The present invention relates to a device and a method for transmitting/receiving electromagnetic HF signals, and relates in particular to a HF antenna for a radar device which is operated in a frequency range between 1 and 5 GHz.
Antennas for devices which are tuned for detecting objects such as lines in walls are generally optimized for the transmission and/or reception of high-frequency (HF) radar signals. A known antenna having a planar design is described in published German patent document DE 101 04 863.
This known planar antenna is able to be fixed in position with high mechanical stability on a printed circuit board, and generates a relatively symmetrical directional diagram having substantially reduced secondary lobes or side lobes. The known antenna is made of an electroconductive plate which, on opposite edges, has two bent side sections used as line arms for coupling the antenna to a feed network. Each of the two line arms is provided with its own connection terminal, which is connectable to the feed network located on a printed circuit board. The known antenna system has the disadvantage of a quite bulky type of construction, as well as a parasitic emission between the bent side sections and the electroconductive plate. Moreover, only one beam direction is possible using the known radar antenna.
In contrast to the known design approach, the device of the present invention for transmitting/receiving electromagnetic HF signals, as well as the method for transmitting/receiving electromagnetic HF signals, have the advantage that measurement data can be obtained by the antenna in two directions orthogonal relative to each other, to permit better detection of objects to be measured. In addition, in spite of the dual emission/reception permitted, a smaller type of construction is made possible than in the related art. Parasitic emissions according to the related art cited, i.e., the emission of unwanted electromagnetic fields, are prevented by the configuration of the present invention using a screening. Apart from this, simple mounting is ensured, the arrangement being very stable mechanically.
The principle underlying the present invention is that essentially triangular, electrically conductive antenna sections which fan out in a funnel shape are situated diametrically opposite each other, which means in response to suitable excitation of these antenna sections, electromagnetic fields are formed which become detached and thus form an antenna. The geometry of the system according to the present invention is such that a detaching field forms both in cross-section and in longitudinal section in the space above the antenna without breaks or secondary lobes. At the same time, adjacent antenna sections are largely decoupled.
In accordance with the present invention, a device is made available for transmitting/receiving electromagnetic HF signals, which device includes: a first, essentially triangular, electrically conductive antenna section for transmitting and/or receiving HF signals; at least one second, third and fourth antenna section which basically correspond to the first antenna section and form a polygon, in each case a triangular point being provided approximately in the region of the midpoint of the polygon, in whose center an antenna axis is situated; and a carrier device essentially perpendicular to the antenna axis; in each case the triangular points of the triangular antenna sections, which start out from the midpoint, form a funnel shape at least in sections on the side facing away from the carrier device, are connected to HF signal connections of the carrier device in the region of the polygon midpoint, and in each case two diametrically opposite antenna sections form an antenna element.
According to one example refinement, in each case the triangular points of the essentially triangular antenna sections, which may taper into a rectangular segment, exhibit a predetermined curvature in the direction of the carrier device, in particular a multilayered printed circuit board, and lead into it in essentially perpendicular fashion at the HF signal connections electrically insulated from each other. These features serve to further improve the radiation characteristic of the antenna device according to the present invention.
According to a further example implementation, the surface of each of the at least four, essentially triangular antenna sections is flat or convex or concave and/or wavy or stepped at least in sections; a transition region, which runs perpendicular to the antenna axis at least in sections, is provided between the funnel shape and the electroconductive screening walls, each of which runs essentially parallel to the antenna axis, and into which each of the four basically triangular sections changes on a side opposite the triangular point. This holds the advantage of reducing parasitic emissions or the reception of parasitic signals, thereby further increasing the antenna characteristic.
According to a further example refinement, in each case two exposed edges of the at least four essentially triangular antenna sections are provided with angular and or round cutouts for the adaptation of antenna characteristics. The advantage here is the possibility for individual tuning to optimize the transmission/reception properties.
According to a further example embodiment, exactly four essentially triangular antenna sections form a square or a rectangle as polygon, the HF signal connections of the two adjacent, in each case diametrically opposite antenna sections being able to receive two HF-signal bands, e.g., of different, possibly partially overlapping frequency ranges. The radiation and reception frequencies may thereby be tuned to the form of the antenna device and vice versa, it being possible to easily differentiate the signals based on different frequency spectra.
According to a further example implementation, exactly four essentially triangular antenna sections form a square or a rectangle as polygon, the HF signal connections of the two adjacent, in each case diametrically opposite antenna sections being able to receive a HF signal in alternation. This advantageous development permits operation using two different polarization planes that are preferably displaced approximately 90° relative to each other, a HF source differentially triggering the two HF-signal connection pairs via a changeover switch.
According to another example refinement, the screening walls are contacted to an electroconductive screening device of the carrier device, which may be provided on or in the carrier device, and possibly both are connected, especially over a large surface, to a reference potential. This advantageous measure offers a radiation/reception characteristic that is improved again because of improved screening.
According to a further example refinement, approximately parallel to the carrier device, a radome is provided as covering over the at least four, essentially triangular antenna sections, the antenna device being movably supported via axles provided with wheels. Protection of the transmitting/receiving device is thus ensured, and the device is preferably movable via wheels rigidly connected by axles.
According to another example implementation, the at least four, essentially triangular antenna sections are made of separate sheets that are mechanically and/or electrically connected to each other in the region of the screening walls, or are made of a one-piece metal die-cast part or a plastic die-cast part which is provided, at least in sections, with a conductive metallization. Cost-effective manufacturing variants are thus advantageously made available.
According to another example implementation, the triangular points of the at least four, essentially triangular antenna sections are electrically connected to the HF-signal connections of the carrier device via solder contactings or conductive adhesive contactings. This likewise results in a cost-effective and simple assembly.
In the figures, identical reference numerals denote the same or functionally equivalent component parts.
If mechanical loads get onto cover device 17, i.e., especially a radome which contacts the transmitting/receiving device at its upper side, the load is transferred over a large surface via screening wall 13 at the entire periphery, to carrier device 15. HF-signal connections 15′ situated inside, which, in top view, are electrically connected to triangular points 12 of essentially triangular antenna sections 10, are insulated from each other. Essentially triangular antenna sections 10 may change in triangular points 12 into rectangular segments (cannot be seen in
The sectional view in
The configuration according to
According to
An upper section of antenna section 10 changes into a tangential line when radii coincide in absolute amount at the same midpoint between inclined antenna section 10 and perpendicular screening wall 13. At its lower end in the region of carrier device 15, screening wall 13 is connected in planar fashion or at least partially to a system ground, preferably to a reference potential, just like a flat screening made of electroconductive material and integrated into carrier device 15. Consequently, electromagnetic fields which form below antenna sections 10 are shielded outwardly.
Thus, between diametrically opposite antenna sections 10 running in the shape of a cone or funnel, electromagnetic fields form which detach. The geometry is such that a detaching field forms in cross-section and in longitudinal section above the transmitting/receiving device without breaks. In this context, the directly adjacent antenna sections are substantially decoupled.
According to the example embodiment in
For plastic holders (not shown) below antenna sections 10, partial cutouts may be introduced into screening walls 13, on condition they are not too large and are positioned in such a way that no maxima are produced in the screened space between carrier device 15 and antenna sections 10 as well as screening walls 13, for such cutouts have no negative influence on the electromagnetic waves detaching above to the outside.
Advantageously, the four HF-signal connections 15′ project into plated-through holes, suitably insulated from each other, in carrier device 15 or printed circuit board, and are electrically connected there to triangular points 12. A metal layer provided in/out of carrier device 15 and facing away from the funnel shape is contacted substantially over the entire surface to a system ground or a reference potential, as well as the bottom side of screening walls 13. Also possible, however, is a contact in each case between one middle conductor of a coaxial cable and one triangular point 12 of one antenna section 10, whose outer conductor is connected to the system ground or a reference potential. Combinations of the possibilities just indicated are also conceivable.
Predefined boundary conditions, such as a lower and upper limit frequency, a maximum horizontal and/or vertical installation geometry of the transmitting/receiving device may be taken into consideration and adjusted within certain limits. In principle, the total length and upper width of essentially triangular antenna sections 10 determine the transmission/reception range possible. Antenna characteristics may be modified and, in particular, the radiation pattern may be adjusted by cutouts 16 according to
The antenna devices shown in the example embodiments according to
The feeding or deriving or distributing of HF-signals necessary for operating the transmitting/receiving device advantageously takes place on or within carrier device 15, e.g., a multi-layer printed circuit board. When leads run on the screening layer (not shown) facing the antenna side, the leads being electrically insulated from the screening layer, they are implemented using grounded coplanar technology. In addition to an example embodiment as a die-cast part made of metal, e.g., die-cast aluminum, it is possible to provide a comparable injection-molded part made of plastic, which is covered with a conductive metallic layer.
By openings that are suitable for injection molding and are distributed in the plastic member, a quasi homogeneous, sectionally conductive antenna element is formed having comparable properties.
According to the example embodiments described, mounting proves to be very simple, since the transmitting/receiving antenna is bolted to carrier device 15 or a conductor or ground-potential plate via mounting holes 20 according to
Diametrically opposite antenna sections 10, which are controllable independently of one another by HF-signal connections 15′, are thus able to transmit/receive two polarizations situated orthogonally relative to each other.
In the inclined top view according to
There is also the possibility of mounting single sheets 10′ individually on the carrier device, the single sheets first having an electrical and/or mechanical connection after being mounted on carrier device 15. When all four sheets 10′ are mounted, the antenna is complete; if needed, sheets 10′ may likewise be soldered at the common edges. The example embodiment according to
According to
Although the present invention has been described above with reference to exemplary embodiments, it is not limited thereto, but rather is modifiable in many ways. Thus, for example, in the region between screening wall 13 and triangular point 12, i.e., on essentially triangular antenna sections 10, beads may be provided to reduce mechanical vibrations.
Besides the exemplary embodiments described, each having four essentially triangular antenna sections, higher even numbers of essentially triangular antenna sections, which then form a polygon, are also feasible, it being possible to apply an HF signal as described to diametrically opposite antenna sections. Moreover, the ratios of sizes and the materials are only to be considered by way of example.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 032 175.2 | Jul 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/52359 | 5/24/2005 | WO | 00 | 3/18/2008 |