farnan et al. Sep 2016 A1
20170000943 Blomquist et al. Jan 2017 A1
20170056590 DiPerna et al. Mar 2017 A1
20170300206 Rosinko et al. Oct 2017 A1
20180021514 Rosinko Jan 2018 A1
20180042559 Cabrera, Jr. Feb 2018 A1
20180071454 Betts Mar 2018 A1
20180092578 Blomquist Apr 2018 A1
20180137938 Vaddiraju May 2018 A1
20180193573 Rosinko Jul 2018 A1
20190350501 Blomquist et al. Nov 2019 A1
20190365997 Harris Dec 2019 A1
20190388015 Blomquist Dec 2019 A1
20200101226 Saint et al. Apr 2020 A1
20200114076 Ulrich et al. Apr 2020 A1
20200171249 Rosinko Jun 2020 A1
20200179603 Rosinko Jun 2020 A1
20200261649 Michaud et al. Aug 2020 A1
20200368430 Ulrich et al. Nov 2020 A1
20210001044 Michaud et al. Jan 2021 A1
Foreign Referenced Citations (44)
Number Date Country
2930776 May 2018 CA
399065 Jul 1924 DE
4407005 Mar 1995 DE
19819407 Nov 1999 DE
10121317 Nov 2002 DE
10352456 Jul 2005 DE
1102194 May 2001 EP
1571582 Sep 2005 EP
2006034323 Feb 2006 JP
WO-0045696 Aug 2000 WO
WO-0074753 Dec 2000 WO
WO-0152727 Jul 2001 WO
WO-02062212 Aug 2002 WO
WO-03082091 Oct 2003 WO
WO-2004093648 Nov 2004 WO
WO-2005046559 May 2005 WO
WO-2006061169 Jun 2006 WO
WO-2006127841 Nov 2006 WO
WO-2007000425 Jan 2007 WO
WO-2007056592 May 2007 WO
WO-2007089537 Aug 2007 WO
WO-2007149533 Dec 2007 WO
WO-2008048556 Apr 2008 WO
WO-2008048582 Apr 2008 WO
WO-2008048583 Apr 2008 WO
WO-2008048584 Apr 2008 WO
WO-2008048585 Apr 2008 WO
WO-2008048586 Apr 2008 WO
WO-2008048587 Apr 2008 WO
WO-2008091320 Jul 2008 WO
WO-2008112078 Sep 2008 WO
WO-2008153689 Dec 2008 WO
WO-2008153819 Dec 2008 WO
WO-2009016636 Feb 2009 WO
WO-2009032400 Mar 2009 WO
WO-2009032402 Mar 2009 WO
WO-2009035759 Mar 2009 WO
WO-2009088983 Jul 2009 WO
WO-2009089028 Jul 2009 WO
WO-2009089029 Jul 2009 WO
WO-2010056663 May 2010 WO
WO-2011068648 Jun 2011 WO
WO-2013016363 Jan 2013 WO
WO-2013184896 Dec 2013 WO
Non-Patent Literature Citations (25)
Entry
US 8,333,733 B2, 12/2012, Lanigan et al. (withdrawn)
Application and File History for U.S. Appl. No. 16/394,751, filed Apr. 25, 2019, inventors Blomquist et al.
Application and File History for U.S. Appl. No. 13/828,958, filed Mar. 14, 2013, inventors Kruse et al.
Application and File History for U.S. Appl. No. 15/808,286, filed Nov. 9, 2017, inventors Kruse et al.
Application and File History for U.S. Appl. No. 14/992,709, filed Jan. 11, 2016, inventors Kruse et al.
Bott, et al., “Impact of Smoking on the Metabolic Action of Subcutaneous Regular Insulin in Type 2 Diabetic Patients,” Horm. Metab. Res., vol. 37, 2005, pp. 445-449.
Chase, et at., “The Use of Insulin Pumps With Meal Bolus Alarms in Children With Type 1 Diabetes to Improve Glycemic Control,” Diabetes Carem, vol. 29, No. 5, May 2006, pp. 1012-1015.
“Compare Insulin Pump for Diabetes,” Printed from www.diabetesnet.com/diabetes-technology/insulin-pump-models.php, Jun. 18, 2009, 4 pages.
International Preliminary Reporton Patentability for Application No. PCT/US2013/044319, dated Dec. 18, 2014, 6 pages.
International Search Report and Written Opinion for Application No. PCT/US2013/044319, dated Nov. 6, 2013, 12 pages.
Lehmann, et al., “Combining rule-based reasoning and mathematical modeling in diabetes care,” Artificial Intelligence in Medicine, vol. 6, 1994, pp. 137-160.
Hildebrandt P, “Subcutaneous Absorption of Insulin in Insulin-Dependent Diavetic patients. Influence of Species Physico-Chemical properties of Insulin and Physiological factors,” Danish Medical Bulletin, Aug. 1991, 10 pages.
Plougmann, et al.,“ DiasNet—a diabetes advisory system for communication and education via the internet,” International Journal of Medical Informatics, vol. 64, 2001, pp. 319-330.
Puckett, et al., “A model for multiple subcutaneous insulin injections developed from individual diabetic patient data,” vol. 269, 1995, p. E1115-E1124.
Smith Medical MD Inc., “Deltec Cozmo, Personalized Insulin Pump, Starting Guide,” http://web.archive.org/web/20041207133223/http://www.cozmore.com/Library/-upload/starting.sub.—guide.sub.—032004.pdf, XP002497833, Dec. 7, 2004, pp. 1-83.
Stapel E., “Converting Between Decimals, Fractions, and Percents,” Purplemath, 2006, 9 pages, Available at http://www.purplemath.com/modules/percents2.htm, 2006.
Trajanoski, et al., “Pharmacokinetic Model for the Absorption of Subcutaneously Injected Soluble Insulin and Monomeric Insulin Analogues,” Biomedizinische Technik, vol. 38, No. 9. Sep. 1, 1993, pp. 224-231.
Wach, et al., “Numerical Approximation of Mathematical Model for Absorption of Subcutaneously Injected Insulin,” Med & Biol. Eng & comput., vol. 33, 1995, pp. 18-23.
Walsh, et al., “Diabetes Technology-Concept 1: Super Bolus,” available at Diabetes Technology—Concept 1: Super Bolus available at http://www.diabetesnet.com/diabetes.sub.—technology/super.sub.—bolus.ph-p&gt, Sep. 17, 2007, 3 pages.
Walsh J., et al., “Select & Test Your Correction Factor,” Pumping Insulin, Fourth Edition, Chapter 13, 2006, 10 Pages.
Walsh J., et al., “Select & Test Your Basal Rates,” Pumping Insulin, Fourth Edition, Chapter 11, 2006, 30 pages.
Walsh J., et al., “Select and Test Your Carb Factor,” Pumping Insulin, Fourth Edition, Chapter 12, 2006, 32 pages.
Walsh J., et al., “Pumping Insulin: Everything you need for Success on a Smart insulin Pump,” Torrey Pines Press, San Diego, ISBN 1-884804-86-1, 2006, 3 pages.
Wikipedia.com, “Wikipedia's definition for “basal rate”,” printed from wikipedia.com on Jun. 12, 2009, 1 page.
Wilinska, et al., “Insulin Kinetics in Type-1 Diabetes: Continuous and Bolus Delivery of Rapid Acting Insulin,” IEEE Transactions on Biomedical Engineering, vol. 52, No. 1, Jan. 2005, pp. 3-12.
Related Publications (1)
Number Date Country
20200254174 A1 Aug 2020 US
Provisional Applications (1)
Number Date Country
61656984 Jun 2012 US
Continuations (3)
Number Date Country
Parent 15808286 Nov 2017 US
Child 16846908 US
Parent 14992709 Jan 2016 US
Child 15808286 US
Parent 13828958 Mar 2013 US
Child 14992709 US