The present invention relates to a device and method for trimming off the high spots in the pebble of the ice in a curling rink.
Curling is a sport in which players slide stones across a sheet of ice towards a target area. The condition of the ice is very important. The surface of the ice is treated both to obtain a specified degree of flatness and to obtain a surface texture referred to as pebbling.
The ice flatness specification for curling ice is +/−0.001″/5 ft. When pebble is applied to the ice sheet, the water droplets (pebble) do not freeze to a uniform height. Due to the contact area of the stone, the pebble that is higher will get crushed or smashed by the stone passing over top, causing the stone to run slower on the ice sheet. Trimming off the high spots of the pebble results in a uniform pebble with a clean surface, causing the stone to run at a uniform and constant speed. Adjustment of the angle of the blade on the trimming device determines how much of the pebble is trimmed off. A typical specification requires that two ounces of ice be removed from the pebble in treating a ten-foot-wide swath along the 145 foot length of the curling rink.
An embodiment of the present invention provides a device for trimming off the high points of the pebble of the ice using a single, long blade. A single blade facilitates the uniform adjustment of the angle of the blade compared to adjusting the three or four shorter blades present in prior art devices. However, the use of a single blade creates problems in maintaining the flatness of the blade over such a long length without requiring a much thicker and heavier blade, which has to be machined to very tight tolerances.
One embodiment of the present invention uses a plurality of paired sets of setscrews to adjust the flatness of the blade.
Referring to
Referring to
The set-screw holes 40 (and thus also the set screws 42) are substantially paired up opposite each other, with the forward set screw of each pair centered on a forward set screw centerline 36 (See
In this embodiment, the set screws 42 are located at approximately one inch intervals along their respective centerlines 36, 38. It should be noted that, while the arrangement shown in this embodiment is preferred, the set screws 42 could be arranged differently, such as diagonally across from each other in a triangular pitch arrangement, for instance.
To adjust the blade 14 for flatness, the blade 14 is first mounted to the mounting block 16 via the ½ inch bolts 30, with the flat top surface 44 of the blade 14 abutting the flat bottom surface of the mounting block 16. The set screws 42 are then threaded into the set-screw holes 40 until they just bottom out on the top surface 44 of the blade 14. The blade and mounting block assembly is then placed atop a master straight-edge, which is a block having a very flat top surface, and a light is placed behind the back of the assembly directing its light toward the front. A person standing in front of the blade 14 then can look for light shining through between the front of the blade 14 and the master straight edge to detect any gaps between the blade 14 and the master straight-edge, indicating that the blade 14 is not flat. To close a gap between the blade 14 and the master straight-edge (which brings the blade into flat condition), the front set screw 42 lying closest to the location where the gap is found is threaded against the top surface 44 of the blade 14, pushing downwardly against the top surface 44 of the blade 14 forward of the bolt centerline 34 and causing that portion of the blade 14 to pivot downwardly about the bolt centerline 34 relative to the mounting block 16. Since there is approximately a four (4) inch distance between the beveled edge 28 and the bolt centerline 34, a very small downward movement of the top surface 44 of the blade 14 caused by the forward set screw 42 results in a significant downward movement of the beveled edge 28 to close the gap and bring the blade 14 to a flat condition at the longitudinal position corresponding to that particular set screw 42.
If, during the flatness adjustment, the blade 14 is actually pushed too far down, then the person making the adjustment backs off the front set screw 42 at the longitudinal position corresponding to the location where the blade 14 is too far down. The opposing rear set screw 42 lying along the rear centerline 38 then may be threaded further down to push downwardly on the blade 14 rearward of the bolt centerline 34 in order to correct the problem and bring the blade 14 back to the desired flatness.
Essentially, the blade 14 is pivoted very slightly about the bolt centerline 34 by threading in one or more set screws 42 along the front set-screw centerline 36 (and backing off the corresponding set screws 42 along the rear set-screw centerline 38) to lower the beveled edge 28 of the blade 14 to bring the blade 14 into the desired degree of flatness. If the blade 14 is already too low (or if the above adjustment over-corrected the problem), the procedure is reversed; that is, the blade 14 is pivoted very slightly about the bolt centerline 34 by threading in one or more set screws 42 along the rear set-screw centerline 38 (and backing off the corresponding set screws 42 along the front set-screw centerline 36) to raise the beveled edge 28 of the blade 14.
This flatness adjustment is intended to move the beveled edge 28 of the blade 14 just a few thousandths of an inch and to do so at very localized points along the length of the blade 14 to bring the blade 14 to the desired degree of flatness. A different adjustment for setting the angle of blade 14 will be described later.
Referring now to
The frame 12 rests on top of the ice, and the pivot angle blocks 18 are securely attached to the frame 12, so they are not allowed to move relative to the frame 12. However, the floating blade assembly 24 is pivotably mounted to the pivot angle blocks 18 such that the blade 14 may be moved from a first position in which its bottom surface is substantially coplanar with the surface of the ice 52 (See
Referring to
The bar stock 58 defines a threaded vertical opening 64 which receives the threaded shaft 66 of the hand crank 68. The threads in the threaded opening 64 and in the matching shaft 66 of the hand crank 68 are fine threads such that one complete turn of the hand crank 68 results in a very small amount of thread advance. This allows very fine adjustment of the angle of the blade 14 as explained below.
Referring to
Since the lower brackets 54 are secured to the rear surface 56 of the mounting block 16, as the bar stock 58 and the lower brackets 54 are drawn up toward the upper bracket 70, the floating blade assembly 24 is tipped forward, pivoting on the pivot angle blocks 18, as shown in
To adjust the angle α, the operator turns the hand crank 68 to a first setting. He then pushes the device 10 along the full 145 foot length of the curling ice rink. In this embodiment, the blade 14 is approximately 5 feet long, so a 5 foot swath of ice is trimmed by the device 10 in a single pass. The operator then takes a second pass along the length of the ice rink to make a total swath width of 10 feet. He then opens up the front cover 20 of the frame 12 and collects any ice which has accumulated on the blade 14.
The operator weighs the amount of ice collected and compares this weight to the desired weight of two ounces. If more than two ounces were collected, he turns the hand crank 68 in a counter-clockwise direction to reduce the angle α of the blade 14. If less than two ounces were collected, he turns the hand crank 68 in a clockwise direction to increase the angle α of the blade 14. This process is repeated until the amount of ice collected is within the desired tolerance of the two ounce goal. The ice rink may then be re-pebbled and the entire ice surface trimmed to the specification.
It will be obvious to those skilled in the art that modifications may be made to the embodiment described above without departing from the scope of the present invention.
This application claims priority from U.S. Provisional Application Ser. No. 61/490,262, filed May 26, 2011.
Number | Date | Country | |
---|---|---|---|
61490262 | May 2011 | US |