1. Field of the Invention
The present invention pertains to medical devices and methods, and more particularly, to a method and catheter system for accessing the central lumen of a blood vessel from extraluminal space.
2. Description of the Related Art
There have been many procedures and systems for treating vascular or venous obstructions that are occluded with atheroma, plaque or calcific material, and are often referred to as vascular chronic total occlusion. In the past, such cardiovascular diseases were treated using a dramatic and painful surgical bypass procedure. However, a recent development of catheter-based interventions is less traumatic, and shows better success rates and long term patency.
The catheter-based interventional procedures require that a guidewire is positioned through such an occlusion in a distal central lumen. In many instances, guidewire placement in the central distal lumen is difficult or almost impossible, mostly due to hard occlusive material or the inability to define a vessel path. Often, during such procedures, a guidewire deflects from the occlusion and penetrates into an extraluminal space (i.e., subintimal or outside the vessel). Frequently, a guidewire might perforate a vessel and end up outside of the vessel. While such perforations are very dangerous in certain circulations (e.g., in the brain and the heart), such perforations are less risky in peripheral arterial circulations and in most of the venous system due to the muscular tissue surrounding these areas.
Once in an extraluminal space, between layers of the vessel, it is difficult or often impossible to re-enter a guidewire into the central lumen even with the use of ancillary deflecting catheters or devices. In such cases, a catheter-based intervention cannot be performed and patient well being relies on more complex and painful surgical intervention.
It is an object of the present invention to provide an improved method for facilitating re-entry from extraluminal space into the central lumen of a vessel.
In order to accomplish the objects of the present invention, there is provided a method for re-entry from extraluminal space into the central lumen of a vessel. According to this method, a guidewire is advanced into the extraluminal space of the vessel, and then a directional catheter is advanced over the guidewire through the extraluminal space. Thereafter, the guidewire is removed from the directional catheter, an ultrasound device is placed through the directional catheter, and the ultrasound device is advanced from the extraluminal space into the central lumen and then activated.
The following detailed description is of the best presently contemplated modes of carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention. The scope of the invention is best defined by the appended claims. In certain instances, detailed descriptions of well-known devices, compositions, components, mechanisms and methods are omitted so as to not obscure the description of the present invention with unnecessary detail.
A blood vessel is an elastic tubular channel, such as an artery, a vein, or a capillary, through which blood circulates. Arteries transport oxygenated blood away from the heart with one exemption of the pulmonary artery.
Veins transport de-oxygenated blood towards the heart with one exemption of the pulmonary vein.
A Total Occlusion (TO) is defined as an artery or vein that has been completely occluded. Acute Total Occlusions usually are associated with a sudden blockage and no blood flow to and from surrounding tissue, and are potentially life threatening. In contrast, Chronic Total Occlusions (CTO) are those that have formed for at least thirty days and are less life-threatening. In such cases, the areas around CTOs tend to develop collateral blood supply.
According to the present invention, methods and devices are provided to facilitate re-entry of interventional devices, such as guidewires or catheters, from an extraluminal space (or outside of the vessel) into the central lumen of the vessel. If the chronic total occlusion is longer, such a re-entry can take place at any location along the occlusion. The re-entry can also be made into the existing occlusion or distally beyond the occlusion.
Referring to
An ultrasound or vibrational device 701 is then introduced through the access catheter 501 and positioned distally. When it is confirmed (under fluoroscopy) that the distal end of the access catheter 501 is directed towards the distal central lumen 101D, the ultrasound device 701 is activated and slowly advanced through the subintimal space to puncture the vessel wall. After the ultrasound device 701 reaches the distal central lumen 101D, ultrasound energy activation stops and the ultrasound device 701 is positioned further distally in the distal central lumen 101D. The distal end of the access catheter 501 is advanced through the created re-entry pathway over the ultrasound device 701 into central lumen 101. Subsequently, the ultrasound device 701 is removed from the access catheter 501 and any guidewire 401 of choice (or another catheter) may be positioned in the distal central lumen 101D via the access catheter. Thereafter, the access catheter 501 is removed from the body, and with any conventional guidewire 401 located in the distal central lumen 101D, the patient is ready for a diagnostic or interventional procedure.
In another embodiment, devices utilizing different sources of energy or forces may be used to re-enter the distal central lumen 101D from the subintimal space, including but not limited to: vibrational devices, rotational device, cutting devices, radiofrequency devices, laser devices, microwave devices and puncture devices.
In yet another embodiment of the present invention, in addition to fluoroscopic imaging, an intravascular ultrasound or other imaging modalities may be employed, including Optical Coherence Tomography (OCT) or magnetic fields (Stereotaxis Inc.) to further facilitate orientation of the access catheter 501 towards the distal central lumen 101D and help in the re-entry procedure.
The apparatus of the present invention comprises an ultrasound system that includes an ultrasound device 701 and an access catheter 501. Such a deflecting or directing catheter 501 has a catheter body having a proximal end, at least one lumen extending therethrough, and a distal end 502 that has a pre-formed bend or curve. The same deflecting function may be achieved with a catheter having an actuated distal end, as is well-known in the art. Such a bend should be suitable to deflect the distal end of the ultrasound device 701. The deflecting catheter 501 should have good torque response and good distal bend/shape retention. Both characteristics are important for positioning and manipulation of the deflecting catheter 501 while selecting directions toward the distal central lumen 101D. Both characteristics may be achieved using shapeable polymers (with or without metal or polymer reinforcement systems) that are well-known in the art. The shape and the length of shaped distal end of such a deflecting catheter 501 may vary in length between 1 mm-20 mm and in angle between 5-90°. The ultrasound or vibrational device 701 of the present invention may be an ultrasound or vibrational catheter, guidewire or a simple cannula, and may operate at frequencies between 10 Hz and 20 MHZ in continuous mode, pulse mode or combination of both. Several examples of such devices are shown and described in U.S. Pat. Nos. 4,870,953; 4,920,954; 5,267,954; 5,304,115; 5,427,118; 5,989,208; 6,007,514; 7,137,963; 7,220,293; 7,297,131; 7,335,180; 7,393,338; 7,540,852 and in Pub. Nos. 20080108937 and 20080287804. The ultrasound device 701 can be provided with a self deflecting capability, as a catheter with an actuating distal end. Such a device may be used for re-entry from an extraluminal space without the use of a deflecting catheter 501. If a guidewire ends up in extraluminal space, the ultrasound device with a deflecting/actuated tip is introduced distally in the subintimal space, and then deflected accordingly, activated and advanced toward the distal central lumen 101D. Alternatively, a pre-shaped ultrasound device may be used to re-enter from an extraluminal space without use of a redirecting catheter.
Referring now to
In the next step, an ultrasound device 701 is introduced.
Then, as shown in
Next, as shown in
Next, the deflecting catheter 501 is removed.
In cases when the length of a CTO 310 is longer, such a re-entry procedure may be performed at any suitable location, even within the CTO 301, and not necessarily distally beyond the CTO 301.
In order to optimize the methods described above, an extensive flouroscopical visualization from several X-ray machine angles may be required. Such visualization is needed during positioning of the deflecting catheter 501 to assure that its distal end 502 is directed towards the central distal lumen 101D. Use of endovascular ultrasound or other visualization devices, either in arteries or in adjacent veins, may also help to facilitate directing of the deflecting catheter 501 towards the distal central lumen 101D.
The ultrasound device 120 may be a catheter formed of a flexible polymeric material such as nylon (Pebax) manufactured by Atochimie, Cour be Voie, Hauts Ve-Sine, France. The flexible catheter body is preferably in the form of an elongate tube having one or more lumens extending longitudinally therethrough. The catheter body defines a main lumen (not shown). Extending longitudinally through the main lumen is an elongate ultrasound transmission member (not shown) having a proximal end which is removably connectable to the ultrasound transducer 126 via a sonic connector (not shown) such that ultrasound energy will pass through the ultrasound transmission member. As such, when the foot actuated on-off switch 128 operatively connected to the ultrasound transducer 126 is depressed; ultrasound energy will pass through the ultrasound transmission member to the distal end 121 of the ultrasound device 120.
In one embodiment, the ultrasound transmission member may be formed of any material capable of effectively transmitting the ultrasonic energy from the ultrasound transducer 126 to the distal end 121 of the ultrasound device 120, and is preferably made from metal or metal alloys. It is possible to form all or a portion of the ultrasound transmission member with one or more materials which exhibit super-elasticity. Such materials should preferably exhibit super-elasticity consistently within the range of temperatures normally encountered by the ultrasound transmission member during operation of the ultrasound device 120. Specifically, all or part of the ultrasound transmission member may be formed of one or more metal alloys known as “shape memory alloys”.
Examples of super-elastic metal alloys which are usable to form the ultrasound transmission member of the present invention are described in detail in U.S. Pat. No. 4,665,906 (Jervis); U.S. Pat. No. 4,565,589 (Harrison); U.S. Pat. No. 4,505,767 (Quin); and U.S. Pat. No. 4,337,090 (Harrison). The disclosures of U.S. Pat. Nos. 4,665,906; 4,565,589; 4,505,767; and 4,337,090 are expressly incorporated herein by reference insofar as they describe the compositions, properties, chemistries, and behavior of specific metal alloys which are super-elastic within the temperature range at which the ultrasound transmission member of the present invention operates, any and all of which super-elastic metal alloys may be usable to form the super-elastic ultrasound transmission member.
The frontal portion of the Y-connector 123 is connected to the proximal end 122 of the ultrasound device 120 using techniques that are well-known in the art. An injection pump 130 or IV bag (not shown) or syringe (not shown) can be connected, by way of an infusion tube 131, to an infusion port or sidearm 132 of the Y-connector 123. The injection pump can be used to infuse coolant fluid into and/or through the device 120. Such flow of coolant fluid may be utilized to prevent overheating of the ultrasound transmission member and serves to bathe the outer surface of the ultrasound transmission member, thereby providing for an equilibration of temperature between the coolant fluid and the ultrasound transmission member. The temperature and/or flow rate of coolant fluid may be adjusted to provide adequate cooling and/or other temperature control of the ultrasound transmission member. The irrigation fluid can include a pharmacological agent and/or microbubbles.
In addition to the foregoing, the injection pump 130 or syringe may be utilized to infuse a radiographic contrast medium into the catheter 120 for purposes of imaging. Examples of iodinated radiographic contrast media which may be selectively infused into the catheter 120 via the injection pump 130 are commercially available as Angiovist 370 from Berlex Labs, Wayne, N.J. and Hexabrix from Malinkrodt, St. Louis, Mo.
The distal end 121 of the ultrasound device 120 may have a separate distal tip positioned on the ultrasound transmission member, as illustrated in U.S. Pat. No. 7,137,963 (
While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.
This application is a continuation of application Ser. No. 12/456,143, filed on Jun. 12, 2009, issued on Jul. 24, 2012, as U.S. Pat. No. 8,226,566, which is hereby expressly incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3433226 | Boyd | Mar 1969 | A |
3565062 | Kuris | Feb 1971 | A |
3612038 | Halligan et al. | Oct 1971 | A |
3631848 | Muller | Jan 1972 | A |
3719737 | Vaillancourt et al. | Mar 1973 | A |
3823717 | Pohlman et al. | Jul 1974 | A |
3839841 | Amplatz | Oct 1974 | A |
3896811 | Storz | Jul 1975 | A |
4016882 | Broadwin et al. | Apr 1977 | A |
4033331 | Guss et al. | Jul 1977 | A |
4136700 | Broadwin et al. | Jan 1979 | A |
4337090 | Harrison | Jun 1982 | A |
4368410 | Hance | Jan 1983 | A |
4417578 | Banko | Nov 1983 | A |
4425115 | Wuchinich | Jan 1984 | A |
4486680 | Bonnet et al. | Dec 1984 | A |
4505767 | Quin | Mar 1985 | A |
4545767 | Suzuki et al. | Oct 1985 | A |
4565589 | Harrison | Jan 1986 | A |
4565787 | Bossle et al. | Jan 1986 | A |
4572184 | Stohl et al. | Feb 1986 | A |
4664112 | Kensey et al. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4679558 | Kensey et al. | Jul 1987 | A |
4700705 | Kensey et al. | Oct 1987 | A |
4721117 | Mar et al. | Jan 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4808153 | Parisi | Feb 1989 | A |
4811743 | Stevens | Mar 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4854325 | Stevens | Aug 1989 | A |
4870953 | Donmicheal | Oct 1989 | A |
4886060 | Wiksell | Dec 1989 | A |
4920954 | Alliger | May 1990 | A |
4923462 | Stevens | May 1990 | A |
4924863 | Sterzer | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4936845 | Stevens | Jun 1990 | A |
5000185 | Yock | Mar 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5026384 | Farr et al. | Jun 1991 | A |
5046503 | Schneiderman | Sep 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5058570 | Idemoto et al. | Oct 1991 | A |
5076276 | Sakurai | Dec 1991 | A |
5091205 | Fan | Feb 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5109859 | Jenkins | May 1992 | A |
5114414 | Buchbinder | May 1992 | A |
5116350 | Stevens | May 1992 | A |
5127917 | Niederhauser et al. | Jul 1992 | A |
5156143 | Bocquet et al. | Oct 1992 | A |
5163421 | Bernstein | Nov 1992 | A |
5171216 | Dasse et al. | Dec 1992 | A |
5180363 | Idemoto et al. | Jan 1993 | A |
5183470 | Wettermann | Feb 1993 | A |
5195955 | Don Michael | Mar 1993 | A |
5215614 | Wijkamp et al. | Jun 1993 | A |
5221255 | Mahurkar et al. | Jun 1993 | A |
5226421 | Frisbie et al. | Jul 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5242385 | Strukel | Sep 1993 | A |
5243997 | Uflacker et al. | Sep 1993 | A |
5248296 | Alliger | Sep 1993 | A |
5255669 | Kubota et al. | Oct 1993 | A |
5267954 | Nita | Dec 1993 | A |
5269291 | Carter | Dec 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5269793 | Simpson | Dec 1993 | A |
5287858 | Hammerslag et al. | Feb 1994 | A |
5290229 | Paskar | Mar 1994 | A |
5304115 | Pflueger | Apr 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5312328 | Nita et al. | May 1994 | A |
5318014 | Carter | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324260 | O'neill et al. | Jun 1994 | A |
5325860 | Seward et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5341818 | Abrams et al. | Aug 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5362309 | Carter | Nov 1994 | A |
5368557 | Nita | Nov 1994 | A |
5368558 | Nita | Nov 1994 | A |
5376084 | Bacich et al. | Dec 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5380274 | Nita | Jan 1995 | A |
5380316 | Aita et al. | Jan 1995 | A |
5382228 | Nita et al. | Jan 1995 | A |
5383460 | Jang et al. | Jan 1995 | A |
5389096 | Aita et al. | Feb 1995 | A |
5391144 | Sakurai et al. | Feb 1995 | A |
5397293 | Alliger | Mar 1995 | A |
5397301 | Pflueger et al. | Mar 1995 | A |
5405318 | Nita | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5417672 | Nita et al. | May 1995 | A |
5417703 | Brown et al. | May 1995 | A |
5421923 | Clarke et al. | Jun 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431663 | Carter | Jul 1995 | A |
5443078 | Uflacker | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5449369 | Imran | Sep 1995 | A |
5451209 | Ainsworth et al. | Sep 1995 | A |
5465733 | Hinohara et al. | Nov 1995 | A |
5474531 | Carter | Dec 1995 | A |
5480379 | La Rosa | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5516043 | Manna et al. | May 1996 | A |
5527273 | Manna et al. | Jun 1996 | A |
5540656 | Pflueger et al. | Jul 1996 | A |
5542917 | Nita et al. | Aug 1996 | A |
5597497 | Dean et al. | Jan 1997 | A |
5597882 | Schiller et al. | Jan 1997 | A |
5607421 | Jeevanandam et al. | Mar 1997 | A |
5611807 | O'Boyle | Mar 1997 | A |
5618266 | Liprie | Apr 1997 | A |
5626593 | Imran | May 1997 | A |
5649935 | Kremer et al. | Jul 1997 | A |
5658282 | Daw et al. | Aug 1997 | A |
5695460 | Siegel et al. | Dec 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5715825 | Crowley | Feb 1998 | A |
5720724 | Ressemann et al. | Feb 1998 | A |
5728062 | Brisken | Mar 1998 | A |
5738100 | Yagami et al. | Apr 1998 | A |
5797876 | Spears et al. | Aug 1998 | A |
5816923 | Milo et al. | Oct 1998 | A |
5827203 | Nita | Oct 1998 | A |
5830222 | Makower | Nov 1998 | A |
5895397 | Jang et al. | Apr 1999 | A |
5902287 | Martin | May 1999 | A |
5904667 | Falwell | May 1999 | A |
5916192 | Nita et al. | Jun 1999 | A |
5916912 | Ames et al. | Jun 1999 | A |
5935142 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5937301 | Gardner et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957899 | Spears et al. | Sep 1999 | A |
5964223 | Baran | Oct 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5971949 | Levin et al. | Oct 1999 | A |
5976119 | Spears et al. | Nov 1999 | A |
5989208 | Nita | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6004280 | Buck et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6007514 | Nita | Dec 1999 | A |
6022309 | Celliers et al. | Feb 2000 | A |
6024764 | Schroeppel | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6030357 | Daoud et al. | Feb 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6123698 | Spears et al. | Sep 2000 | A |
6149596 | Bancroft | Nov 2000 | A |
6159176 | Broadwin et al. | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6206842 | Tu et al. | Mar 2001 | B1 |
6210356 | Anderson et al. | Apr 2001 | B1 |
6217543 | Anis et al. | Apr 2001 | B1 |
6231546 | Milo et al. | May 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6235007 | Divino, Jr. et al. | May 2001 | B1 |
6241692 | Tu et al. | Jun 2001 | B1 |
6241703 | Levin et al. | Jun 2001 | B1 |
6277084 | Abele et al. | Aug 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6287271 | Dubrul et al. | Sep 2001 | B1 |
6287285 | Michal et al. | Sep 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6296620 | Gesswein et al. | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6309358 | Okubo | Oct 2001 | B1 |
6315741 | Martin et al. | Nov 2001 | B1 |
6379378 | Werneth et al. | Apr 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6394956 | Chandrasekaran et al. | May 2002 | B1 |
6398736 | Seward | Jun 2002 | B1 |
6416533 | Gobin et al. | Jul 2002 | B1 |
6423026 | Gesswein et al. | Jul 2002 | B1 |
6433464 | Jones | Aug 2002 | B2 |
6434418 | Neal et al. | Aug 2002 | B1 |
6450975 | Brennan et al. | Sep 2002 | B1 |
6454757 | Nita et al. | Sep 2002 | B1 |
6454997 | Divino, Jr. et al. | Sep 2002 | B1 |
6491707 | Makower | Dec 2002 | B2 |
6494891 | Cornish et al. | Dec 2002 | B1 |
6508781 | Brennan et al. | Jan 2003 | B1 |
6508784 | Shu | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6547754 | Evans et al. | Apr 2003 | B1 |
6551337 | Rabiner et al. | Apr 2003 | B1 |
6554846 | Hamilton et al. | Apr 2003 | B2 |
6558502 | Divino, Jr. et al. | May 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6573470 | Brown et al. | Jun 2003 | B1 |
6589253 | Cornish et al. | Jul 2003 | B1 |
6596235 | Divino, Jr. et al. | Jul 2003 | B2 |
6615062 | Ryan et al. | Sep 2003 | B2 |
6616617 | Ferrera et al. | Sep 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6635017 | Moehring et al. | Oct 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6660013 | Rabiner | Dec 2003 | B2 |
6676900 | Divino, Jr. et al. | Jan 2004 | B1 |
6682502 | Bond et al. | Jan 2004 | B2 |
6685657 | Jones | Feb 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6695781 | Rabiner et al. | Feb 2004 | B2 |
6695782 | Ranucci et al. | Feb 2004 | B2 |
6695810 | Peacock, III et al. | Feb 2004 | B2 |
6702748 | Nita et al. | Mar 2004 | B1 |
6702750 | Yock | Mar 2004 | B2 |
6719725 | Milo et al. | Apr 2004 | B2 |
6729334 | Baran | May 2004 | B1 |
6733451 | Rabiner et al. | May 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6855123 | Nita | Feb 2005 | B2 |
6866670 | Rabiner et al. | Mar 2005 | B2 |
6936025 | Evans et al. | Aug 2005 | B1 |
6936056 | Nash et al. | Aug 2005 | B2 |
6942620 | Nita et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
7004173 | Sparks et al. | Feb 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7131983 | Murakami | Nov 2006 | B2 |
7137963 | Nita et al. | Nov 2006 | B2 |
7150853 | Lee et al. | Dec 2006 | B2 |
7220233 | Nita et al. | May 2007 | B2 |
7267650 | Chow et al. | Sep 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7335180 | Nita et al. | Feb 2008 | B2 |
7384407 | Rodriguez et al. | Jun 2008 | B2 |
7393338 | Nita | Jul 2008 | B2 |
7425198 | Moehring et al. | Sep 2008 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7540852 | Nita et al. | Jun 2009 | B2 |
7604608 | Nita et al. | Oct 2009 | B2 |
7621929 | Nita et al. | Nov 2009 | B2 |
7771358 | Moehring et al. | Aug 2010 | B2 |
7776025 | Bobo, Jr. | Aug 2010 | B2 |
7938819 | Kugler et al. | May 2011 | B2 |
7955293 | Nita et al. | Jun 2011 | B2 |
8043251 | Nita et al. | Oct 2011 | B2 |
8083727 | Kugler et al. | Dec 2011 | B2 |
8133236 | Nita | Mar 2012 | B2 |
8226566 | Nita | Jul 2012 | B2 |
20020077643 | Rabiner et al. | Jun 2002 | A1 |
20030009153 | Brisken et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030199817 | Thompson et al. | Oct 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20040138570 | Nita et al. | Jul 2004 | A1 |
20040167507 | Nita et al. | Aug 2004 | A1 |
20040167554 | Simpson et al. | Aug 2004 | A1 |
20040204670 | Nita et al. | Oct 2004 | A1 |
20050113688 | Nita et al. | May 2005 | A1 |
20050215946 | Hansmann et al. | Sep 2005 | A1 |
20050222557 | Baxter et al. | Oct 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20060206039 | Wilson et al. | Sep 2006 | A1 |
20060264759 | Moehring et al. | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20070037119 | Pal et al. | Feb 2007 | A1 |
20070260172 | Nita | Nov 2007 | A1 |
20080108937 | Nita | May 2008 | A1 |
20080221506 | Rodriguez et al. | Sep 2008 | A1 |
20080228111 | Nita | Sep 2008 | A1 |
20080287804 | Nita | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
2256127 | May 1974 | DE |
2438648 | Feb 1976 | DE |
3821836 | Jan 1990 | DE |
8910040 | Jan 1990 | DE |
4042435 | Aug 1991 | DE |
0005719 | Dec 1979 | EP |
0316789 | May 1989 | EP |
0376562 | Jul 1990 | EP |
0379156 | Jul 1990 | EP |
0394583 | Oct 1990 | EP |
0443256 | Aug 1991 | EP |
0541249 | May 1993 | EP |
0316796 | Nov 1995 | EP |
0820728 | Jan 1998 | EP |
1323481 | Jul 2003 | EP |
1106957 | Mar 1968 | GB |
SHO61-272045 | Dec 1986 | JP |
01099547 | Apr 1989 | JP |
2-71510 | May 1990 | JP |
U03067608 | Jul 1991 | JP |
2006086822 | Mar 1994 | JP |
7-500752 | Jan 1995 | JP |
2007116260 | May 1995 | JP |
10216140 | Aug 1998 | JP |
2000-291543 | Oct 2000 | JP |
2001104356 | Apr 2001 | JP |
2001321388 | Nov 2001 | JP |
2002186627 | Jul 2002 | JP |
2005-253874 | Sep 2005 | JP |
WO8705793 | Oct 1987 | WO |
WO8906515 | Jul 1989 | WO |
WO2009001300 | Feb 1990 | WO |
WO9004362 | May 1990 | WO |
WO9107917 | Jun 1991 | WO |
WO9211815 | Jul 1992 | WO |
WO9308750 | May 1993 | WO |
WO9316646 | Sep 1993 | WO |
WO9412140 | Jun 1994 | WO |
WO9414382 | Jul 1994 | WO |
WO9508954 | Apr 1995 | WO |
WO9509571 | Apr 1995 | WO |
WO 9515192 | Jun 1995 | WO |
WO9635469 | Nov 1996 | WO |
WO 9721462 | Jun 1997 | WO |
WO9745078 | Dec 1997 | WO |
WO 98052637 | Nov 1998 | WO |
WO9851224 | Nov 1998 | WO |
WO9925412 | May 1999 | WO |
WO0053341 | Sep 2000 | WO |
WO0067830 | Nov 2000 | WO |
WO03039381 | May 2003 | WO |
WO2004012609 | Feb 2004 | WO |
WO2004112888 | Dec 2004 | WO |
WO 2006049593 | May 2006 | WO |
Entry |
---|
Health Care Without Harm [report], Non-Incineration Medical Waste Treatment Technologies, “Irradiation, biological, and other technologies: E-beam, biological, and sharps treatment systems”, Chapter 9., Aug. 2001, pp. 69-74. |
Siegel et al., In Vivo Ultrasound Arterial Recanalization Atherosclerotic Total Occlusions, Journal of the American College of Cardiology, Feb. 1990, vol. 15, Issue 2, pp. 345-351. |
Chandra Sehgal et al., Ultrasound-Assisted Thrombolysis, Investigative Radiology, 1993, vol. 28, Issue 10, pp. 939-943. |
http://www.merriam-webster.com/dictionary/couple, definition of the term coupled retrieved on, May 18, 2013. |
Margaret Fyfe et al., Mast cell degranulation and increased vascular permeability induced by ‘therapeutic’ ultrasound in the rate ankle joint, Br. J. exp. Path., 1984, vol. 65, pp. 671-676. |
Number | Date | Country | |
---|---|---|---|
20120283571 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12456143 | Jun 2009 | US |
Child | 13551424 | US |