Device and method for treating vascular insufficiency

Information

  • Patent Grant
  • 10973638
  • Patent Number
    10,973,638
  • Date Filed
    Friday, June 9, 2017
    6 years ago
  • Date Issued
    Tuesday, April 13, 2021
    3 years ago
Abstract
Embodiments of a leaflet clip device and method of reducing regurgitation through a native heart valve are disclosed. A leaflet clip device can include an elongated clipping member having a first end portion and a second end portion and a tensioning mechanism coupled to the clipping member. The leaflet clip device can further include one or more tensioning members disposed within a lumen of the clipping member, wherein the one or more tensioning members are operatively connected to the tensioning mechanism to transform the clipping member from a delivery configuration to an implantation configuration.
Description
FIELD

This disclosure relates to devices and methods of treating heart valve insufficiency.


BACKGROUND

Heart valve insufficiency typically involves regurgitation of blood through a heart valve that is unable to close completely or properly, resulting in impaired cardiovascular function. Valvular insufficiency can affect, for example, the mitral valve, the aortic valve, or the tricuspid valve, and can be associated with calcified or prolapsed leaflets, and/or expansion or deformation of the valve annulus. One method of treating heart valve insufficiency is to employ one or more leaflet clips to improve coaptation of the native valve leaflets. However, conventional leaflet clips can be difficult to implant, can interfere with the function of or damage associated valve structures such as chordae, and are frequently limited to use with a single type of heart valve. Accordingly, improvements to devices and methods of treating heart valve insufficiency are desirable.


SUMMARY

An exemplary embodiment of a leaflet clip device can comprise an elongated clipping member having a first end portion and a second end portion and a tensioning mechanism coupled to the clipping member. The leaflet clip device can further comprise one or more tensioning members disposed within a lumen of the clipping member, wherein the one or more tensioning members are operatively connected to the tensioning mechanism to transform the clipping member from a delivery configuration to an implantation configuration. Some embodiments of the clip device may further comprise a retaining mechanism disposed within the lumen of the clipping member, wherein the retaining mechanism retains the shape of the clipping member in the implantation configuration.


In some embodiments of the clip device, the clipping member can compromise a shape memory material. Additionally and/or alternatively, the tensioning mechanism can be centrally coupled to the clipping member with respect to the first end and the second end. In some embodiments, the one or more tensioning members can comprises a first tensioning member fixed at a distal end portion thereof to the first end portion of the clipping member and operatively connected to the tensioning mechanism at a proximal end portion of the first tensioning member, and a second tensioning member fixed at a distal end portion thereof to the second end portion of the clipping member and operatively connected to the tensioning mechanism at a proximal end portion of the second tensioning member. In some embodiments of the clip device, rotation of at least a portion of the tensioning mechanism can cause tensioning of the one or more tensioning members.


In some embodiments of the clip device, the implantation configuration can comprise a primary clipping region defined between two leg portions of the clipping member. Additionally and/or alternatively, the tensioning mechanism can comprise a retaining mechanism configured to retain the clipping member in the implantation configuration. Additionally and/or alternatively, the one or more tensioning members can extend through a portion of the tensioning mechanism. Additionally and/or alternatively, the one or more tensioning members are fixed at one end to a portion of the tensioning mechanism.


Additionally and/or alternatively, an exemplary leaflet clip device can comprise a clipping member comprising a tubular body having a lumen and two leg portions, wherein the clipping member can be transformed between a substantially linear delivery configuration and an implantation configuration in which the leg portions are drawn toward each other to capture a pair of leaflets between the leg portions and a tensioning mechanism configured to transform the clipping member from the delivery configuration to the implantation configuration. Additionally and/or alternatively, the clip device can further comprise one or more cords disposed within the lumen of the clipping member, wherein the one or more cords are operatively connected to the tensioning mechanism to transform the clipping member from the delivery configuration to the implantation configuration. Additionally and/or alternatively, rotation of at least a portion of the tensioning mechanism can cause tensioning of the one or more cords, which causes the clipping member to transform from the delivery configuration to the implantation configuration.


In some embodiments of the clip device, the tensioning mechanism can comprise a screw and a nut, the one or more cords being connected to the nut such that rotation of the screw causes the nut to move axially along the screw and apply tension to the one or more cords. In some embodiments the leaflet clip device can further comprise a retaining mechanism disposed within the lumen of the clipping member, wherein the retaining mechanism retains the clipping member in the implantation configuration.


Additionally and/or alternatively, the tubular body can comprise a metal tube having circumferential slots axially spaced along the length of the tubular body. Additionally and/or alternatively, the clipping member in the implantation configuration can have the shape of the Greek letter omega. Additionally and/or alternatively, when the clipping member is in the implantation configuration, the leg portions can extend toward each other from respective ends of an intermediate portion of the tubular body to define a clipping region for capturing the pair of leaflets, with the leg portions extending away from each other moving a direction away from the clipping region.


An exemplary method of reducing regurgitation through a native heart valve can comprise positioning a leaflet clip device adjacent the coaptation edges of two adjacent leaflets of the heart valve, wherein the leaflet clip device comprises a clipping member and first and second tensioning members disposed within a lumen of the clipping member, the first tensioning member fixed to a first end portion of the clipping member and the second tensioning member fixed to a second end portion of the clipping member, and applying tension to the tensioning members to transform the clipping member from a delivery configuration to an implantation configuration in which the coaptation edges of the leaflets are captured between two leg portions of the clipping member.


Additionally and/or alternatively, applying tension can include rotating a tensioning mechanism operatively coupled to the first and second tensioning members. In some embodiments the method can comprise engaging a retaining mechanism to retain the clipping member in the implantation configuration. Additionally and/or alternatively, the clipping member can have a substantially linear shape in the delivery configuration.


The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a representative embodiment of a leaflet clip device with a portion of a tensioning mechanism broken away for purposes of illustration.



FIG. 2 is enlarged portion of a clipping member of the clip device of FIG. 1, shown partially broken away for purposes of illustration.



FIG. 3 is an enlarged portion of the leaflet clip device of FIG. 1, shown partially broken away for purposes of illustration.



FIG. 4 is a perspective view of another representative embodiment of a leaflet clip device having a plurality of integral clipping members for engaging multiple pairs of leaflets.



FIG. 5 is a front elevation view of another representative embodiment of a leaflet clip device.



FIG. 6 is a perspective view of a representative embodiment of a leaflet clip device implanted in the native aortic valve.



FIG. 7 is a side view of a delivery apparatus and leaflet clip device loaded in the delivery apparatus for delivery into a patient's body.



FIG. 8 is a front elevation view of another representative embodiment of a leaflet clip device.



FIG. 9 is a front elevation view of another representative embodiment of a leaflet clip device.



FIG. 10 is a front elevation view of a screw of the leaflet clip device illustrated in FIG. 9.



FIG. 11 is a front elevation view of another representative embodiment of a leaflet clip device.



FIG. 12 is a front elevation view of another representative embodiment of a leaflet clip device.



FIG. 13 is a front view of a clipping member formed from a laser cut metal tube, according to one embodiment.



FIG. 14 illustrates a cut pattern for laser cutting a metal tube to form a clipping member, such as shown in FIG. 13.



FIG. 15 is an enlarged view of a portion of the cut pattern shown in FIG. 14.



FIG. 16 is a front view of a clipping member formed from a laser cut metal tube, according to another embodiment.



FIG. 17 is an enlarged view of a portion of a cut pattern for laser cutting a metal tube to form a clipping member, such as shown in FIG. 16.





DETAILED DESCRIPTION

For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatuses, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.


Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, can be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any disclosed embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially can in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures cannot show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms can vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.


As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” and “associated” generally mean electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.


As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device toward the user, while distal motion of the device is motion of the device away from the user. The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.


As used herein, the terms “integrally formed” and “unitary construction” refer to a construction that does not include any welds, fasteners, or other means for securing separately formed pieces of material to each other.



FIG. 1 illustrates a representative embodiment of a leaflet clip device 10. The clip device 10 in the illustrated embodiments comprises an elongate clipping member 12 and a tensioning mechanism 14. The clipping member 12 can comprise an elongate generally tubular or cylindrical body having a first end portion 16, a second end portion 18, a lumen 20 extending from the first end portion 16 to the second end portion 18. The tensioning mechanism 14 can comprise one or more cords or tensioning members 22 disposed within the lumen 20 of the clipping member 12. As used herein, the term “tensioning member” or “cord” refers to a slender length of material that can be formed from a single wire, strand, fiber, or filament, or can comprise multiple wires, strands, fibers, or filaments.


The clipping member 12 can be transformed from a delivery configuration to an implantation configuration, and vice versa. In the delivery configuration, the clipping member 12 can be in a substantially longitudinally extended or straightened configuration (see FIG. 7). In the implantation configuration (see FIG. 1), two portions of the clipping member 12 are drawn toward each other forming a primary clipping region 24, such that a portion of one or more native valve leaflets can be captured, or pinched, between the two portions of the clipping member within the primary clipping region (see FIG. 6).


The clipping member 12 in the illustrated embodiment has a shape similar to the Greek letter “omega” in the implanted configuration. In particular, the clipping member 12 can have an intermediate portion 26 (which can extend linearly as shown or can be curved) and first and second leg portions 28, 30, respectively, which extend toward each other moving in a direction extending away from respective ends of the intermediate portion 26 to form the clipping region 24. The leg portions 28, 30 then extend away from each other moving in a direction extending away from the clipping region 24. Other delivery configurations for the clipping member 12 are also possible. For example, the clipping member 12 can be folded in half such that the first and second leg portions 28, 30 are straightened and extend parallel and side-to-side with respect to each other in the delivery configuration.


The leaflet clip device 10, and any of the other leaflet clip embodiments described herein, can be used to treat valvular insufficiency or regurgitation by remodeling the annulus and/or the leaflets of a heart valve. For example, FIG. 6 illustrates a leaflet clip device 10 situated in a native aortic valve 200. The native aortic valve 200 can include three valve leaflets 210, 212, 214 attached to a valve annulus 216. The valve leaflets 210 and 212 can form a first commissure 218, the leaflets 212 and 214 can form a second commissure 220, and the leaflets 210 and 214 can form a third commissure 222.


The leaflet clip device 10 is shown situated adjacent the first commissure 218, such that the leaflet clip device 10 engages the leaflets 210 and 212. The leaflet clip device 10 is also shown situated near the wall of the valve annulus 216. In this manner, the leaflet clip 10 can improve coaptation of the leaflets 210, 212 at the commissure 218, thereby reducing regurgitation through the valve 200 due to valvular insufficiency. Additionally, although the leaflet clip 10 is shown clipped to the respective valve leaflets adjacent the annulus 216, the leaflet clip 10 can be clipped to the valve leaflets at any suitable location along the leaflets, including at the center of the native valve, as desired.


Although one clip device 10 is shown implanted in the native aortic valve, a plurality of leaflet clips 10 can be implanted to reduce dilatation of the annulus 216 and/or to address abnormalities in the shape of the annulus 216. For example, a leaflet clip 10 can be implanted on each pair of leaflets, for example, at each commissure 218, 220, 222. Alternatively or additionally, multiple clip devices 10 can be implanted along the coaptation edges of a pair of adjacent leaflets. For example, multiple clip devices 10 can be implanted along the coaptation edges of leaflets 210, 212.


Referring again to FIG. 1, the tensioning mechanism 14 can be operatively coupled to the clipping member 12 via the tensioning members 22, which apply tension to the clipping member 12 to transform the clipping member 12 from the delivery configuration to the implantation configuration and/or to bring the leg portions 28, 30 closer together to the final implantation configuration after partial deployment from the delivery configuration, as further described below.


In particular embodiments of the leaflet clip device 10, the clipping member 12 can be formed (e.g., laser cut) from a metal tube, such as shown in FIGS. 13 and 16. The tube can be formed with a plurality of slots or cuts along the length of the tube to promote bending of the tube from the delivery configuration to the implantation configuration.


In some embodiments, the clipping member 12 can be formed from a nonlinearly elastic, super-elastic, and/or shape-memory material, such as Nitinol, and is shape set in the implantation configuration. The clipping member 12 can be retained in the delivery configuration during delivery of the device within a patient's body, such as with a sheath of a delivery apparatus, and when released from the delivery configuration, the clipping member 12 automatically reverts back toward the implantation configuration. In some embodiments, the clipping member 12 can self-deploy under its own resiliency from the delivery configuration to a partially deployed configuration such that the leg portions 28, 30 are spaced apart from each other at the clipping region 24. The tensioning mechanism 14 can then be used to draw the leg portions 28, 30 closer together to the implantation configuration shown in FIG. 1 with sufficient force to engage and anchor itself onto a pair of native valve leaflets. In other embodiments, the clipping member can be shape set in a substantially straight or linear deliver configuration and the tensioning mechanism 14 is used to deform or bend the clipping member from the delivery configuration to the implantation configuration.


In alternative embodiments, the clip device 10 does not have a tensioning mechanism 14 and the shape-memory material of the clipping member 12 causes the clipping member 12 to transform from the delivery configuration to the implantation configuration under its own resiliency and provide sufficient force against the native leaflets to anchor the clipping member 12 onto a pair of the native leaflets without a separate tensioning mechanism.


In other embodiments, the clipping member 12 can be formed from a linearly elastic material, such as stainless steel or cobalt chromium alloy. In such embodiments, the tensioning mechanism 14 can be used to transform or deform the clipping member 12 from the delivery configuration to the implantation configuration. Linearly elastic metals, such as stainless steel or cobalt chromium alloy, also deform plastically after an applied force exceeds a predetermined threshold. In some embodiments, the tensioning mechanism 14 can be used to plastically deform the clipping member 12 as it is deformed from the delivery configuration to the implantation configuration.



FIG. 13 illustrates an example of a clipping member 12 formed from a laser cut metal tube. FIG. 14 shows an exemplary cut pattern for the metal tube used to form the clipping member 12 shown in FIG. 13. FIG. 15 is an enlarged view of a portion of the cut pattern shown in FIG. 14. Although not shown, the clipping member can include a covering extending over and covering the outer surface of the metal tube. The covering can comprise a suitable fabric (e.g., a polyethylene terephthalate (PET) fabric), non-fabric polymeric materials (e.g., polyurethane or silicone), or natural tissue (e.g., pericardium tissue)


As shown in FIGS. 14 and 15, a series of axially-spaced, circumferential cuts can be formed in the clipping member 12 at selected locations. Along the leg portions 28, 30, the cuts form a series of circumferential gaps 80 with tabs 82 and notches 84 on opposite sides of central portions of the gaps 80. In the illustrated embodiment, the clipping member 12 has no or substantially no shape memory toward the implantation configuration and is shown in FIG. 13 in its natural resting state prior to being transformed into the implantation configuration. The clipping member in this example can comprise, for example, a stainless steel or cobalt chromium alloy metal tube. By application of forces to the clipping member 12, as further described below, it can be transformed from a substantially straight or linear configuration to the implantation configuration shown in FIG. 1. The gaps 80 promote bending of the clipping member as it is bent into the implantation configuration. The tabs 82 can reside in corresponding notches 84 to resist undesirable torquing of the clipping member as it is transformed into the implantation configuration.



FIG. 16 shows another example of a clipping member 12 formed from a laser cut metal tube. The clipping member 12 of FIG. 16 can be substantially the same as the clipping member of FIG. 13 except that the circumferential cuts form mating features that help maintain the shape of the clipping member when being transformed into the implantation configuration. In particular, as shown in FIG. 17, the cuts form a series of circumferential gaps 86 with tabs 88 and notches 90 on opposite sides of central portions of the gaps 86. The tabs 88 have non-linear opposing edges 92 that can engage similarly shaped non-linear edges 94 of the notches 90 when the clipping member is bent toward the implantation configuration. The edges 92 of the tabs 88 can frictionally engage the edges 94 of the notches 90 to resist straightening of the clipping member back toward the delivery configuration. FIG. 16 shows the clipping member retained in a partially deployed state by the retaining features of the cuts without application of other forces on the clipping member. In some embodiments, the retaining features of the cuts can be configured to retain the shape of the clipping member in the implantation configuration shown in FIG. 1.


When the clipping member 12 is in the implanted configuration, the clipping strength of the leaflet clip device can be determined. As used herein, the terms “clip retention force” and “clipping strength” refer to a force in the proximal direction that can be withstood by a leaflet clip device without disengaging from the leaflets of a heart valve when the clipping member is in the implantation configuration. In some embodiments, the clip device and/or a delivery apparatus for the clip device can include a strain gauge or equivalent device that is operable to measure the retention force of the leaflet clip device 10.


The tensioning mechanism 14 can be configured to permit fine closure movement of the leaflet clip device to the implantation configuration. In particular embodiments, the clip retention force can be completely controllable via the tensioning mechanism 14. For example, in the embodiment illustrated in FIGS. 1 and 3, the tensioning mechanism 14 can comprise a screw 32 and a moveable element such as a nut 34, which is threadably engaged with and moveable along the length of the screw 32. The tensioning mechanism 14 can further include a housing 54 containing the screw 32 and the nut 34, and two plates or bars 56 on opposite sides of the nut 34. The plates 56 contact adjacent surfaces of the nut 34 and prevent rotation of the nut 34 upon rotation of the screw 32. Hence, rotation of the screw 32 produces axial movement of the nut 34 along the length of the screw within the housing 54.


The screw 32 can have a proximal end portion 58 that can be releasably connected to a delivery apparatus or another tool that can be manipulated to rotate the screw 32. For example, a rotatable shaft of a delivery apparatus or another tool can have a distal end portion releasable connected to the proximal end portion 58 of the screw 32. The proximal end portion of the shaft can be rotated by a user (either manually or by activating a motor that rotates the shaft), which in turn rotates the screw 32.


A first cord 22a can have a distal end portion 36 attached to the first end portion 16 of the clipping member 12 and a second cord 22b can have a distal end portion 38 attached to the second end portion 18 of the clipping member 12. The distal end portions 36, 38 of the cords 22a, 22b can be fixedly secured to portions of the clipping member 12, such as by welding the distal end portions 36, 38 to the luminal surface of the clipping member 12. Proximal end portions 40, 42 of the first and second cords 22a, 22b can be fixedly secured to the nut 34, for example, by placing the proximal end portions 40, 42 into respective bores 60 in the nut 34 and welding them into place. Tension can be applied to the first and second cords 22a, 22b by movement of the nut 34 away from the clipping member 12 along the length of the screw 32 in the proximal direction, as indicated by arrow 62. Tension on the first and second cords 22a, 22b can be released or eased by movement of the nut 34 towards the clipping member 12 in the distal direction, as indicated by arrow 64.


Tensioning of the cords 22a, 22b is effective to apply a compressive or buckling force to the leg portions 28, 30, which causes the leg portions to buckle at the clipping region 24 and/or cause the leg portions to be drawn closer together at the clipping region and apply sufficient retention force against the native leaflets along the coaptation edges of the leaflets. Further tensioning of the cords 22a, 22b can permit manipulation of the intermediate portion 26 of the clipping member to perform reshaping of the cusp region of the native valve. As noted above, the clipping member 12 can be comprised of flex cuts and/or thinning of tube material at predetermined locations along the clipping member 12 where bending of the clipping member 12 is desired, for example thinning and/or flex cuts at bends 44, 66. The length, positioning, frequency, and amount of material removal of the flex cuts can allow for a multitude of options to produce flexion in specific areas in a defined sequence, location, resolution, and with a defined curvature.


Fine closure movement of the leaflet clip device 10 can depend on the pitch of threading of the screw 32. For example, a relatively smaller pitch will increase the amount of control over the spacing between the leg portions 28, 30 at the clipping region 24 and the retention force applied to a pair of native leaflets.


In lieu of or in addition to locking flex cuts (as shown in FIG. 17), some embodiments of the leaflet clip device 10 can include one or more retaining features to help retain the clipping member 12 in its implantation configuration. For example, the clipping member 12 can comprise a retaining mechanism 46 at each bend 44, which retains that portion of the clipping member in its deformed state once a predetermined angle of curvature in the clipping member 12 is reached. As shown in FIG. 2, each locking mechanism 46 can be disposed within the lumen of the clipping member 12 at bends 44. Each locking mechanism 46 can include at least a first locking member 48 and a second locking member 50 configured to move relative to each other as the clipping member is transformed from the delivery configuration to the implantation configuration. The locking members 48, 50 can have opposing edges having complimentary shapes that nest against each other in the implantation configuration. For example, the first locking member 48 can have a notch 68 that receives a projection 70 of the second locking member 50.


When the clipping member 12 is substantially straightened in the delivery configuration, the locking members 48, 50 are placed in an overlapping position relative to each and can slide against one another as the clipping member 12 moves toward the implantation configuration. When the bend 44 reaches a predetermined curvature, for example when the implantation configuration is reached, and the projection 70 moves into engagement within the notch 68, as shown in FIG. 2. The locking members 48, 50 can be biased laterally against each other to force the projection 70 to engage the notch 68. Engagement of the locking members 48, 50 resists further bending of the clipping member at bend 44 beyond the implantation configuration and bending of the clipping member back toward the delivery configuration at bend 44. The retaining members 46 can decrease the load placed on the cords 22a, 22b and can increase the ability of the clip device to maintain a consistent retention force on the leaflets for a longer period of time.


Additionally and/or alternative, the tensioning mechanism 14 can also include a retaining or locking mechanism for retaining the clipping member 12 in the implantation configuration. For example, the tensioning mechanism 14 can retain the clipping member in the implantation configuration due to the balance of tension forces in the one or more cords 22 with the frictional forces between the screw 32 and the nut 34. In this manner, the screw 32 and the nut 34 serve as a retaining mechanism. Additionally and/or alternatively, a variable pitch screw can provide a retaining mechanism whereby a nut 34 can travel along a first portion of the screw having a first pitch and then locks onto or creates a mechanical interference with a second portion of the screw having a second pitch different than the first pitch, as further described below in connection with FIGS. 9-10.



FIG. 7 shows the distal end portion of a delivery apparatus 400 for delivering and implanting a clip device 10 percutaneously within a patient's body, according to one embodiment. The delivery apparatus can comprise an outer sheath 402, a first shaft 404 extending through the sheath 402, and a second shaft 406 extending through the first shaft 404. The sheath 402 has a lumen sized to receive and retain the clip device 10 in the delivery configuration for delivery through the patient's body. The inner shaft 404 can be releasably connected to a convenient location on the clip device, as the tensioning mechanism 14 as shown. The shaft 404 can be used to manipulate or adjust the position of the clip device 10 relative to the sheath 402 and the implantation location. For example, the shaft 404 can be used to deploy the clip device 10 from the sheath 402, move the clip device distally and proximally relative to the implantation location, and/or rotate the clip device relative to the implantation location. The second shaft 406 can be releasably coupled to the proximal end portion 58 of the screw 32 of the tensioning mechanism 14. The second shaft 406 can be rotated relative to the first shaft 404 by a user to rotate the screw 32 and adjust the tension on the cords 22a, 22b. The proximal end portions of the sheath 402, the first shaft 404, and the second shaft 406 can be coupled to a handle of the delivery apparatus, which can include appropriate controls (e.g., knobs) that allow a user to control movement the sheath 402, the first shaft 404, and the second shaft 406.


The delivery apparatus 400 and a clip device 10 contained within the sheath 402 can be introduced into a patient's vasculature (e.g., via the femoral artery or other suitable access point) and percutaneously advanced to the patient's heart with a leaflet clip device 402 using any of various delivery techniques. In a transfemoral procedure, the delivery apparatus 400 can be inserted through a femoral artery and the aorta to the heart in a retrograde direction (typically, but not exclusively used for deploying a clip on the leaflets of the aortic or mitral valves). Similarly, the delivery apparatus 400 can be inserted through a femoral vein and the vena cava to the right side of the heart in an antegrade direction (typically, but not exclusively used for deploying a clip on the leaflets of the pulmonary or tricuspid valves). In a transventricular procedure, the delivery apparatus 400 can be inserted through a surgical incision made in the chest and on the bare spot on the lower anterior ventricle wall (typically, but not exclusively used for deploying a clip on the leaflets of the aortic or mitral valves). Similarly, the delivery apparatus 400 can be inserted through a surgical incision on the wall of the right ventricle to access the pulmonary or tricuspid valves. In a transatrial procedure, the delivery apparatus 400 can be inserted through a surgical incision made in the wall of the left or right atrium to access the native valves on the left or right sides, respectively, of the heart. In a transaortic procedure, the delivery apparatus 400 can be inserted through a surgical incision made in the ascending aorta and advanced toward the heart (typically, but not exclusively used deploying a clip on the leaflets of the aortic or mitral valves). In a transseptal procedure, the delivery apparatus 400 can be advanced to the right atrium, such as via a femoral vein, and through the septum separating the right and left ventricles (typically, but not exclusively used for deploying a clip on the leaflets of the aortic or mitral valves). Further details of delivery techniques for accessing the native valves of the heart are disclosed in U.S. Patent Publication No. 2014/0067052, which is incorporated herein by reference.


Once located proximate the desired heart valve, the leaflet clip device 10 can then be deployed from the sheath 402, such as by pushing the clip device 10 distally from the sheath 402 using the shaft 404 and/or retracting the sheath 402 relative to the clip device. Once the clip device is deployed from the sheath, the clip device can be advanced distally, retracted proximally, and/or rotated as needed to position the leaflet clip device 10 such that a pair of first and second leaflets are positioned generally within the primary clipping region 24 with the first leg portion 28 adjacent one of the leaflets and the second leg portion 30 adjacent the other leaflet.


The delivery apparatus can be used to adjust the tensioning mechanism 14 until the desired predetermined implantation configuration is achieved with the leaflets engaged and pinched between the leg portions 28, 30. For example, the user can rotate the shaft 406, which rotates the screw 32, thereby increasing tension on the cords 22a, 22b until the implantation configuration is achieved.


In alternative embodiments, a clip device can comprise multiple clipping members that are configured to engage multiple pairs of native leaflets. As shown in FIG. 4, for example, a leaflet clip device 300 comprises an annular ring having three clipping members 302, 304, 306 spaced approximately 120 degrees from each other, each configured to be implanted on a pair of native leaflets, such as at a commissure of the native valve. The clip device 300 can comprise a tubular structure and be formed from, for example, a shape-memory material (e.g., Nitinol) or a plastically-deformable material (e.g., stainless steel or cobalt chromium alloy). In other embodiments, the clip device can comprises an annular ring having two clipping members spaced approximately 180 degrees from each other, such as for implantation on the leaflets of the native mitral valve.


In still alternative embodiments, the clip device can comprise an open ring (i.e., a ring that extends less than 360 degrees) having a number of clipping members that is less than the number of native leaflets of the valve in which the device is to be implanted. For example, the clip device can comprise an open ring having two clipping members spaced approximately 120 degrees from each other and is configured to engage two pairs of native leaflets but not the third pair of native leaflets.


A leaflet clip device can include any one of a number of different tensioning mechanisms configured to apply tension to one or more cords disposed within a clipping member and/or transform the clipping member from a delivery configuration to an implantation configuration. For example, FIGS. 5 and 8-12 illustrate various embodiments of a leaflet clip device having different tensioning mechanisms.



FIG. 5 illustrates a leaflet clip device 500, according to another embodiment. The leaflet clip 500 comprises a tensioning mechanism 502 and a clipping member 504 defining a lumen 506. The tensioning mechanism 502 can comprise one or more fasteners 508. One or more cords 510 can be disposed within the lumen 506 and can be attached at their distal end portions 512 to respective locations on the clipping member 504, as described above in connection with the embodiment of FIG. 1. The one or more cords 510 can pass through the fastener 508 and can have proximal end portions connected to a delivery apparatus and/or extending outside of the patient's body. The fastener 508 (such as a suture clip) can be advanced over the cords 510 in the direction indicated by arrow 516 and pushed against an intermediate portion 514 of the clipping member 504 so as to retain tension on the cords. The portions of the cords proximal to the clipping member 504 can be severed with the delivery apparatus or another tool.


The fastener 508 can be a suture clip, or another type of fastener that can be deployed from a catheter and secured to a suture within the patient's body. Various suture clips and deployment techniques for suture clips that can be used in the methods disclosed in the present application are disclosed in U.S. Publication Nos. 2014/0031864 and 2008/0281356 and U.S. Pat. No. 7,628,797, which are incorporated herein by reference. In the case of a slideable fastener, the fastener 508 can be movable along the cords 510 in a distal direction toward the clipping member, and configured to resist movement in a proximal direction along the cords in the opposite direction. Thus, once placed against the clipping member, the fastener 508 can resist the cords 510 pulling through the fastener under the tension of the cords. In this manner, the fastener 508 serves as a retaining member to assist in maintaining the shape of the clipping member in the implantation configuration.


The delivery apparatus can include a mechanism configured to adjust the tension applied to the cords 510 until the desired predetermined implantation configuration is achieved. For example, the cords 510 can be releasably coupled to respective shafts or other components that can be controlled by a user. The delivery apparatus can also include a mechanism for deploying the fastener 508 onto the cords and/or advancing the fastener 508 over the cord until it abuts the clipping member.



FIG. 8 illustrates a leaflet clip device 600, according to another embodiment. The clip device 600 comprises a tensioning mechanism 602 and a clipping member 604 defining a lumen 606. The tensioning mechanism 602 can comprise one or more fasteners 608 (e.g., suture clips) and a pulley system 610 comprising one or more pulley wheels or sheaves 612 disposed within the lumen 606. One or more cords 614 can be disposed within the lumen 606 and attached at their distal end portions 616 to respective locations on the clipping member 604, as described above in connection with the embodiment of FIG. 1. The one or more cords 614 can pass through the fastener 608 that allows for one directional movement of the cords 614 through the fastener. As shown, the cords 614 can be weaved around the wheels 612 as they extend through the lumen.


The delivery apparatus can include a mechanism that allows tension to be applied to the cords 614 within the clipping member 604 until the desired predetermined implantation configuration is achieved and a mechanism to deploy and advance the fastener 608 over the cords 614, as discussed above in connection with the embodiment of FIG. 5. The use of pulley wheels 612 to support the cords 614 in advantageous in that it significantly reduces the force required to deform the clipping member to the implantation configuration by application of tensile forces on the cords. The pulley wheels 612 are also positioned at strategic locations within the lumen to promote flexing of the clipping member at the desired locations upon application of tension on the cords. Other uses of a pulley system could further distribute the tension force/load on the cords depending upon the needs of the procedure.



FIG. 9 illustrates a leaflet clip device 700, according to another embodiment. The clip device 700 comprises a tensioning mechanism 702 and a clipping member 704 defining a lumen 706. The tensioning mechanism 702 can comprise a screw 708 and a nut 710 disposed on the screw, similar to the tensioning mechanism 14 of FIG. 1. Instead of a separate housing for the tensioning mechanism, the screw 708 can be at least partially disposed within the lumen 706 of the clipping member. Two walls or projections 718 can be located on opposite sides of the nut 710 within the lumen 706 to contact and prevent rotation of the nut 710 upon rotation of the screw 708.


One or more cords 712 can be disposed within the lumen 706 and can be attached at their distal end portions 714 to respective locations on the clipping member 704, as described above. The cords 712 can be attached at their proximal end portions to the nut 710. As such, rotation of the screw 708 is effective to move the nut 710 axially along the screw to adjust the tension on the cords, as described in detail above in connection with the embodiment of FIG. 1.


The tensioning mechanism 702 can include a retaining or locking mechanism in the form of a variable-pitch screw. As best shown in FIG. 10, for example, the screw 708 can include a first threaded portion 720 having threads defining a first pitch and a second threaded portion 722 having threads defining a second pitch, smaller than the first pitch. The nut 710 has internal threads that correspond to the threads of the first threaded portion 720 and can move axially along the screw upon rotation of the screw. The internal threads of the nut 710 are substantially different from the threads of the second threaded portion 722 (e.g., the threads are larger and/or have a smaller pitch than the threads of the second threaded portion) such that when the nut 710 reaches the second threaded portion 722, a mechanical interference occurs that resists further movement of the nut to assist in retaining the clipping member in its deformed state.



FIG. 11 illustrates a leaflet clip device 800, according to another embodiment. The clip device 800 comprises a tensioning mechanism 802 and a clipping member 804 defining a lumen 806. The tensioning mechanism 802 can comprise a worm screw 808 and a worm wheel or gear 810 engaged with the screw 808. The screw 808 and the wheel 810 can be mounted within the lumen 806 with the proximal end portion of the screw 808 exposed outside of the clipping member for connection to a delivery apparatus or tool used for rotating the screw. Rotation or torque on the worm screw 808 is converted to rotation or torque on the worm wheel 810.


One or more cords 812 can be disposed within the lumen 806 and can be attached at their distal ends 814 to respective locations on the clipping member 804, as previously described. The one or more cords 812 can be attached at their proximal end portions to a central shaft 816 of the worm wheel 810. A mechanism in the delivery system (e.g., a torque shaft) can rotate the screw 808, causing the worm wheel 810 and the shaft 816 to rotate. As the worm wheel 810 is rotated, tension is applied to the one or more cords 812 as the slack in the cords become wrapped around the shaft 816. A single worm wheel 810 can be used to apply tension to multiple cords 812, as shown. In alternative embodiments, first and second worm wheels 810 can be mounted on respective shafts on opposite sides of the screw 808 with each wheel 810 connected to a respective cord 810 that extends through that side of the clipping member. Tension can be applied to the one or more cords 812 within the clipping member 804 until the desired predetermined implantation configuration is reached.



FIG. 12 illustrates a leaflet clip device 900, according to another embodiment. The clip device 900 can comprise a tensioning mechanism 902 and a clipping member 904 defining a lumen 906. The tensioning mechanism 902 can comprise a central bevel gear 908 and one or more side bevel gears 910, for example disposed on either side of the central bevel gear 908. Each side gear 910 can be mounted on a respective shaft 916 or a common shaft that extends through both side gears 910. The gears 908, 910 can be mounted in the lumen 906 except that a shaft portion 909 of the central gear 908 can be exposed outside of the clipping member for connection to a delivery apparatus or tool used for rotating the screw. Rotation or torque of the central gear 908 (by rotating the shaft portion 909) is converted to rotation or torque on the two side gears 910.


One or more cords 912 can be disposed within the lumen 906 and can be attached at their distal end portions 914 to respective locations on the clipping member 904 as previously described. Each of the one or more cords 912 can be attached at its proximal end portion to a shaft 916 of a respective side gear 910. A mechanism in the delivery system (e.g., a torque shaft) can rotate the central gear 908, causing the side gears 910 to rotate. As the side gears 910 rotate, tension is applied to the one or more cords 912 as slack in each cord is wrapped around a respective shaft 916. Tension can be applied to the one or more cords 912 within the clipping member 904 until the desired predetermined implantation configuration is reached.


In view of the many possible embodiments to which the principles of the disclosed technology can be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is defined by the following claims.

Claims
  • 1. A leaflet clip device, comprising: an elongated clipping member having a first end portion and a second end portion;a tensioning mechanism coupled to the clipping member;one or more tensioning members disposed within a lumen of the clipping member, wherein the one or more tensioning members are operatively connected to the tensioning mechanism to transform the clipping member from a delivery configuration to an implantation configuration;wherein the one or more tensioning members comprises:a first tensioning member fixed at a distal end portion thereof to the first end portion of the clipping member and operatively connected to the tensioning mechanism at a proximal end portion of the first tensioning member; anda second tensioning member fixed at a distal end portion thereof to the second end portion of the clipping member and operatively connected to the tensioning mechanism at a proximal end portion of the second tensioning member.
  • 2. A leaflet clip device, comprising: an elongated clipping member having a first end portion and a second end portion;a tensioning mechanism coupled to the clipping member;one or more tensioning members disposed within a lumen of the clipping member and extending into the first and second end portions, wherein the one or more tensioning members are operatively connected to the tensioning mechanism to transform the clipping member from a delivery configuration to an implantation configuration; anda locking mechanism comprising at least a first locking member and a second locking member for retaining the shape of the clipping member in the implantation configuration, wherein transformation of the clipping member to the implantation configuration allows movement of the first locking member and the second locking member relative to each other;wherein the implantation configuration comprises a primary clipping region defined between two leg portions of the clipping member, the primary clipping region configured to capture a pair of leaflets such that adjacent surfaces of the leaflets contact one another.
  • 3. A leaflet clip device, comprising: a clipping member comprising a tubular body having a lumen and two leg portions formed as part of the tubular body, wherein the clipping member can be transformed between a substantially linear delivery configuration and an implantation configuration in which the leg portions are drawn toward each other to capture a pair of leaflets between the leg portions such that adjacent surfaces of the leaflets contact one another;a tensioning mechanism configured to transform the clipping member from the delivery configuration to the implantation configuration; andone or more cords disposed within the lumen of the clipping member and extending into the two leg portions, wherein the one or more cords are operatively connected to the tensioning mechanism to transform the clipping member from the delivery configuration to the implantation configuration.
  • 4. The leaflet clip device of claim 3, wherein rotation of at least a portion of the tensioning mechanism causes tensioning of the one or more cords, which causes the clipping member to transform from the delivery configuration to the implantation configuration.
  • 5. The leaflet clip device of claim 3, wherein the tensioning mechanism comprises a screw and nut, the one or more cords being connected to the nut such that rotation of the screw causes the nut to move axially along the screw and apply tension to the one or more cords.
  • 6. The leaflet clip device of claim 3, further comprising a retaining mechanism disposed within the lumen of the clipping member, wherein the retaining mechanism retains the clipping member in the implantation configuration.
  • 7. The leaflet clip device of claim 3, wherein the tubular body comprises a metal tube having circumferential slots axially spaced along the length of the tubular body.
  • 8. The leaflet clip device of claim 3, wherein the clipping member in the implantation configuration has the shape of the Greek letter omega.
  • 9. The leaflet clip device of claim 3, wherein when the clipping member is in the implantation configuration, the leg portions extend toward each other from respective ends of an intermediate portion of the tubular body to define a clipping region for capturing the pair of leaflets, the leg portions extending away from each other moving a direction away from the clipping region.
  • 10. A method of reducing regurgitation through a native heart valve, comprising: positioning a leaflet clip device adjacent the coaptation edges of two adjacent leaflets of the heart valve, wherein the leaflet clip device comprises a clipping member and first and second tensioning members disposed within a lumen of the clipping member, the first tensioning member fixed to a distal end portion of a first leg portion of the clipping member and the second tensioning member fixed to a distal end portion of a second leg portion of the clipping member; andapplying tension to the tensioning members to transform the clipping member from a delivery configuration to an implantation configuration in which the coaptation edges of the leaflets are captured between the first and second leg portions of the clipping member such that the coaptation edges contact one another.
  • 11. The method of claim 10, wherein applying tension includes rotating a tensioning mechanism operatively coupled to the first and second tensioning members.
  • 12. The method of claim 10, further comprising engaging a retaining mechanism to retain the clipping member in the implantation configuration.
  • 13. The method of claim 12, wherein the clipping member has a substantially linear shape in the delivery configuration.
  • 14. A leaflet clip device, comprising: an elongated clipping member having a first end portion and a second end portion;a tensioning mechanism coupled to the clipping member; andone or more tensioning members disposed within a lumen of the clipping member and extending into the first and second end portions, wherein the one or more tensioning members are operatively connected to the tensioning mechanism to transform the clipping member from a delivery configuration to an implantation configuration;wherein the implantation configuration comprises a primary clipping region defined between two leg portions of the clipping member, the primary clipping region configured to capture a pair of leaflets such that adjacent surfaces of the leaflets contact one another.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 62/359,608, filed Jul. 7, 2016, which is incorporated herein by reference.

US Referenced Citations (417)
Number Name Date Kind
3874388 King et al. Apr 1975 A
4340091 Skelton et al. Jul 1982 A
4506669 Blake, III Mar 1985 A
4590937 Deniega May 1986 A
4693248 Failla Sep 1987 A
4803983 Siegel Feb 1989 A
5125895 Buchbinder et al. Jun 1992 A
5171252 Friedland Dec 1992 A
5195962 Martin et al. Mar 1993 A
5292326 Green et al. Mar 1994 A
5327905 Avitall Jul 1994 A
5363861 Edwards et al. Nov 1994 A
5370665 Stevens Dec 1994 A
5389077 Melinyshyn et al. Feb 1995 A
5411552 Andersen et al. May 1995 A
5450860 O'Connor Sep 1995 A
5456674 Bos et al. Oct 1995 A
5474057 Makower et al. Dec 1995 A
5478353 Yoon Dec 1995 A
5487746 Yu et al. Jan 1996 A
5565004 Christoudias Oct 1996 A
5607462 Imran Mar 1997 A
5609598 Laufer et al. Mar 1997 A
5611794 Sauer et al. Mar 1997 A
5626607 Malecki et al. May 1997 A
5695504 Gifford, III et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5727569 Benetti et al. Mar 1998 A
5741297 Simon Apr 1998 A
5782746 Wright Jul 1998 A
5797960 Stevens et al. Aug 1998 A
5836311 Borst et al. Nov 1998 A
5843076 Webster, Jr. et al. Dec 1998 A
5855590 Malecki et al. Jan 1999 A
5885271 Hamilton et al. Mar 1999 A
5888247 Benetti Mar 1999 A
5891017 Swindle et al. Apr 1999 A
5891112 Samson Apr 1999 A
5894843 Benetti et al. Apr 1999 A
5921979 Kovac et al. Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5957835 Anderson et al. Sep 1999 A
5972020 Carpentier et al. Oct 1999 A
5980534 Gimpelson Nov 1999 A
6004329 Myers et al. Dec 1999 A
6010531 Donlon et al. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6086600 Kortenbach Jul 2000 A
6120496 Whayne et al. Sep 2000 A
6132370 Furnish et al. Oct 2000 A
6162239 Manhes Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6182664 Cosgrove Feb 2001 B1
6193732 Frantzen et al. Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6200315 Gaiser et al. Mar 2001 B1
6241743 Levin et al. Jun 2001 B1
6269819 Oz et al. Aug 2001 B1
6269829 Chen et al. Aug 2001 B1
6312447 Grimes Nov 2001 B1
6461366 Seguin Oct 2002 B1
6468285 Hsu et al. Oct 2002 B1
6508806 Hoste Jan 2003 B1
6508825 Seimon et al. Jan 2003 B1
6530933 Yeung et al. Mar 2003 B1
6537290 Adams et al. Mar 2003 B2
6544215 Bencini et al. Apr 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6719767 Kimblad Apr 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6837867 Kortelling Jan 2005 B2
6855137 Bon Feb 2005 B2
6913614 Marino et al. Jul 2005 B2
6926730 Nguyen et al. Aug 2005 B1
6939337 Parker et al. Sep 2005 B2
6945956 Waldhauser et al. Sep 2005 B2
7048754 Martin et al. May 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7288097 Seguin Oct 2007 B2
7371210 Brock et al. May 2008 B2
7464712 Oz et al. Dec 2008 B2
7509959 Oz et al. Mar 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7628797 Tieu et al. Dec 2009 B2
7682369 Seguin Mar 2010 B2
7731706 Potter Jun 2010 B2
7744609 Allen et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753932 Gingrich et al. Jul 2010 B2
7758596 Oz et al. Jul 2010 B2
7780723 Taylor Aug 2010 B2
7803185 Gabbay Sep 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7981123 Seguin Jul 2011 B2
7988724 Salahieh et al. Aug 2011 B2
8052750 Tuval et al. Nov 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8096985 Legaspi et al. Jan 2012 B2
8104149 McGarity Jan 2012 B1
8133239 Oz et al. Mar 2012 B2
8133241 Boyd et al. Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8172856 Eigler et al. May 2012 B2
8177836 Lee et al. May 2012 B2
8206437 Bonhoeffer et al. Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8348995 Tuval et al. Jan 2013 B2
8348996 Tuval et al. Jan 2013 B2
8391996 Schaller Mar 2013 B2
8414643 Tuval et al. Apr 2013 B2
8425404 Wilson et al. Apr 2013 B2
8449599 Chau et al. May 2013 B2
8449606 Eliasen et al. May 2013 B2
8460368 Taylor et al. Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8480730 Maurer et al. Jul 2013 B2
8540767 Zhang Sep 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8647254 Callas et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8668733 Haug et al. Mar 2014 B2
8721665 Oz et al. May 2014 B2
8740918 Seguin Jun 2014 B2
8771347 DeBoer et al. Jul 2014 B2
8778017 Eliasen et al. Jul 2014 B2
8834564 Tuval et al. Sep 2014 B2
8840663 Salahieh et al. Sep 2014 B2
8876894 Tuval et al. Nov 2014 B2
8876895 Tuval et al. Nov 2014 B2
8945177 Dell et al. Feb 2015 B2
8968336 Conklin et al. Mar 2015 B2
8968393 Rothstein Mar 2015 B2
9034032 McLean et al. May 2015 B2
9198757 Schroeder et al. Dec 2015 B2
9220507 Patel et al. Dec 2015 B1
9259317 Wilson et al. Feb 2016 B2
9282972 Patel et al. Mar 2016 B1
9301834 Tuval et al. Apr 2016 B2
9308360 Bishop et al. Apr 2016 B2
9387071 Tuval et al. Jul 2016 B2
9427327 Parrish Aug 2016 B2
9439763 Geist et al. Sep 2016 B2
9510837 Seguin Dec 2016 B2
9510946 Chau et al. Dec 2016 B2
9572660 Braido et al. Feb 2017 B2
9642704 Tuval et al. May 2017 B2
9700445 Martin et al. Jul 2017 B2
9775963 Miller Oct 2017 B2
D809139 Marsot et al. Jan 2018 S
9889002 Bonhoeffer et al. Feb 2018 B2
9949824 Bonhoeffer et al. Apr 2018 B2
10076327 Ellis et al. Sep 2018 B2
10076415 Metchik et al. Sep 2018 B1
10105221 Siegel Oct 2018 B2
10105222 Metchik et al. Oct 2018 B1
10111751 Metchik et al. Oct 2018 B1
10123873 Metchik et al. Nov 2018 B1
10130475 Metchik et al. Nov 2018 B1
10136993 Metchik et al. Nov 2018 B1
10159570 Metchik et al. Dec 2018 B1
10226309 Ho et al. Mar 2019 B2
10231837 Metchik et al. Mar 2019 B1
10238493 Metchik et al. Mar 2019 B1
10238494 McNiven et al. Mar 2019 B2
10238495 Marsot et al. Mar 2019 B2
10299924 Kizuka May 2019 B2
10376673 Van Hoven et al. Aug 2019 B2
20010005787 Oz et al. Jun 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020107531 Schreck et al. Aug 2002 A1
20020111641 Peterson et al. Aug 2002 A1
20020173811 Tu et al. Nov 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20030144573 Heilman et al. Jul 2003 A1
20030187467 Schreck Oct 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20040003819 St. Goar et al. Jan 2004 A1
20040034365 Lentz et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040049207 Goldfarb Mar 2004 A1
20040127981 Randert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040147943 Kobayashi Jul 2004 A1
20040181206 Chiu et al. Sep 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20050010287 Macoviak et al. Jan 2005 A1
20050049618 Masuda et al. Mar 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050143767 Kimura et al. Jun 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050216039 Lederman Sep 2005 A1
20050251183 Buckman et al. Nov 2005 A1
20050288786 Chanduszko Dec 2005 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060089671 Goldfarb et al. Apr 2006 A1
20060100649 Hart May 2006 A1
20060122647 Callaghan et al. Jun 2006 A1
20060142694 Bednarek et al. Jun 2006 A1
20060178700 Quinn Aug 2006 A1
20060224169 Weisenburgh et al. Oct 2006 A1
20070010800 Weitzner et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070021779 Garvin et al. Jan 2007 A1
20070032807 Ortiz et al. Feb 2007 A1
20070093857 Rogers et al. Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070156197 Root et al. Jul 2007 A1
20070191154 Genereux et al. Aug 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070198038 Cohen et al. Aug 2007 A1
20070265700 Ellasen et al. Nov 2007 A1
20070282414 Soltis et al. Dec 2007 A1
20070293943 Quinn Dec 2007 A1
20070299387 Williams et al. Dec 2007 A1
20070299424 Cumming et al. Dec 2007 A1
20080039743 Fox et al. Feb 2008 A1
20080039953 Davis et al. Feb 2008 A1
20080065149 Thielen et al. Mar 2008 A1
20080077144 Crofford Mar 2008 A1
20080091169 Heideman et al. Apr 2008 A1
20080140089 Kogiso et al. Jun 2008 A1
20080147093 Roskopf et al. Jun 2008 A1
20080147112 Sheets et al. Jun 2008 A1
20080167713 Bolling Jul 2008 A1
20080177300 Mas et al. Jul 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080255427 Satake et al. Oct 2008 A1
20080281356 Chau et al. Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080287862 Weitzner et al. Nov 2008 A1
20080294247 Yang et al. Nov 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20080319455 Harris et al. Dec 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090024110 Heideman et al. Jan 2009 A1
20090131680 Speziali et al. May 2009 A1
20090156995 Martin et al. Jun 2009 A1
20090163934 Raschdorf, Jr. et al. Jun 2009 A1
20090166913 Guo et al. Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090275902 Heeps et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090326567 Goldfarb Dec 2009 A1
20100022823 Goldfarb Jan 2010 A1
20100057192 Celermajer Mar 2010 A1
20100094317 Goldfarb et al. Apr 2010 A1
20100106141 Osypka et al. Apr 2010 A1
20100121434 Paul et al. May 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100324595 Linder et al. Dec 2010 A1
20110077668 Gordon et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110137410 Hacohen Jun 2011 A1
20110245855 Matsuoka et al. Oct 2011 A1
20110257723 McNarnara Oct 2011 A1
20110295281 Mizumoto et al. Dec 2011 A1
20120022633 Olson et al. Jan 2012 A1
20120089125 Scheibe et al. Apr 2012 A1
20120109160 Martinez et al. May 2012 A1
20120116419 Sigmon, Jr. May 2012 A1
20120209318 Qadeer Aug 2012 A1
20120277853 Rothstein Nov 2012 A1
20130035759 Gross et al. Feb 2013 A1
20130041314 Dillon Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130066342 Dell et al. Mar 2013 A1
20130072945 Terada Mar 2013 A1
20130073034 Wilson et al. Mar 2013 A1
20130138121 Allen et al. May 2013 A1
20130190798 Kapadia Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20140031864 Jafari et al. Jan 2014 A1
20140031928 Murphy et al. Jan 2014 A1
20140046433 Kovalsky Feb 2014 A1
20140046434 Rolando et al. Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140058411 Soutorine et al. Feb 2014 A1
20140066693 Goldfarb et al. Mar 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140067052 Chau et al. Mar 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140135685 Kabe et al. May 2014 A1
20140194975 Quill et al. Jul 2014 A1
20140200662 Eftel et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140236198 Goldfarb et al. Aug 2014 A1
20140243968 Padala Aug 2014 A1
20140251042 Asselin et al. Sep 2014 A1
20140277404 Wilson et al. Sep 2014 A1
20140277411 Bortlein et al. Sep 2014 A1
20140316428 Golan Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140330368 Gloss et al. Nov 2014 A1
20140336751 Kramer Nov 2014 A1
20140371843 Wilson et al. Dec 2014 A1
20150039084 Levi et al. Feb 2015 A1
20150057704 Takahashi Feb 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150105808 Gordon et al. Apr 2015 A1
20150148896 Karapetian et al. May 2015 A1
20150157268 Winshtein et al. Jun 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150223793 Goldfarb et al. Aug 2015 A1
20150230919 Chau et al. Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150257757 Powers et al. Sep 2015 A1
20150257877 Hernandez Sep 2015 A1
20150257883 Basude et al. Sep 2015 A1
20150313592 Coillard-Lavirotte et al. Nov 2015 A1
20150351904 Cooper et al. Dec 2015 A1
20150366666 Khairkhahan et al. Dec 2015 A1
20160008131 Christianson et al. Jan 2016 A1
20160022970 Forcucci et al. Jan 2016 A1
20160106539 Buchbinder et al. Apr 2016 A1
20160113762 Clague et al. Apr 2016 A1
20160113764 Sheahan et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160155987 Yoo et al. Jun 2016 A1
20160157862 Hernandez et al. Jun 2016 A1
20160174979 Wei Jun 2016 A1
20160174981 Fago et al. Jun 2016 A1
20160242906 Morriss et al. Aug 2016 A1
20160287387 Wei Oct 2016 A1
20160317290 Chau et al. Nov 2016 A1
20160331523 Chau Nov 2016 A1
20160354082 Oz et al. Dec 2016 A1
20170020521 Krone et al. Jan 2017 A1
20170035561 Rowe et al. Feb 2017 A1
20170035566 Krone et al. Feb 2017 A1
20170042456 Budiman Feb 2017 A1
20170042678 Ganesan et al. Feb 2017 A1
20170049455 Seguin Feb 2017 A1
20170100236 Robertson et al. Apr 2017 A1
20170239048 Goldfarb et al. Aug 2017 A1
20170252154 Tubishevitz et al. Sep 2017 A1
20170281330 Liljegren et al. Oct 2017 A1
20170348102 Cousins et al. Dec 2017 A1
20180008311 Shiroff et al. Jan 2018 A1
20180021044 Miller et al. Jan 2018 A1
20180021129 Peterson et al. Jan 2018 A1
20180021134 McNiven et al. Jan 2018 A1
20180078271 Thrasher, III Mar 2018 A1
20180126124 Winston et al. May 2018 A1
20180146964 Garcia et al. May 2018 A1
20180146966 Hernandez et al. May 2018 A1
20180153552 King et al. Jun 2018 A1
20180161159 Lee et al. Jun 2018 A1
20180168803 Pesce et al. Jun 2018 A1
20180221147 Ganesan et al. Aug 2018 A1
20180235657 Abunassar Aug 2018 A1
20180243086 Barbarino et al. Aug 2018 A1
20180258665 Reddy et al. Sep 2018 A1
20180263767 Chau et al. Sep 2018 A1
20180296326 Dixon et al. Oct 2018 A1
20180296327 Dixon et al. Oct 2018 A1
20180296328 Dixon et al. Oct 2018 A1
20180296329 Dixon et al. Oct 2018 A1
20180296330 Dixon et al. Oct 2018 A1
20180296331 Dixon et al. Oct 2018 A1
20180296332 Dixon et al. Oct 2018 A1
20180296333 Dixon et al. Oct 2018 A1
20180296334 Dixon et al. Oct 2018 A1
20180325661 Delgado et al. Nov 2018 A1
20180325671 Abunassar et al. Nov 2018 A1
20180333259 Dibie Nov 2018 A1
20180344457 Gross et al. Dec 2018 A1
20180353181 Wei Dec 2018 A1
20190000613 Delgado et al. Jan 2019 A1
20190000623 Pan et al. Jan 2019 A1
20190008642 Delgado et al. Jan 2019 A1
20190008643 Delgado et al. Jan 2019 A1
20190015199 Delgado et al. Jan 2019 A1
20190015200 Delgado et al. Jan 2019 A1
20190015207 Delgado et al. Jan 2019 A1
20190015208 Delgado et al. Jan 2019 A1
20190021851 Delgado et al. Jan 2019 A1
20190021852 Delgado et al. Jan 2019 A1
20190029498 Mankolvski et al. Jan 2019 A1
20190029810 Delgado et al. Jan 2019 A1
20190029813 Delgado et al. Jan 2019 A1
20190030285 Prabhu et al. Jan 2019 A1
20190053810 Griffin Feb 2019 A1
20190060058 Delgado et al. Feb 2019 A1
20190060059 Delgado et al. Feb 2019 A1
20190060072 Zeng Feb 2019 A1
20190060073 Delgado et al. Feb 2019 A1
20190060074 Delgado et al. Feb 2019 A1
20190060075 Delgado et al. Feb 2019 A1
20190069991 Metchik et al. Mar 2019 A1
20190069992 Delgado et al. Mar 2019 A1
20190069993 Delgado et al. Mar 2019 A1
20190105156 He et al. Apr 2019 A1
20190111239 Bolduc et al. Apr 2019 A1
20190142589 Basude May 2019 A1
20190159782 Kamaraj et al. May 2019 A1
20190167197 Abunassar et al. Jun 2019 A1
20190209323 Metchik et al. Jul 2019 A1
20190261995 Goldfarb et al. Aug 2019 A1
20190261996 Goldfarb et al. Aug 2019 A1
20190261997 Goldfarb et al. Aug 2019 A1
20190314155 Franklin et al. Oct 2019 A1
20200113683 Dale et al. Apr 2020 A1
Foreign Referenced Citations (13)
Number Date Country
1142351 Feb 1997 CN
0098100 Jan 1984 EP
2146050 Feb 1973 FR
9711600 Mar 1997 FR
2016183485 Nov 2016 WO
2017015632 Jan 2017 WO
2018013856 Jan 2018 WO
2018050200 Mar 2018 WO
2018050203 Mar 2018 WO
2018195015 Oct 2018 WO
2018195201 Oct 2018 WO
2018195215 Oct 2018 WO
2019139904 Jul 2019 WO
Non-Patent Literature Citations (35)
Entry
W.M. Huang et al., “Shaping tissue with shape memory materials”, Advanced Drug Delivery Reviews 65 (2013) pp. 515-535.
W. Xu et al., Shape Memory Alloy Fixator System for Suturing Tissue in Minimal Access Surgery, Annals of Biomedical Engineering, vol. 27, pp. 663-669, 1999.
Int'l. Search Report for PCT/US2017/037461, dated Sep. 14, 2017.
Al Zaibag et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis”, British Heart Journal, vol. 57, No. 1, Jan. 1987.
Al-Khaja et al, “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival arid Complications”, European Journal of Cardio-thoracic Surgery 3: pp. 305-311, 1989.
Almagor et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits”, Journal of the American College of Cardiology, vol. 16, No. 5, pp. 1310-1314, Nov. 15, 1990.
Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” European Heart Journal (1992), 13, 704-708.
Andersen, H.R. “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34, pp. 343-346. 2009.
Batista RJ et al., “Partial left ventriculectorny to treat end-stage heart disease”, Ann Thorac Surg., vol. 64, Issue—3, pp. 634-8, Sep. 1997.
Beall AC Jr. et al.,“Clinical experience with a dacron velour-covered teflon-disc mitral-valve prosthesis”, Ann Thorac Sur., vol. 5, Issue 5, pp. 402-10, May 1968.
Benchimol et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man”, The American Journal of the Medical Sciences, vol. 273, No. 1, pp. 55-62, 1977.
Dake et al., “Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms”, The New England Journal of Medicine, vol. 331, No. 26, pp. 1729-1734, Dec. 29, 1994.
Dotter et al., “Transluminal Treatment of Arteriosclerotic Obstruction: Description of a New Technic and a Preliminary Report of Its Application”, Circulation, vol. XXX, pp. 654-670, 1964.
Fucci et al., “Improved results with mitral valve repair using new surgical techniques”, Eur J Cardiothorac Surg. 1995;Issue 9, vol. 11, pp. 621-6.
Inoune, M.D., Kanji, et al,, “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic arid Cardiovascular Surgery 87:394-402, 1984.
Kolata, Gina “Device that Opens Clogged Arteries Gets a Failing Grade in a New Study”, The New York Times, http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . , pp. 1-2, wrriten Jan. 3, 199, web page access Jul. 29, 2009.
Lawrence, Jr., et al., “Percutaneous Endovascular Graft: Experimental Evaluation”, Cardiovascular Radiology 163, pp. 357-360, May 1987.
Maisano F et al., ‘The edge-to-edge technique: a simplified method to correct mitral insufficiency’, Eur J Cardiothorac Surg., vol. 13, Issue—3, pp. 240-5, Mar. 1998.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Porstmann et al., “Der Verschluß des Ductus Arteriosus Persisters Ohne Thorakotornie”, Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203.
Praz et al., “Compassionate use of the PASCAL transcatheter mitrai valve repair system for patients with severe mitral regurgitation: a multicentre, prospective, observational, first-in-man study,” Lancet vol. 390, pp. 773-780, 2017.
Rashkind et al., “Creation of an Atrial Septai Defect Without Thoracotorny: A Pailative Approach to Complete Transposition of the Great Arteries”, The Journal of the American Medical Association, vol. 196, No. 11, pp. 173-174, Jun. 13, 1956.
Rashkind et al., “Historical Aspects of Interventional Cardiology: Past, Present, and Future”, Texas Heart Institute Journal, Interventional Cardiology, pp. 363-367.
Reul Rm et al., “Mitral valve reconstruction for mitral insufficiency”, Prog Cardiovasc Dis., vol. 39, Issue—6, May-Jun. 1997.
Rosch, M.D., Josef, “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Inter Radiol 2003; 14:841-853.
Ross, D.N, “Aortic Valve Surgery”, Surgery of the Aortic Valves, Guy's Hospital, London, pp. 192-197.
Sabbah et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview”, Journal of Cardiac Surgery, vol. 4, No. 4, pp. 302-309, Dec. 1989.
Selby et al., “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems”, Radiology: 176, pp. 535-538, 1990.
Serruys et al., “Stenting of Coronary Arteries, Are we the Sorcerer's Apprentice?”, European Heart Journal, 10, 774-782, pp. 37-45, 1989.
Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Chapter 48, Textbook of Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Uchida et al., “Modifications of Gianturco Expandable Wire Stents”, Technical Note, American Roentgen Ray Society, pp. 1185-1187, May 1988.
UmañJP et al., Bow-tie‘ mitral valve repair: an adjuvant technique for ischemic mitral regurgitation’, Ann Thorac Surg., vol. 66, Issue—6, pp. 1640-6, Nov. 1998.
Urban, Philip MD, “Coronary Artery Stenting”, Editions Medecine et Hygiene, Geneve, pp. 1-47, 1991.
Watt et al., “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia: A Dose-Ranging Study and Interaction with Dipyridarnole”, Br. J. Clin. Pharmac. 21, pp. 227-230, 1986.
Wheatley, David J., “Valve Prostesis”, Rob & Smith's Operative Surgery, pp. 415-424, 1986.
Related Publications (1)
Number Date Country
20180008403 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
62359608 Jul 2016 US