The present invention generally relates to a device and a method for treatment of mitral insufficiency and, more specifically, for treatment of dilatation of the mitral annulus.
Mitral insufficiency can result from several causes, such as ischemic disease, degenerative disease of the mitral apparatus, rheumatic fever, endocarditis, congenital heart disease and cardiomyopathy. The four major structural components of the mitral valve are the annulus, the two leaflets, the chordae and the papillary muscles. Any one or all of these in different combinations may be injured and create insufficiency. Annular dilatation is a major component in the pathology of mitral insufficiency regardless of cause. Moreover, many patients have a mitral insufficiency primarily or only due to posterior annular dilatation, since the annulus of the anterior leaflet does not dilatate because it is anchored to the fibrous skeleton of the base of the heart.
Studies of the natural history of mitral insufficiency have found that totally asymptomatic patients with severe mitral insufficiency usually progress to severe disability within five years. At present the treatment consists of either mitral valve replacements or repair, both methods requiring open heart surgery. Replacement can be performed with either mechanical or biological valves.
The mechanical valve carries the risk of thromboembolism and requires anticoagulation, with all its potential hazards, whereas biological prostheses suffer from limited durability. Another hazard with replacement is the risk of endocarditis. These risks and other valve related complications are greatly diminished with valve repair.
Mitral valve repair is theoretically possible if an essentially normal anterior leaflet is present. The basic four techniques of repair include the use of an annuloplasty ring, quadrangular segmental resection of diseased posterior leaflet, shortening of elongated chordae, and transposition of posterior leaflet chordae to the anterior leaflet.
Annuloplasty rings are needed to achieve a durable reduction of the annular dilatation. All the common rings are sutured along the posterior mitral leaflet adjacent to the mitral annulus in the left atrium. The Duran ring encircles the valve completely, whereas the others are open towards the anterior leaflet. The ring can either be rigid, like the original Carpentier ring, or flexible but non-elastic, like the Duran ring or the Cosgrove-Edwards ring.
Effective treatment of mitral insufficiency currently requires open-heart surgery, by the use of total cardiopulmonary by-pass, aortic cross-clamping and cardioplegic arrest.
To certain groups of patient, this is particular hazardous. Elderly patients, patients with a poor left ventricular function, renal disease, severe calcification of the aorta, previous cardiac surgery or other concomitant diseases, would in particular most likely benefit from a less invasive approach, even if repair is not complete. The current trend towards less invasive coronary artery surgery, without cardiopulmonary by-pass, as well as PTCA will also call for a development of a less invasive method for repair of the often concomitant mitral insufficiency.
A first object of the present invention is to provide a device and a method for treatment of mitral insufficiency without the need for cardiopulmonary by-pass and opening of the chest and heart.
A second object of the invention is to provide reduction of the mitral annulus using less invasive surgery.
According to the present invention, a device for treatment of mitralis insufficiency comprises an elongate body having such dimensions as to be insertable into the coronary sinus and having two states, in a first state of which the elongate body has a shape that is adaptable to the shape of the coronary sinus, and to the second state of which the elongate body is transferable from the said first state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus is reduced as well as the circumference of the mitral valve annulus, when the elongate body is positioned in the coronary sinus.
Preferably, means are provided for the transfer of the elongate body to the second state by bending and/or shortening it from a larger radius of curvature to a smaller radius of curvature.
The transfer means may comprise-means for bending and/or shortening the elongate body by a preferably asymmetric contraction thereof.
Further, the elongate body may comprise a memory material providing the transfer to the second state.
In a preferred embodiment, the elongate body may comprise a stent. In an alternative embodiment, the device according to the invention may comprise several stent sections and said bending and/or shortening means may comprise wires for shortening the distance between the stent sections.
According to a second aspect, a method of reducing the circumference of the mitral valve annulus comprises the steps of inserting an elongate body into the coronary sinus in the vicinity of the posterior leaflet of the mitral valve, and then providing a bending and/or shortening of the elongate body when positioned in the coronary sinus so as to reduce the curvature of the coronary sinus and thereby reduce the circumference of the mitral valve annulus.
Thus, the present invention takes advantage of the position of the coronary sinus being close to the mitral annulus. This makes repair possible by the use of current catheter-guided techniques.
The coronary veins drain blood from the myocardium to the right atrium. The smaller veins drain blood directly into the atrial cavity, and the larger veins accompany the major arteries and run into the coronary sinus which substantially encircles the mitral orifice and annulus. It runs in the posterior atrioventricular groove, lying in the fatty tissue between the left atrial wall and the ventricular myocardium, before draining into the right atrium between the atrial septum and the post-Eustachian sinus.
In an adult, the course of the coronary sinus may approach within 5-15 mm of the medial attachment of the posterior leaflet of the mitral valve. Preliminary measurements performed at autopsies of adults of normal weight show similar results, with a distance of 5.3±0.6 mm at the medial attachment and about 10 mm at the lateral aspect of the posterior leaflet. The circumference of the coronary sinus was 18.3±2.9 mm at its ostium (giving a diameter of the posterior leaflet of 5.8±0.9 mm) and 9.7±0.6 mm along the lateral aspect of the posterior leaflet (corresponding to a diameter of 3.1±0.2 mm).
The invention will be better understood by the following description of preferred embodiments referring to the appended drawings, in which
The device of
The elongate body 8 is forced into a stretched or extended state by means of a stabilizing instrument 12 shown in
The arms 13 are free to move between the position shown in
The rod 15 may be a metal wire which is relatively stiff between the distal end 14 and the locking means 16 but still so bendable that it will follow the shape of the coronary sinus 5. Proximally of the locking means 16 the metal wire of the stabilizing instrument 11 is more pliable to be able to easily follow the bends of the veins.
The above-described elongate body 8 is positioned in the coronary sinus 5 in the following way:
An introduction sheet (not shown) of synthetic material may be used to get access to the venous system. Having reached access to the venous system, a long guiding wire (not shown) of metal is advanced through the introduction sheet and via the venous system to the coronary sinus 5. This guiding wire is provided with X-ray distance markers so that the position of the guiding wire in the coronary sinus 5 may be monitored.
The elongate body 8 is locked onto the stabilizing instrument 12, as shown in
A catheter 21, shown in
The third embodiment of the elongate body 8″, illustrated in
Concludingly, the present invention provides a device placed in the coronary sinus, designed to reduce the dilatation of the mitral annulus. This device is at a distance from the attachment of the posterior leaflet that does not much exceed the distance at which present annuloplasty rings are placed by open surgery techniques, and the coronary sinus is along its entire course large enough to hold such a device. The device could be positioned by catheter technique or any other adequate technique and offers a safer alternative to the current open surgery methods. The device could be designed or heparin-coated so as to avoid thrombosis in the coronary sinus, thus reducing the need for aspirin, ticlopedine or anticoagulant therapy.
It is to be understood that modifications of the above-described device and method can be made by people skilled in the art without departing from the spirit and scope of the invention.
The present application is a continuation of U.S. patent application Ser. No. 10/953,047, filed Sep. 29, 2004, now U.S. Pat. No. 7,311,728 which is a continuation of U.S. patent application Ser. No. 10/019,563, filed Jul. 1, 2002, now U.S. Pat. No. 7,044,967, which is a national stage under 35 U.S.C. §371 of international application PCT/SE00/01369, filed Jun. 28, 2000 which designated the United States, and which international application was published under PCT Article 21(2) in the English language and which claims priority to SE 9902455-6, filed Jun. 29, 1999, the disclosures of which are incorporated fully herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4655771 | Wallsten | Apr 1987 | A |
5064435 | Porter | Nov 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5170802 | Mehra | Dec 1992 | A |
5209730 | Sullivan | May 1993 | A |
5224491 | Mehra | Jul 1993 | A |
5304131 | Paskar | Apr 1994 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5383892 | Cardon et al. | Jan 1995 | A |
5390661 | Griffith et al. | Feb 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5449373 | Pinchasik et al. | Sep 1995 | A |
5496275 | Sirhan et al. | Mar 1996 | A |
5531779 | Dahl et al. | Jul 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5591197 | Orth et al. | Jan 1997 | A |
5607444 | Lam | Mar 1997 | A |
5713949 | Jayaraman | Feb 1998 | A |
5817126 | Imran | Oct 1998 | A |
5876433 | Lunn | Mar 1999 | A |
5891108 | Leone et al. | Apr 1999 | A |
5935081 | Kadhiresan | Aug 1999 | A |
5954761 | Machek et al. | Sep 1999 | A |
5961440 | Schweich et al. | Oct 1999 | A |
5961545 | Lentz et al. | Oct 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
6006122 | Smits | Dec 1999 | A |
6013854 | Moriuchi | Jan 2000 | A |
6019739 | Rhee et al. | Feb 2000 | A |
6045497 | Schweich et al. | Apr 2000 | A |
6050936 | Schweich et al. | Apr 2000 | A |
6051020 | Goicoechea et al. | Apr 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6077296 | Shokoohi et al. | Jun 2000 | A |
6093203 | Uflacker | Jul 2000 | A |
6110100 | Talpade | Aug 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6161029 | Spreigl et al. | Dec 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6168619 | Dinh et al. | Jan 2001 | B1 |
6171329 | Shaw et al. | Jan 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6260552 | Mortier et al. | Jul 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6676702 | Mathis | Jan 2004 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6800090 | Alferness et al. | Oct 2004 | B2 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6890353 | Cohn et al. | May 2005 | B2 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6997951 | Solem et al. | Feb 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7044967 | Solem et al. | May 2006 | B1 |
7090695 | Solem et al. | Aug 2006 | B2 |
7144363 | Pai et al. | Dec 2006 | B2 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20020019660 | Gianotti et al. | Feb 2002 | A1 |
20020087173 | Alferness et al. | Jul 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020183838 | Liddicoat et al. | Dec 2002 | A1 |
20020188170 | Santamore et al. | Dec 2002 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030083538 | Adams et al. | May 2003 | A1 |
20030120341 | Shennib et al. | Jun 2003 | A1 |
20030135267 | Solem et al. | Jul 2003 | A1 |
20030171806 | Mathis et al. | Sep 2003 | A1 |
20030204138 | Choi | Oct 2003 | A1 |
20040073302 | Rourke et al. | Apr 2004 | A1 |
20040102840 | Solem et al. | May 2004 | A1 |
20040102841 | Langberg et al. | May 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040176840 | Langberg et al. | Sep 2004 | A1 |
20040254600 | Zarbatany et al. | Dec 2004 | A1 |
20050043792 | Solem et al. | Feb 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050080483 | Solem et al. | Apr 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050177228 | Solem et al. | Aug 2005 | A1 |
20050222678 | Lashinski et al. | Oct 2005 | A1 |
20060116756 | Solem et al. | Jun 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060129051 | Rowe et al. | Jun 2006 | A1 |
20060184230 | Solem et al. | Aug 2006 | A1 |
20060276890 | Solem et al. | Dec 2006 | A1 |
20070038297 | Bobo et al. | Feb 2007 | A1 |
20070073391 | Bonrang et al. | Mar 2007 | A1 |
20070173926 | Bobo et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
19604042 | Jan 1998 | DE |
0955017 | Apr 1999 | EP |
WO 9634211 | Oct 1996 | WO |
WO 9851365 | Nov 1998 | WO |
WO 9944534 | Sep 1999 | WO |
WO 0018320 | Apr 2000 | WO |
WO 0100111 | Jan 2001 | WO |
WO 0189426 | Nov 2001 | WO |
WO 0200099 | Jan 2002 | WO |
WO 02060352 | Aug 2002 | WO |
WO 02076284 | Oct 2002 | WO |
WO 02078576 | Oct 2002 | WO |
WO 03037171 | May 2003 | WO |
WO 03055417 | Jul 2003 | WO |
WO 2004019816 | Mar 2004 | WO |
WO 2004045463 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070288090 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10953047 | Sep 2004 | US |
Child | 11841782 | US | |
Parent | 10019563 | US | |
Child | 10953047 | US |