Device and method for weighing concrete material

Abstract
A measuring apparatus 1 of submergence aggregate according to the present invention generally comprises a stock bin 2 for storing fine aggregate, a fine aggregate feed hopper 3 placed under the stock bin 2, a vibrating feeder 5 placed under a discharge opening 4 of the fine aggregate feed hopper 3, a screen device 23 placed in the vicinity of an exit of the vibrating feeder 5, a measurement tank 6 placed under the screen device 23, an electrode-type displacement sensor 7 as means for measuring a water level placed above the measurement tank 6, and load cells 8 as mass measuring means for measuring a mass of the measurement tank 6.
Description


BACKGROUND OF THE INVENTION

[0001] The present invention relates to a measuring apparatus and a measuring method of concrete materials which measure water and aggregate whose moisture state is not uniform.


[0002] When kneading concrete materials on site, it is necessary to manage appropriately an amount of water since it has a strong influence on strength of concrete etc. However, a moisture state of the aggregate, which is a concrete material, changes with the storage situations, climatic conditions, etc. Therefore, if aggregate in wet condition is used, an amount of water in concrete will increase by the amount of surface water of the aggregate. On the other hand, if aggregate in a dry state is used, an amount of water in concrete will decrease by the amount of water absorbed into the aggregate according to an effective absorption of the aggregate.


[0003] Therefore, in order to make concrete as a specified mix, it becomes very important in a case of kneading of concrete to correct the amount of water according to a dryness-and-moisture grade of aggregate.


[0004] Here, generally aggregate stored, especially fine aggregate is wet in many cases. Therefore, it is common to measure a percentage of surface moisture of aggregate beforehand, and to adjust the amount of water based on the percentage of surface moisture measured.


[0005] A percentage of surface moisture which is an index about dryness and moisture of aggregate is obtained by dividing the mass of the surface water of the aggregate (water adhering to the front face of the aggregate in wet condition) by mass of the aggregate in the saturated surface-dried condition. Here, the aggregate in the saturated surface-dried condition means aggregate whose front face is dry and whose core is saturated with water.


[0006] And conventionally, in measurement of such percentage of surface moisture, a small amount of sample is extracted from a storage container called a stock bin in which aggregate is stored for measuring the mass of the sample and the mass of the sample dried completely. Next, the percentage of surface moisture was computed by using these measured values and the coefficient of water absorption of the aggregate measured beforehand.


[0007] However, by such a measuring method, since a percentage of surface moisture of aggregate in the stock bin is guessed from few samples, accuracy is inferior. On the other hand, in order to measure the mass of aggregate dried completely, heating by a burner etc. is needed. Therefore, it is unreal to measure the mass of aggregate dried completely whose amount is near the actually used amount since much time and expense are needed.


[0008] In order to avoid such a problem, an operator checks a kneading situation visually or adjusts the amount of water by using the electric-current value of a mixer. However, these methods have low accuracy primarily. Therefore, as a result, in order to secure strength of concrete, it is forced to expect nearly 20 superfluous factors of safety, and it leads to uneconomical mix proportion.


[0009] Especially in mixing a plurality of aggregates the kinds of which are different, such as density and grading, the problem mentioned above becomes still more serious.



SUMMARY OF THE INVENTION

[0010] Accordingly, it is an object of the present invention to provide a measuring apparatus and a measuring method of concrete materials which can measure mass of aggregate and water correctly even if a percentage of surface moisture of the aggregate is not measured.


[0011] It is a further object of the present invention to provide a measuring method of concrete materials which can measure correctly mass of a plurality of aggregates the kinds of which are different and mass of water. It is another object of the present invention to provide a measuring method of concrete materials which can measure mass of aggregate and water correctly taking into consideration a percentage of surface moisture of the aggregate.


[0012] It is another object of the present invention to provide a measuring method of concrete materials, a measuring program of concrete materials, and a recording medium of the measurement, which can measure mass of aggregate and water correctly taking into consideration a percentage of surface moisture of the aggregate.


[0013] It is another object of the present invention to provide a discharge mechanism of a measurement container which can prevent lowering of watertightness and damage on a seal by aggregate intervening between a body of the measurement container and a bottom lid of the measurement container when measuring aggregate and water as submergence aggregate.


[0014] It is another object of the present invention to provide a discharge mechanism of a measurement container which can feed certainly water and aggregate into a kneading mixer, which are correctly measured as submergence aggregate, when measuring aggregate and water as submergence aggregate.


[0015] It is another object of the present invention to provide a measuring apparatus of concrete materials which can maintain accuracy of aggregate measurement uniformly without making it dependent on the amount of aggregate.


[0016] (Measurement by a Submergence Method)


[0017] In order to measure aggregate and water using the measuring apparatus of concrete materials according to one aspect of the present invention, aggregate in arbitrary wet condition is first breathed out from a discharge opening of an aggregate feed hopper. Next, the breathed-out aggregate is put into a measurement tank with water. The aggregate is thoroughly sunk within the measurement tank as submergence aggregate.


[0018] Next, while measuring total mass Mf of the submergence aggregate which consists of the aggregate and the water which are held in the measurement tank with means for measuring mass, those total volume Vf is measured with means for measuring a water level. For example, a load cell can be used as means for measuring mass, and an electrode-type displacement sensor, an ultrasonic sensor, a photosensor, etc. can be used as means for measuring a water level.


[0019] The total mass Mf is obtained just by subtracting the mass of only the measurement tank from the value measured by means for measuring mass as an example. In order to measure the total volume Vf, first, a relation between a level and a corresponding capacity is previously measured at 1-mm intervals, for example, and a storage device in a computer, for example, is made to store the relation in advance so as to read appropriately the capacity corresponding to the measured level from the storage device.


[0020] Next, the mass Mw of water and the mass Ma of the aggregate in a saturated surface-dried condition are computed by substituting the total mass Mf and total volume Vf for the following two formulas.




M


a


+M


w


=M


f
  (1)





M


a
a+Mww=Vf∘(1−a/100)  (2-a)



[0021] Here, ρa expresses the density of the aggregate in the saturated surface-dried condition, ρw expresses the density of water, and “a” expresses the air content (%) included in total volume Vf.


[0022] When the air content can be disregarded, the mass Mw of water and the mass Ma of the aggregate in the saturated surface-dried condition are computed by solving the following two formulas.




M


a


+M


w


=M


f
  (1)





M


a
a+Mww=Vf  (2)



[0023] Next, the mass Mw of water and the mass Ma of the aggregate in the saturated surface-dried condition are compared with a mix proportion shown by a specified mix. Subsequently, an insufficiency which should be filled up is measured and then the submergence aggregate is supplemented by the amount of the insufficiency so as to let the aggregate and the water be concrete material.


[0024] Thus, surface water of aggregate is indirectly computed as a part of the mass Mw of water, even if aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as mass Ma in the saturated surface-dried condition. That is, since the mass of aggregate and water will be computed on the same conditions as the specified mix, even if aggregate whose moisture state is not uniform is used, concrete can be made by the amount of water as the specified mix.


[0025] Here, when the supplement of aggregate is needed, the surface water of the aggregate is not strictly taken into consideration. However, the amount of supplement is limited to small one by measuring an amount of aggregate and water whose ratio matches the ratio of the specified mix or is close to it. And since the surface water of aggregate adhering to supplement aggregate is the slight amount of the grade which can be disregarded compared with required amount of water, a problem is not produced at all on the quality of concrete.


[0026] When putting aggregate and water into the measurement tank, it is good to supply them to the measurement tank, carrying out water binding of the aggregate so that a top of the aggregate may be mostly in agreement with the water level. By doing in this way, the ratio of the aggregate and the water in the measurement tank becomes close to the specified mix, thereby reducing the amount of supplement of aggregate dramatically.


[0027] A volume of the measurement tank is arbitrary. That is, the volume of the measurement tank may be made in agreement with the whole quantity required for the unit of concrete mixing, i.e., one batch. Otherwise, it can be divided into some amounts in the measurement tank.


[0028] A particle diameter of the aggregate is arbitrary and fine aggregate and coarse aggregate are included in the term of the aggregate. Although it is arbitrary how the measurement tank is constituted, if the aggregate is the fine aggregate, the submergence fine aggregate can be easily taken out after the measurement process by forming the measurement tank in a shape of a truncated cone so that a bore of the measurement tank may spread below.


[0029] In throwing the fine aggregate and the water into the measurement tank, it is arbitrary which should be made to precede, but if the water is thrown in previously and the fine aggregate is thrown in after that, air bubble mixing to the submergence fine aggregate can be suppressed considerably.


[0030] The fine aggregate breathed out from the fine-aggregate feed hopper may be directly thrown into the measurement tank. Here, while placing a screen device above the measurement tank, a vibrating feeder can be placed so that the conveyance starting position is located in a discharge opening under the fine-aggregate feed hopper, and so that the conveyance end location is located in the screen device. In this case, the fine aggregate breathed out from the discharge opening of the fine-aggregate feed hopper is conveyed by the vibrating feeder to the screen device, while a predetermined vibration is given. Next, the fine aggregate is thrown into the measurement tank into which water is thrown previously via the vibrating feeder and the screen device. According to this constitution, granulation of the fine aggregate is prevented, by which it becomes possible to suppress nearly thoroughly mixing of air bubbles to the submergence fine aggregate, and an influence of air bubbles can be disregarded practically.


[0031] In order to prevent air bubble mixing by using the vibrating feeder and the screen device, the following procedures should be used for measurement.


[0032] First, water is previously thrown into the measurement tank. Next, a discharge of the fine aggregate in arbitrary wet conditions is carried out from the discharge opening of the fine-aggregate feed hopper. Subsequently, the fine aggregate is conveyed by the vibrating feeder, preventing granulation of the breathed-out fine aggregate by vibration using the vibrating feeder. Next, the fine aggregate conveyed from the vibrating feeder is vibrated on the screen device, only the fine aggregate of the predetermined particle diameter is dropped from the screen device, and this is supplied to the measurement tank. The water and the fine aggregate which are thrown into the measurement tank in such a procedure turn into a submergence fine aggregate.


[0033] Next, total mass Mf and total volume Vf of the submergence fine aggregate held in the measurement tank are similarly measured as mentioned above, respectively by the means for measuring mass and the means for measuring a water level.


[0034] Next, the mass Mw of the water and the mass Ma of the fine aggregate in the saturated surface-dried condition are computed by substituting the total mass Mf and the total volume Vf for the following two formulas.




M


a


+M


w


=M


f
  (1)





M


a
a+Mww=Vf  (2)



[0035] Here, ρa is the density of the fine aggregate in the saturated surface-dried condition, and ρw is the density of water.


[0036] Thus, the mass Mw of the water and the mass Ma of the fine aggregate in the saturated surface-dried condition are computed, and then Mw and Ma are compared with the specified mix. Subsequently, the insufficiency is measured and then the submergence aggregate is supplemented by the amount of the insufficiency so as to let the aggregate and the water be concrete material.


[0037] (Measurement by the Submergence Method Which Does Not Need Capacity Measurement)


[0038] In a measuring apparatus and a measuring method of concrete materials according to another aspect of the invention, an inside of a measurement tank is first changed into a watertight state by closing a bottom opening of the measurement tank by a bottom lid. Next, aggregate is thrown in the measurement tank by means for supplying aggregate and water is thrown in the measurement tank by means for supplying water so that the inside of the measurement tank may be in the submergence state.


[0039] When throwing the aggregate and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregate is thrown in later, especially in the case of the fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0040] Here, a predetermined opening for overflow for making the water in the measurement tank overflow outside is formed in the wall of the measurement tank in a predetermined height location of the measurement tank. The water and the aggregate are thrown into the measurement tank, and fill the inside of the measurement tank with submergence aggregate so that the aggregate may not come out from the water surface, and so that water may overflow from the opening for overflow.


[0041] Here, a water level at which water overflows from the opening for overflow is decided beforehand. Therefore, by filling the submergence aggregate in the procedure mentioned above, even if total volume Vf of the submergence aggregate is not measured, it becomes settled naturally.


[0042] Accordingly, if only total mass Mf of the submergence aggregate is measured with means for measuring mass of submergence aggregate, the mass Ma of the aggregate in the saturated surface-dried condition and the mass Mw of the water can be easily calculated by solving the following two formulas.




M


a


+M


w


=M


f
  (1)





M


a
a+Mww=Vf  (2)



[0043] Here, ρa is the density of the aggregate in the saturated surface-dried condition, and ρw is the density of the water. In order to measure the total mass Mf of the submergence aggregate, the mass of only the measurement tank is subtracted from the value measured by the means for measuring mass of submergence aggregate.


[0044] Thus, after measuring and computing the mass Mw of the water, and the mass Ma of the aggregate in the saturated surface-dried condition, Mw and Ma are compared with those amounts of mix shown by the specified mix. Subsequently, the insufficiency is measured and then the submergence aggregate is supplemented by the amount of the insufficiency so as to let the aggregate and the water be concrete material. When there is too much water, the surplus is sucked with a vacuum etc.


[0045] Thus, surface water of aggregate is indirectly computed as a part of the mass Mw of water, even if aggregate whose moisture state is not uniform is used, and mass of aggregate is computed as mass Ma in the saturated surface-dried condition. That is, since the mass of the aggregate and the water will be grasped on the conditions equivalent to the specified mix, even if the aggregate whose moisture state is not uniform is used, it becomes possible to make the concrete by the amount of water as the specified mix.


[0046] Although fine aggregate is mainly targeted for aggregate, it is applicable also to coarse aggregate.


[0047] When a plurality of openings for overflow are provided in the measurement tank at different heights, it becomes unnecessary to prepare a measurement tank for each total volume Vf individually, although it is arbitrary how opening for overflow is formed in a measurement tank. In this constitution, only the opening for overflow corresponding to the total volume Vf to measure is opened, and other openings for overflow are altogether sealed for example, using seal plugs.


[0048] On the other hand, when an overflow height of a opening for overflow is constituted in adjustable, it becomes unnecessary to prepare a measurement tank for each total volume Vf individually, even if it does not provide a plurality of openings for overflow. In order to constitute the overflow height of the opening for overflow in adjustable, a predetermined cover plate is attached to the opening for overflow so that a watertight state with the opening for overflow may be held, and so that it can go up and down along with the measurement tank. Thus, since the cover plate can cover a part for opening of the opening for overflow which exists below the desired overflow height, it becomes possible to adjust the water level at which water of the submergence aggregate in the measurement tank overflows.


[0049] Configuration of the measurement tank is arbitrary as long as the submergence aggregate can be held. For example, it is possible to constitute a measurement tank in a shape of a hollow cylinder. Here, if a measurement tank is formed in a shape of a hollow truncated cone, a bore of the measurement tank will become large, as it goes below. Therefore, since it is prevented that the submergence aggregate remains in the measurement tank, when the measurement is finished, only by opening the bottom lid of the measurement tank, free fall of the submergence aggregate in the measurement tank can be carried out, and it can be taken out easily.


[0050] If free fall of the submergence aggregate cannot be carried out thoroughly due to aggregate adhesion in the measurement tank inside, the compaction of aggregate, etc., it can be solved by attaching oscillating grant instruments, such as vibrator and a knocker, in the outside of the measurement tank.


[0051] Here, a predetermined vibrator can be installed above the measurement tank so that it can go up and down freely, and so that it may be buried in the submergence aggregate in the measurement tank in the downward location. In this case, during the aggregate charge or after the charge, the vibrator is lowered and operated.


[0052] If it does in this way, the aggregate supplied in the measurement tank will become flat by vibration, and this aggregate will not come out on the water surface. A volume of the measurement tank is arbitrary and can be made equal to the whole quantity required for mixing of one batch. Otherwise, it can be divided into some amounts in the measurement tank.


[0053] The means for supplying aggregate is constituted so that the aggregate can be stored, and so that the discharge of the necessary amount can be carried out. The means for supplying aggregate can consist of a hopper, for example. If the means for measuring mass of aggregate which measures the mass of the aggregate in the means for supplying aggregate is provided, the mass Ma of the aggregate in the saturated surface-dried condition and the mass Mw of the water can be calculated easily. In addition, a percentage of surface moisture of the aggregate is also computable.


[0054] That is, if mass of the aggregate in the wet condition is set to Maw, the percentage of surface moisture of the aggregate is computable by the following formula.


(Maw−Ma)/Ma  (3)


[0055] If means for measuring mass of supplied water provided in the means for supplying water in order to measure the mass of the water in the measurement tank, and means for measuring mass of overflow water for measuring the mass of the water which overflowed from the opening for overflow are provided, the mass Ma of the aggregate in the saturated surface-dried condition and the mass Mw of the water can be calculated easily. In addition, a percentage of surface moisture of the aggregate is computable. That is, when the amount of supplied water is set to MI and the amount of overflow is set to MO, we have




M


aw


=M


f
−(MI−MO)  (4)



[0056] Hence, if this is substituted for the formula (3), the percentage of surface moisture of the aggregate is computable.


[0057] Thus, if the percentage of surface moisture is computed in advance, for the supplement of aggregate as mentioned above, the surface water of the aggregate can be appropriately taken into consideration also to a part for this supplement.


[0058] If air content (amount of air included in submergence aggregate) a (%) is taken into consideration, the total volume Vf which is known will be multiplied by (1−a/100). Let this be total volume Vf anew. If it does in this way, still higher-precision measurement can be performed in the actual total volume except the air content.


[0059] (Measurement by the Submergence Method Which Does Not Need Measurement of the Capacity and Mass)


[0060] In a measuring apparatus and a measuring method of concrete materials according to still another aspect of the invention, mass Maw of aggregate stored by an aggregate measurement container is first measured by means for measuring mass of aggregate.


[0061] Next, a bottom opening of the submergence aggregate container is closed by a bottom lid, and the inside of the submergence aggregate container is changed into a watertight state. Next, the above-mentioned aggregate is supplied to the submergence aggregate container with water, and the inside of the submergence aggregate container is filled with the submergence aggregate.


[0062] In feeding the aggregate and the water into the submergence aggregate container, it is arbitrary which should be made to precede, but it is good to supply the water previously and to supply the aggregate subsequently. If it does in this way, it will become possible to suppress air bubble mixing to the submergence aggregate considerably especially in the case of the fine aggregate.


[0063] Here, predetermined opening for overflow is formed in the predetermined height location of the wall of this submergence aggregate container so that the water in the submergence aggregate container may overflow outside. In order to supply the water and the aggregate as submergence aggregate in such a submergence aggregate container, the water and the aggregate are fed into the submergence aggregate container so that the aggregate may not come out from the water surface, and so that the water may overflow from opening for overflow. And while measuring the amount of supplied water MI as an accumulation value, the amount MO of overflow which overflowed from the opening for overflow is measured as an accumulation value by means for measuring mass of overflow water.


[0064] Since a level of the water which overflows from the opening for overflow is beforehand decided if it did in this way, it becomes unnecessary to measure total volume Vf, and it serves as the known value.


[0065] Next, while calculating mass Ma of the aggregate in the saturated surface-dried condition and mass Mw of the water in the submergence aggregate from the following formulas (5) and formulas (2), a percentage of surface moisture of the aggregate is computed by the formula (3).




M


a


+M


w


=M


aw
+(MI−MO)  (5)





M


a
a+Mww=Vf  (2)



(Maw−Ma)/Ma  (3)


[0066] Here, ρa is the density of the aggregate in the saturated surface-dried condition, and ρw is the density of water.


[0067] Thus, the mass Mw of the water, the mass Ma of the aggregate in the saturated surface-dried condition, and the percentage of surface moisture are measured and computed, and then those values are compared with the mix proportion shown by the specified mix. The insufficiency is then measured. If the insufficiency is the water, the above-mentioned submergence aggregate is supplemented with the water of the insufficiency so as to let the aggregate and the water be concrete material. On the other hand, taking the surface water of the aggregate into consideration using the computed percentage of surface moisture, if the insufficiency is the aggregate, the above-mentioned submergence aggregate is supplemented with the aggregate of the insufficiency so as to let the aggregate and the water be concrete material. When there is too much water, the surplus is sucked with the vacuum etc.


[0068] Thus, surface water of aggregate is indirectly computed as a part of mass Mw of water, even if aggregate whose moisture state is not uniform is used. On the other hand, mass of the aggregate is computed as mass Ma in the saturated surface-dried condition. That is, since mass of the aggregate and water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0069] Although fine aggregate is mainly targeted for aggregate, it is applicable also to coarse aggregate.


[0070] It is arbitrary how the amount of supplied water MI of the water fed into the submergence aggregate container is measured. For example, the amount of supplied water MI of the water can be known by feeding water into the submergence aggregate container previously, and making it overflow it. That is, since a water level at which water overflows from the opening for overflow is decided beforehand, as mentioned above, the amount of supplied water MI of the supplied water serves as the known value, even if it is not measured.


[0071] Since the water level does not fall even if water may overflow by subsequent aggregate throwing in this case, the accumulation value of the amount of supplied water MI becomes fixed during measurement.


[0072] Here, means for measuring mass of supplied water can be provided in means for supplying water. In this case, the water supply amount from the means for supplying water is measured as an accumulation value by the means for measuring mass of supplied water. Let this accumulation value be an amount of supplied water MI.


[0073] When a plurality of openings for overflow are provided in the submergence aggregate container at different heights, it becomes unnecessary to prepare a measurement tank for each total volume Vf individually, although it is arbitrary how opening for overflow is formed in a submergence aggregate container. In this constitution, only the opening for overflow corresponding to the total volume Vf to measure is opened, and other openings for overflow are altogether sealed for example, using seal plugs.


[0074] When the overflow height of the opening for overflow is constituted in adjustable, it becomes unnecessary to prepare a measurement tank for each total volume Vf individually, even if it does not provide a plurality of openings for overflow.


[0075] In order to constitute the overflow height of the opening for overflow in adjustable, a predetermined cover plate is attached to the opening for overflow so that a watertight state with the opening for overflow may be held, and so that it can go up and down along with the submergence aggregate container. Thus, since the cover plate can cover a part for opening of the opening for overflow which exists below the desired overflow height, it becomes possible to adjust the water level at which water of the submergence aggregate in the submergence aggregate container overflows.


[0076] Configuration of the submergence aggregate container is arbitrary as long as submergence aggregate can be held. For example, it is possible to constitute a measurement tank in a shape of a hollow cylinder. Here, if a submergence aggregate container is formed in a shape of a hollow truncated cone, a bore of the submergence aggregate container will become large, as it goes below. Therefore, since it is prevented that the submergence aggregate remains in the submergence aggregate container, when the measurement is finished, only by opening the bottom lid of the submergence aggregate container, free fall of the submergence aggregate in the submergence aggregate container can be carried out, and it can be taken out easily.


[0077] If free fall of the submergence aggregate cannot be carried out thoroughly due to aggregate adhesion in the measurement tank inside, the compaction of aggregate, etc., it can be solved by attaching oscillating grant instruments, such as vibrator and a knocker, in the outside of the submergence aggregate container.


[0078] Here, a predetermined vibrator can be installed above the submergence aggregate container so that it can go up and down freely, and so that it may be buried in the submergence aggregate in the submergence aggregate container in the downward location. In this case, during the aggregate charge or after the charge, the vibrator is lowered and operated.


[0079] If it does in this way, the aggregate supplied in the submergence aggregate container will become flat by vibration, and the aggregate will not come out on the water surface.


[0080] A volume of a submergence aggregate container is arbitrary. That is, the volume of the submergence aggregate container may be made in agreement with the whole quantity required for the unit of concrete mixing, i.e., one batch. Otherwise, it can be divided into some amounts in the submergence aggregate container.


[0081] (Measurement by the Submergence Method in the Case of Supplying Cumulatively a Plurality of Aggregates the Kinds of Which are Different)


[0082] In a measuring method of concrete materials according to still another aspect of the invention, first, aggregate of the first kind and water are supplied to a predetermined measurement tank so that it may become submergence aggregate in which the aggregate of the first kind does not appear from the water surface.


[0083] When throwing the aggregate and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregate is thrown in later, especially in the case of fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0084] Next, total mass Mf1 of the submergence aggregate is measured. In order to measure the total mass Mf1 of the submergence aggregate, the mass of only the measurement tank is subtracted from the mass of the measurement tank filled with the submergence aggregate.


[0085] Here, in order to measure total volume Vf1 of the submergence aggregate, means for measuring a water level for measuring a level of the submergence aggregate, such as an electrode-type displacement sensor, can be used.


[0086] Next, mass Ma1 of the aggregate of the first kind in the saturated surface-dried condition is calculated by solving the following two formulas.




M


a1


+M


w


=M


f1
  (7)





M


a1
a1+Mww=Vf1  (8)



[0087] Here, ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition, and ρw is the density of water.


[0088] Next, aggregate of the second kind and required water are supplied to the measurement tank so that the aggregate of the second kind may not come out from the water surface, namely, so that it may become submergence aggregate. Here, when throwing the aggregate of the second kind, as long as the state of submergence aggregate, i.e., the state where the aggregate of the second kind does not come out from the water surface, is held, it is not necessary to carry out additional throwing of water. Required water means water required for holding the state of submergence aggregate.


[0089] Next, total mass Mf2 of the submergence aggregate is measured, and subsequently mass Ma2 of the aggregate of the second kind in the saturated surface-dried condition is calculated from the following two formulas.




M


a1


+M


a2


+M


w


=M


f2
  (9)





M


a1
a1+Ma2a2+Mww=Vf2  (10)



[0090] Here, Vf2 is the total volume of the submergence aggregate, and ρa2 is the density of the aggregate of the second kind in the saturated surface-dried condition.


[0091] Hereafter, by repeating the above-mentioned procedure, Ma1,Ma2,Ma3 . . . , Mai, . . . , Ma(N−1), each of which is the mass of aggregate of the (N−1)th kind in the saturated surface-dried condition, are calculated one after another. Finally aggregate of the Nth kind and required water are supplied to the measurement tank so that the aggregate of the Nth kind does not come out from the water surface, namely, so that it may become submergence aggregate.


[0092] Here, with required water, if the aggregate of the i-th kind does not come out from the water surface as mentioned above, it means that water may not be supplied. In this case, only the aggregate of the i-th kind is thrown into the measurement tank.


[0093] Next, total mass MfN of the submergence aggregate is measured, next mass MaN of aggregate of the Nth kind in the saturated surface-dried condition and mass Mw of water are calculated from the following two formulas.


ΣMai (i=1 to (N−1))+MaN+Mw=MfN  (11)


ΣMaiai (i=1 to (N−1))+MaNaN+Mww=VfN  (12)


[0094] Here, VfN is a total volume of the submergence aggregate and ρaN is a density of the aggregate of the Nth kind in the saturated surface-dried condition.


[0095] When the mass Mw of water and the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition are measured and calculated, these calculated values will be compared with the mix proportion shown by the specified mix, respectively. Subsequently, the insufficiency is measured and then the submergence aggregate is supplemented by the amount of the insufficiency so as to let the aggregate and the water be concrete material. When there is too much water, the surplus is sucked with the vacuum etc.


[0096] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition. That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0097] In addition, a plurality of aggregates whose kinds, such as density and grading, are different are measured in high effectiveness and accuracy within one measurement tank in the procedure mentioned above.


[0098] The total volume Vfi (i=1 to N) of the submergence aggregate may be measured using the electrode-type displacement sensor etc., as mentioned above. Here, if the total volume Vfi (i=1 to N) of the submergence aggregate is maintained to a steady value Vf when throwing water and the aggregate of the i-th kind (i=1 to N) into the measurement tank, even if it does not measure the total volume Vf of the submergence aggregate, it will serve as a known value.


[0099] The total volume Vfi (i=1 to N) of the submergence aggregate is maintainable to the steady value Vf by making the water in the submergence aggregate overflow from the measurement tank, or sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank.


[0100] As mentioned above, the mass Mai (i=1 to N) of the aggregate of the Nth kind in the saturated surface-dried condition and the mass Mw of water can be calculated if the total mass Mf1 (i=1 to N) of the submergence aggregate is measured at least. On the other hand, if the mass Mawi of the aggregate of the i-th kind (i=1 to N) in wet condition are measured, respectively, a percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) are computable with the following formula, respectively.


(Mawi−Mai)/Mai  (13)


[0101] As another approach, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are measured as accumulation values, these measurement values are substituted for the following formula, and Mawj (j=1, 2, 3, . . . i) is calculated.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


[0102] Next, Mawi is calculated by the following formula.


ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0103] Next, the percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) are computable by substituting Mawi for the following formula.


(Mawi−Mai)/Mai  (13)


[0104] Here, the accumulation value of the amount of supplied water MI to the measurement tank does not necessarily increase, but can be the amount of water thrown first, in other words, the accumulation value can be fixed without change. Similarly, water is not necessarily drained by the amount of discharged water MO from the measurement tank, but the accumulation value can remain zero. On the other hand, in order to maintain the total volume Vfi (i=1 to N) of the submergence aggregate at a steady value Vf, when making the water in the submergence aggregate overflow from the measurement tank or sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank, the accumulation value of amount of discharged water MO increases.


[0105] In order to calculate the mass Mawi of the aggregate of the i-th kind (i=1 to N) in wet condition, respectively, it is necessary to calculate one by one from the aggregate of the first kind. That is, first, the mass of the aggregate of the first kind in wet condition is calculated, the mass of the aggregate of the second kind in wet condition is calculated using the value, next the mass of the third aggregate in wet condition is calculated using these two values.


[0106] Here, as mentioned above, not only fine aggregate but coarse aggregate is contained in the aggregate described in the specification and claims. In addition, both fine aggregate and coarse aggregate are required for the material which constitutes concrete. Accordingly, there is assumed a case of using a plurality of fine aggregates and coarse aggregates whose kinds such as density and grading are different. Especially, by mixing a plurality of aggregates that differ from one another in grading, aggregate with desired grading (particle size distribution) must be made anew in many cases.


[0107] The measuring method of concrete materials concerning the present invention is a very effective measuring method, when mainly measuring a plurality of aggregates that differ from one another in at least one of density or grading. It is the same about other aspects of the invention applied to a plurality of aggregates whose kinds are different.


[0108] A plurality of aggregates concerning the present invention mean the aggregates which comprise only fine aggregate, the aggregates which comprise only coarse aggregate, and the aggregates in which fine aggregate and coarse aggregate are arbitrarily mixed. As mentioned above, a plurality of aggregates mean the aggregates whose kinds are different, and all the classification indices about aggregate are contained in the kind of aggregate. The classification indices include density, grading, a place of production, reinforcement, a Young's modulus, durability, distinction of nature, artificiality or by production, distinction of beach sand or pit sand, etc.


[0109] In addition, when it is written as ΣMi (i=1 to N), it is a summation, i.e., (M1+M2+ . . . +MN) is meant. When it is written as aggregate of the i-th kind (i=1 to N), aggregate of the first kind, aggregate of the second kind, aggregate of the third kind, . . . , and aggregate of the Nth kind shall be meant.


[0110] (Measurement by the Submergence Method Which Does Not Need Measurement of the Capacity and Mass in the Case of Supplying Cumulatively a Plurality of Aggregates Whose Kinds are Different)


[0111] In a measuring method of concrete materials according to still another aspect of the invention, mass Mawi (i=1 to N) of the aggregate of the i-th kind (i=1 to N) in wet condition are measured first, respectively.


[0112] Next, water and aggregate of the first kind is thrown into a predetermined submergence aggregate container so that the aggregate of the first kind may not come out from the water surface, and so that the total volume of the submergence aggregate may be maintained at the steady value Vf.


[0113] The total volume of the submergence aggregate is maintainable at a steady value Vf by making the water in the submergence aggregate overflow from the submergence aggregate container, or sucking the water in the submergence aggregate in the predetermined depth location in the submergence aggregate container.


[0114] When throwing the aggregate and the water into the submergence aggregate container, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregate is thrown in later, especially in the case of fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0115] When throwing them into the submergence aggregate container, an amount of supplied water MI to the submergence aggregate container and an amount of discharged water MO from the submergence aggregate container are measured as accumulation values.


[0116] Next, mass Ma1 of the aggregate of the first kind in the saturated surface-dried condition is calculated from the following two formulas.




M


a1


+M


w


=M


aw1
+(MI−MO)  (16)





M


a1
a+Mww=Vf  (17)



[0117] Here, ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition and ρw is the density of water.


[0118] In addition, a percentage of surface moisture of the aggregate of the first kind is calculated by the following formula.


(Maw1−Ma1)/Ma1  (18)


[0119] Next, aggregate of the second kind and required water are fed into the submergence aggregate container so that the aggregate of the second kind may not come out from the water surface, and so that the total volume of submergence aggregate may be maintained at the steady value Vf. In addition, an amount of supplied water MI and an amount of discharged water MO are measured as accumulation values. Here, with required water, if the aggregate of the second kind does not come out from the water surface, it means that water may not be supplied. In this case, only the aggregate of the second kind is thrown into the submergence aggregate container.


[0120] Next, the mass Ma2 of the aggregate of the second kind in the saturated surface-dried condition is calculated from the following two formulas.




M


a1


+M


a2


+M


w


=M


aw1


+M


aw2
+(MI−MO)  (19)





M


a1
a1+Ma2a2+Mww=Vf  (20)



[0121] Here, ρa2 is the density of the aggregate of the second kind in the saturated surface-dried condition. In addition, the percentage of surface moisture of the aggregate of the second kind is calculated by the following formula.


(Maw2−Ma2)/Ma2  (21)


[0122] Hereafter, by repeating the above-mentioned procedure, Ma1, Ma2, Ma3 - - - , Mai, - - - , Ma(N−1), each of which is the mass of the aggregate of the (N−1)th kind in the saturated surface-dried condition, are calculated one after another. The above-mentioned procedure is repeated similarly and it calculates one by one to the percentage of surface moisture of the aggregate of the (N−1)th kind. Finally, aggregate of the Nth kind and required water are supplied to the submergence aggregate container so that the aggregate of the Nth kind may not come out from the water surface, and so that the total volume of the submergence aggregate may be maintained at the steady value Vf. In addition, an amount of supplied water MI and an amount of discharged water MO are measured as accumulation values).


[0123] Here, with required water, if the aggregate of the i-th kind does not come out from the water surface as mentioned above, it means that water may not be supplied. In this case, only the aggregate of the i-th kind is thrown into the submergence aggregate container.


[0124] Next, the mass MaN of the aggregate of the Nth kind in the saturated surface-dried condition and the mass Mw of the water in the submergence aggregate are calculated from the following two formulas.


ΣMai (i=1 to (N−1))+MaN+Mw=Σ(Mawi (i=1 to (N−1))+MawN+(MI−MO)  (22)


Σ(Maiai) (i=1 to (N−1))+MaNaN+Mww=Vf  (23)


[0125] Here, ρaN is the density of the aggregate of the Nth kind in the saturated surface-dried condition. In addition, the percentage of surface moisture of the aggregate of the Nth kind is calculated by the following formula.


(MawN−MaN)/MaN  (24)


[0126] Thus, the mass Mw of water, the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition, and the percentage of surface moisture of each aggregate are measured and calculated. Next, the mass Mw of water and the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition are compared with the mix proportion shown by the specified mix, respectively. The insufficiency is then measured. If the insufficiency is water, the above-mentioned submergence aggregate is supplemented with the water of the insufficiency so as to let the aggregate and the water be concrete material. On the other hand, taking the surface water of the aggregate into consideration using the computed percentage of surface moisture, if the insufficiency is the aggregate, the above-mentioned submergence aggregate is supplemented with the aggregate of the insufficiency so as to let the aggregate and the water be concrete material. When there is too much water, the surplus is sucked with the vacuum etc.


[0127] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as the mass Mai (i=1 to N) of the aggregate in the (36) saturated surface-dried condition. That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0128] In addition, a plurality of aggregates whose kinds, such as density and grading, are different are measured in high effectiveness and accuracy within one submergence aggregate container in the procedure mentioned above.


[0129] The volume of the measurement tank and the submergence aggregate container may be made equal to the whole quantity required for the unit of concrete mixing, i.e., one batch, and may be made equal to the amount of one batch divided into some amounts.


[0130] When taking into consideration the air content in submergence aggregate (a (%)), still higher-precision measurement can be performed with the actual total volume except the air content by replacing Vfi (i=1 to N) or Vf with Vfi (i=1 to N)∘(1−a/100) or Vf∘(1−a/100). However, in the case of the method for supplying a plurality of aggregates cumulatively, the aggregate rate in submergence aggregate increases gradually. Therefore, the air content in total volume should be considered in this connection.


[0131] (Measurement by the Submergence Method in the Case of Supplying Simultaneously a Plurality of Aggregates Whose Kinds are Different)


[0132] In a measuring method of concrete materials according to still another aspect of the invention, mean-density ρave of the whole aggregate is first calculated from the mass ratio when mixing a plurality of aggregates whose kinds are different and density ρai (i=1 to N) of the aggregate of the i-th kind in the saturated surface-dried condition.


[0133] Next, the aggregates of the i-th kind (i=1 to N) and water are supplied to a predetermined measurement tank. Here, the aggregates are supplied simultaneously so that it may become submergence aggregate in which the aggregates of the i-th kind (i=1 to N) do not appear from the water surface.


[0134] When throwing the aggregates and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregates are thrown in later, especially in the case of fine aggregates, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0135] Next, total mass Mf of the submergence aggregate is measured. In order to measure the total mass Mf of the submergence aggregate, the mass of only the measurement tank is subtracted from the mass of the measurement tank filled with the submergence aggregate.


[0136] Here, in order to measure total volume Vf of the submergence aggregate, means for measuring a water level for measuring a level of the submergence aggregate, such as an electrode-type displacement sensor, can be used.


[0137] Next, summation ΣMai (i=1 to N), that is, total mass of the aggregates of the i-th kind (i=1 to N) in the saturated surface-dried condition and the mass Mw of water are calculated by solving the following two formulas.


ΣMai (i=1 to N)+Mw=Mf  (25)


ΣMai (i=1 to N)/ρave+Mww=Vf  (26)


[0138] Here, ρw is the density of water.


[0139] When the mass Mw of water and summation ΣMai (i=1 to N) are measured and calculated, these calculated values will be compared with the mix proportion shown by the specified mix, respectively. Subsequently, the insufficiency is measured and then the submergence aggregate is supplemented by the amount of the insufficiency so as to let the aggregate and the water be concrete material. When there is too much water, the surplus is sucked with the vacuum etc.


[0140] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as summation ΣMai (i=1 to N). That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0141] In addition, a plurality of aggregates whose kinds, such as density and grading, are different are measured in high effectiveness and accuracy within one measurement tank in the procedure mentioned above.


[0142] Here, if the total volume Vf of the submergence aggregate is maintained at a steady value Vf when throwing water and the aggregates of the i-th kind (i=1 to N) into the measurement tank, even if it does not measure the total volume Vf of the submergence aggregate, it will serve as a known value.


[0143] The total volume of the submergence aggregate is maintainable at a steady value Vf by making the water in the submergence aggregate overflow from the measurement tank, or sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank.


[0144] If the total mass Mf of the submergence aggregate is measured at least as mentioned above, summation ΣMai (i=1 to N), that is, total mass of a plurality of aggregates of the i-th kind (i=1 to N) in the saturated surface-dried condition and the mass Mw of water can be calculated. In addition, if summation ΣMawi (i=1 to N), that is, total mass of a plurality of aggregates of the i-th kind (i=1 to N) in wet condition are measured, the average percentage of surface moisture is computable with the following formula.


(ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (27)


[0145] As another approach, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are measured as accumulation values, these measurement values are substituted for the following formula, and ΣMawi (i=1 to N) is calculated.


ΣMawi (i=1 to N)=Mf−(MI−MO)  (28)


[0146] Next, the average percentage of surface moisture can be calculated by the following formula.


(ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (27)


[0147] Here, the accumulation value of the amount of supplied water MI to the measurement tank does not necessarily increase, but can be the amount of water thrown first, in other words, the accumulation value can be fixed without change. Similarly, water is not necessarily drained by the amount of discharged water MO from the measurement tank, but the accumulation value can remain zero. On the other hand, in order to maintain the total volume of the submergence aggregate at a steady value Vf, when making the water in the submergence aggregate overflow from the measurement tank or sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank, the accumulation value of amount of discharged water MO increases.


[0148] (Measurement by the Submergence Method Which Does Not Need Measurement of the Capacity and Mass in the Case of Supplying Simultaneously a Plurality of Aggregates Whose Kinds are Different)


[0149] In a measuring method of concrete materials according to still another aspect of the invention, first, summation ΣMwai (i=1 to N), that is, total mass of a plurality of aggregates in wet condition whose kinds are different are measured.


[0150] Next, mean-density ρave of the whole aggregate is calculated from the mass ratio when mixing the aggregates and density ρai (i=1 to N) of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition.


[0151] Next, the aggregates and water are supplied to a predetermined submergence aggregate container. Here, the aggregates are supplied simultaneously so that it may become submergence aggregate in which the aggregates do not appear from the water surface, and so that the total volume of the submergence aggregate may be maintained at the steady value Vf.


[0152] The total volume of the submergence aggregate is maintainable at a steady value Vf by making the water in the submergence aggregate overflow from the submergence aggregate container, or sucking the water in the submergence aggregate in the predetermined depth location in the submergence aggregate container.


[0153] When throwing the aggregates and the water into the submergence aggregate container, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregates are thrown in later, especially in the case of fine aggregates, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0154] When throwing them into the submergence aggregate container, an amount of supplied water MI to the submergence aggregate container and an amount of discharged water MO from the submergence aggregate container are measured as accumulation values.


[0155] Next, summation ΣMai (i=1 to N), that is, total mass of a plurality of aggregates of the i-th kind (i=1 to N) in the saturated surface-dried condition and the mass Mw of water are calculated by solving the following two formulas.


ΣMai (i=1 to N)+Mw=ΣMawi (i=1 to N)+(MI−MO)  (29)


ΣMai (i=1 to N)/ρave+Mww=Vf  (30)


[0156] Here, ρw is the density of water.


[0157] In addition, the average percentage of surface moisture of the aggregates of the i-th kind (i=1 to N) is calculated from the following formula.


(ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (31)


[0158] When the mass Mw of water, summation ΣMai (i=1 to N) and the average percentage of surface moisture are measured and calculated, these calculated values will be compared with the mix proportion shown by the specified mix, respectively. The insufficiency is then measured. If the insufficiency is water, the above-mentioned submergence aggregate is supplemented with the water of the insufficiency so as to let the aggregate and the water be concrete material. On the other hand, taking the surface water of the aggregates into consideration using the computed average percentage of surface moisture, if the insufficiency is the aggregate, the above-mentioned submergence aggregate is supplemented with the aggregate of the insufficiency so as to let the aggregate and the water be concrete material. When there is too much water, the surplus is sucked with the vacuum etc.


[0159] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as summation ΣMai (i=1 to N). That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0160] In addition, a plurality of aggregates whose kinds, such as density and grading, are different are measured in high effectiveness and accuracy within one measurement tank in the procedure mentioned above.


[0161] The volume of the measurement tank and the submergence aggregate container may be made equal to the whole quantity required for the unit of concrete mixing, i.e., one batch, and may be made equal to the amount of one batch divided into some amounts.


[0162] When taking into consideration the air content in submergence aggregate (a (%)), still higher-precision measurement can be performed with the actual total volume except the air content by replacing Vf with Vfi∘(1−a/100).


[0163] (Real-Time Measurement by the Submergence Method)


[0164] In a measuring method of concrete materials according to still another aspect of the invention, first, aggregate and water are supplied to a predetermined measurement tank so that it may become submergence aggregate in which the aggregate does not appear from the water surface.


[0165] When throwing the aggregate and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregate is thrown in later, especially in the case of fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0166] Next, total mass Mf of the submergence aggregate is measured.


[0167] In order to measure the total mass Mf of the submergence aggregate, the mass of only the measurement tank is subtracted from the mass of the measurement tank filled with the submergence aggregate.


[0168] Here, in order to measure total volume Vf of the submergence aggregate, means for measuring a water level for measuring a level of the submergence aggregate, such as an electrode-type displacement sensor, can be used.


[0169] Next, the mass Ma of the aggregate in the saturated surface-dried condition and the mass Mw of the water in the submergence aggregate are calculated from the following two formulas.




M


a


+M


w


=M


f
  (1)





M


a
a+Mww=Vf  (2)



[0170] Here, ρa is the density of the aggregate in the saturated surface-dried condition, and ρw is the density of water.


[0171] Here, in order to calculate the mass Ma of the aggregate in the saturated surface-dried condition in the procedure mentioned above, the aggregate to the measurement tank is supplied continuously or intermittently at the predetermined rate. And when total mass Mf of the submergence aggregate is measured in real time or at predetermined time intervals and the mass Ma in the saturated surface-dried condition of the aggregate reaches a scheduled input, it ends throwing the aggregate.


[0172] Real-time measurement means the measurement performed at predetermined time intervals, supplying aggregate, and it is contained also when measuring continuously.


[0173] Next, the mass Mw of the water when finishing throwing the aggregate is compared with the mix proportion of the water shown by the specified mix. If the mass Mw of water is insufficient, it is supplemented with the water of the insufficiency, and when there is too much mass Mw of water, the excess water is removed by a vacuum etc. And let the aggregate and the water be concrete material.


[0174] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as mass Ma in the saturated surface-dried condition. That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0175] In addition, as mentioned above, since the throwing of the aggregate into the measurement tank is ended when the mass Ma of the aggregate in the saturated surface-dried condition reaches a scheduled input, while measuring total mass Mf of the submergence aggregate in real time or at predetermined time intervals, a possibility that excess and deficiency may arise in measurement of aggregate disappears, and the effectiveness of aggregate measurement improves.


[0176] The total volume Vf of the submergence aggregate is measurable during aggregate measurement using an electrode-type displacement sensor etc., as mentioned above. At this point, if the total volume Vf of the submergence aggregate is maintained at a steady value when water and aggregate are supplied to the measurement tank, the total volume Vf of the submergence aggregate will serve as a known value, and it will become unnecessary to measure it.


[0177] The total volume of the submergence aggregate is maintainable at a steady value Vf by making the water in the submergence aggregate overflow from the measurement tank or by sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank.


[0178] Moreover, if the total mass Mf of the submergence aggregate is measured at least as mentioned above, the mass Ma of the aggregate in the saturated surface-dried condition and the mass Mw of water can be calculated. That is, first, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are measured as accumulation values, and, subsequently Maw is calculated by the following formula.




M


aw


=M


f
−(MI−MO)  (4)



[0179] Next, the percentage of surface moisture of the aggregate is computable by substituting Maw for the following formula.


(Maw−Ma)/Ma  (3)


[0180] Here, the accumulation value of the amount of supplied water MI to the measurement tank does not necessarily increase, but can be the amount of water thrown first, in other words, the accumulation value can be fixed without change. Similarly, water is not necessarily drained by the amount of discharged water MO from the measurement tank, but the accumulation value can remain zero. On the other hand, in maintaining the total volume Vf of the submergence aggregate at a steady value by making the water in the submergence aggregate overflow from the measurement tank and sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank, the accumulation value of amount of discharged water MO increases.


[0181] The volume of the measurement tank may be made equal to the whole quantity required for the unit of concrete mixing, i.e., one batch, and may be made equal to the amount of one batch divided into some amounts.


[0182] (Real-time Measurement by the Submergence Method in the Case of Supplying Cumulatively a Plurality of Aggregates Whose Kinds are Different)


[0183] In a measuring method of concrete materials according to still another aspect of the invention, first, aggregate of the first kind and water are supplied to a predetermined measurement tank so that it may become submergence aggregate in which the aggregate of the first kind does not appear from the water surface.


[0184] When throwing the aggregate and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregate is thrown in later, especially in the case of fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0185] Next, total mass Mf1 of the submergence aggregate is measured. In order to measure the total mass Mf1 of the submergence aggregate, the mass of only the measurement tank is subtracted from the mass of the measurement tank filled with the submergence aggregate.


[0186] Here, in order to measure total volume Vf1 of the submergence aggregate, means for measuring a water level for measuring a level of the submergence aggregate, such as an electrode-type displacement sensor, can be used.


[0187] Next, mass Ma1 of the aggregate of the first kind in the saturated surface-dried condition is calculated by solving the following two formulas.




M


a1


+M


w


=M


f1
  (7)





M


a1
a1+Mww=Vf1  (8)



[0188] Here, ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition, and ρw is the density of water.


[0189] Next, aggregate of the second kind and required water are supplied to the measurement tank so that the aggregate of the second kind may not come out from the water surface, namely, so that it may become submergence aggregate. Here, when throwing the aggregate of the second kind, as long as the state of submergence aggregate, i.e., the state where the aggregate of the second kind does not come out from the water surface is held, it is not necessary to carry out additional throwing of water. Required water means water required for holding the state of submergence aggregate.


[0190] Next, total mass Mf2 of the submergence aggregate is measured, and, subsequently mass Ma2 of the aggregate of the second kind in the saturated surface-dried condition is calculated from the following two formulas.




M


a1


+M


a2


+M


w


=M


f2
  (9)





M


a1
a1+Ma2a2+Mww=Vf2  (10)



[0191] Here, Vf2 is a total volume of the submergence aggregate and ρa2 is a density of the aggregate of the second kind in the saturated surface-dried condition.


[0192] Hereafter, by repeating the above-mentioned procedure, Ma1, Ma2, Ma3 - - - , Mai, - - - , Ma(N−1), each of which is the mass of aggregate of the (N−1)th kind in the saturated surface-dried condition, are calculated one after another. Finally aggregate of the Nth kind and required water are supplied to the measurement tank so that the aggregate of the Nth kind does not come out from the water surface, namely, so that it may become submergence aggregate.


[0193] Here, with required water, if the aggregate of the i-th kind does not come out from the water surface as mentioned above, it means that water may not be supplied. In this case, only the aggregate of the i-th kind is thrown into the measurement tank.


[0194] Next, total mass MfN of the submergence aggregate is measured. Subsequently, mass MaN of the aggregate of the Nth kind in the saturated surface-dried condition and mass Mw of water are calculated from the following two formulas.


ΣMai (i=1 to (N−1))+MaN+Mw=MfN  (11)


ΣMaiai (i=1 to (N−1))+MaNaN+Mww=VfN  (12)


[0195] Here, VfN is a total volume of the submergence aggregate and ρaN is a density of the aggregate of the Nth kind in the saturated surface-dried condition.


[0196] Here, in order to calculate the mass Mai (i=1 to N) of the aggregate of the Nth kind in the saturated surface-dried condition in the procedure mentioned above, the aggregate is supplied to the measurement tank continuously or intermittently at the predetermined rate. And when total mass Mfi (i=1 to N) of the submergence aggregate is measured in real time or at predetermined time intervals and the mass Mai (i=1 to N) of the aggregate of the Nth kind in the saturated surface-dried condition reaches a scheduled input, the throwing of the aggregate is ended.


[0197] In the process which throws cumulatively the aggregates of the i-th kind (i=1 to N) one by one, after ending throwing aggregate during throwing the j-th aggregate or after throwing, the mass Mw of the water at that time is compared with the mix proportion of the water shown by the specified mix. And if the mass Mw of water is insufficient, it is supplemented with the water of the insufficiency, and when there is too much mass Mw of water, the excess water is removed by a vacuum etc. Let the aggregate and the water be concrete material.


[0198] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition. That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0199] In addition, as mentioned above, since the throwing of the aggregate into the measurement tank continuously at a predetermined rate or intermittently is ended when the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition reaches a scheduled input, while measuring total mass Mfi (i=1 to N) of the submergence aggregate in real time or at predetermined time intervals, a possibility that excess and deficiency may arise in measurement of aggregate disappears, and the effectiveness of aggregate measurement improves.


[0200] Real-time measurement means the measurement performed at predetermined time intervals, while supplying aggregate, and it is contained also when measuring continuously.


[0201] In addition, a plurality of aggregates whose kinds, such as density and grading, are different are measured in high effectiveness and accuracy within one measurement tank in the procedure mentioned above.


[0202] The total volume Vfi (i=1 to N) of the submergence aggregate is measurable during aggregate measurement using an electrode-type displacement sensor etc., as mentioned above. Here, if the total volume Vfi (i=1 to N) of the submergence aggregate is maintained at a steady value Vf when throwing water and the aggregates of the i-th kind (i=1 to N) into the measurement tank, even if it does not measure the total volume Vf of the submergence aggregate, it will serve as a known value.


[0203] The total volume of the submergence aggregate is maintainable at a steady value Vf by making the water in the submergence aggregate overflow from the measurement tank or by sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank.


[0204] If the total mass Mfi (i=1 to N) of the submergence aggregate is measured at least as mentioned above, Mai (i=1 to N) of the mass of the aggregates of the i-th kind (i=1 to N) in the saturated surface-dried condition and the mass Mw of water can be calculated.


[0205] That is, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are first measured as accumulation values.


[0206] Next, ΣMawj (j=1, 2, 3, . . . i) is calculated by the following formula.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0207] Next, the percentage of surface moisture of the aggregates of the i-th kind (i=1 to N) are computable by substituting Mawi for the following formula.


(Mawi−Mai)/Mai  (13)


[0208] Here, the accumulation value of the amount of supplied water MI to the measurement tank does not necessarily increase, but can be the amount of water thrown first, in other words, the accumulation value can be fixed without change. Similarly, water is not necessarily drained by the amount of discharged water MO from the measurement tank, but the accumulation value can remain zero. On the other hand, in maintaining the total volume Vfi (i=1 to N) of the submergence aggregate at a steady value Vf by making the water in the submergence aggregate overflow from the measurement tank or by sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank, the accumulation value of amount of discharged water MO increases.


[0209] In order to calculate the mass Mawi of the aggregates of the i-th kind (i=1 to N) in wet condition, respectively, it is necessary to calculate one by one from the aggregate of the first kind. That is, first, the mass of the aggregate of the first kind in wet condition is calculated, the mass of the aggregate of the second kind in wet condition is calculated using the value, and then the mass of the third aggregate in wet condition is calculated using these two values.


[0210] The volume of the measurement tank may be made equal to the whole quantity required for the unit of concrete mixing, i.e., one batch, and may be made equal to the amount of one batch divided into some amounts.


[0211] (Real-Time Measurement by the Submergence Method in the Case of Supplying Simultaneously a Plurality of Aggregates Whose Kinds are Different)


[0212] In a measuring method of concrete materials according to still another aspect of the invention, first, mean-density ρave of the whole aggregate is calculated from the mass ratio when mixing a plurality of aggregates whose kinds are different and density ρai (i=1 to N) of the aggregate of the i-th kind in the saturated surface-dried condition.


[0213] Next, the aggregates and water are supplied to a predetermined measurement tank. Here, the aggregates are supplied simultaneously so that it may become submergence aggregate in which the aggregates do not appear from the water surface.


[0214] When throwing the aggregate and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregates are thrown in later, especially in the case of fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0215] Next, total mass Mf of the submergence aggregate is measured. In order to measure the total mass Mf of the submergence aggregate, the mass of only the measurement tank is subtracted from the mass of the measurement tank filled with the submergence aggregate.


[0216] Here, in order to measure total volume Vf of the submergence aggregate, means for measuring a water level for measuring a level of the submergence aggregate, such as an electrode-type displacement sensor, can be used.


[0217] Next, summation ΣMai (i=1 to N), that is, total mass of a plurality of aggregates whose kinds are different in the saturated surface-dried condition and the mass Mw of water are calculated by solving the following two formulas.


ΣMai (i=1 to N)+Mw=Mf  (25)


ΣMai (i=1 to N)/ρave+Mww=Vf  (26)


[0218] Here, ρw is the density of water.


[0219] Here, in order to calculate ΣMai (i=1 to N), that is, total mass of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition in the procedure mentioned above, the aggregates are supplied to the measurement tank continuously or intermittently at the predetermined rate. And when Mf of the submergence aggregate is measured in real time or at predetermined time intervals and the mass ΣMai (i=1 to N) reaches a scheduled input, the throwing of the aggregates is ended.


[0220] Next, the mass Mw of the water when finishing throwing the aggregate is compared with the mix proportion of the water shown by the specified mix. And if the mass Mw of water is insufficient, it is supplemented with the water of the insufficiency, and when there is too much mass Mw of water, the excess water is removed by a vacuum etc. Let the aggregate and the water be concrete material.


[0221] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as ΣMai (i=1 to N), that is, total mass of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition. That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0222] In addition, as mentioned above, since the throwing of the aggregate into the measurement tank continuously at a predetermined rate or intermittently is ended when ΣMai (i=1 to N) reaches a scheduled input, while measuring total mass Mf of the submergence aggregate in real time or at predetermined time intervals, a possibility that excess and deficiency may arise in measurement of aggregate disappears, and the effectiveness of aggregate measurement improves.


[0223] Real-time measurement means the measurement performed at predetermined time intervals, while supplying aggregate, and it is contained also when measuring continuously.


[0224] In addition, a plurality of aggregates whose kinds, such as density and grading, are different are measured in high effectiveness and accuracy within one measurement tank in the procedure mentioned above.


[0225] Here, if the total volume Vf of the submergence aggregate is maintained at a steady value Vf when throwing water and the aggregates of the i-th kind (i=1 to N) into the measurement tank, even if it does not measure the total volume Vf of the submergence aggregate, it will serve as a known value.


[0226] The total volume of the submergence aggregate is maintainable at a steady value Vf by making the water in the submergence aggregate overflow from the measurement tank or by sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank.


[0227] If the total mass Mf of the submergence aggregate is measured at least as mentioned above, summation ΣMai (i=1 to N) of the mass of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition and the mass Mw of water can be calculated. That is, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are first measured as accumulation values. Next, ΣMawi (i=1 to N) is calculated by the following formula.


ΣMawi (i=1 to N)=Mf−(MI−MO)  (28)


[0228] Next, the average percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) is computable by substituting ΣMawi for the following formula.


(ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (27)


[0229] Here, the accumulation value of the amount of supplied water MI to the measurement tank does not necessarily increase, but can be the amount of water thrown first, in other words, the accumulation value can be fixed without change. Similarly, water is not necessarily drained by the amount of discharged water MO from the measurement tank, but the accumulation value can remain zero.


[0230] On the other hand, in maintaining the total volume Vf of the submergence aggregate at a steady value by making the water in the submergence aggregate overflow from the measurement tank or by sucking the water in the submergence aggregate in the predetermined depth location in the measurement tank, the accumulation value of amount of discharged water MO increases.


[0231] The volume of the measurement tank may be made equal to the whole quantity required for the unit of concrete mixing, i.e., one batch, and may be made equal to the amount of one batch divided into some amounts.


[0232] When taking into consideration the air content in submergence aggregate (a (%)), still higher-precision measurement can be performed with the actual total volume except the air content by replacing Vf with Vfi·(1−a/100).


[0233] (Another Measurement by the Submergence Method in the Case of Supplying a Plurality of Aggregates Whose Kinds are Different)


[0234] In another measuring method of concrete materials concerning the present invention, first, target mass Mdi (i=1 to N) of submergence aggregate at the time of ending throwing the i-th (i=1 to N) aggregate is set up respectively.


[0235] Next, aggregate of the first kind and water are supplied to the measurement tank so that the aggregate of the first kind may not come out from the water surface, namely, so that it may become submergence aggregate.


[0236] When throwing the aggregate and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregate is thrown in later, especially in the case of fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0237] Next, total mass Mf1 of the submergence aggregate is measured. In order to measure the total mass Mf1 of the submergence aggregate, the mass of only the measurement tank is subtracted from the mass of the measurement tank filled with the submergence aggregate.


[0238] Next, total volume Vf1 of the submergence aggregate is measured. Here, in order to measure total volume Vf1 of the submergence aggregate, means for measuring a water level for measuring a level of the submergence aggregate, such as an electrode-type displacement sensor, can be used.


[0239] Next, when the total mass Mf1 of the submergence aggregate reaches the target mass Md1, it ends throwing the aggregate of the first kind into the measurement tank. Subsequently, the total mass Mf1 and total volume Vf1 of the submergence aggregate at that time are substituted for the following formula, and mass Ma1 in the saturated surface-dried condition of the aggregate of the first kind is calculated.




M


a1
a1(Mf1−ρwVf1)/(ρa1−ρw)  (32)



[0240] Here, ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition, and ρw is the density of water.


[0241] Next, like the aggregate of the first kind, the aggregate of the second kind is thrown into the measurement tank so that it may become submergence aggregate in which the aggregate of the second kind does not appear from the water surface, the total mass Mf2 of the submergence aggregate is measured, and, subsequently the total volume Vf2 of the submergence aggregate is measured further.


[0242] Next, when the total mass Mf2 of the submergence aggregate reaches the target mass Md2, it ends throwing the aggregate of the second kind into the measurement tank. Subsequently, the total mass Mf2 and total volume Vf2 of the submergence aggregate at that time are substituted for the following formula, and mass Ma2 in the saturated surface-dried condition of the aggregate of the second kind is calculated.




M


a2
a2((Mf2−Ma1)−ρw(Vf2−Ma1a1))/(ρa2−ρw)  (33)



[0243] Here, ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition, ρa2 is the density of the aggregate of the second kind in the saturated surface-dried condition, and ρw is the density of water.


[0244] Hereafter, the above-mentioned procedure is repeated, aggregate measurement is calculated one by one to the mass Ma(N−1) in the saturated surface-dried condition of the aggregate of (N−1)th kind, and finally, the aggregate of the Nth kind is thrown into the measurement tank so that it may become submergence aggregate in which the aggregate of the Nth kind does not appear from the water surface.


[0245] Next, as mentioned above, similarly, the total mass MfN of the submergence aggregate is measured, and the total volume VfN of the submergence aggregate is measured further.


[0246] Next, when the total mass MfN of the submergence aggregate reaches the target mass MdN, it ends throwing the aggregate of the Nth kind into the measurement tank. Subsequently, the total mass MfN and total volume VfN of the submergence aggregate at that time are substituted for the following formulas, and mass MaN in the saturated surface-dried condition of the aggregate of the Nth kind is calculated. The mass Mw of water is also calculated simultaneously.




M


aN
aN((MfN−Mai (i=1 to (N−1)))−ρw(VfN−Σ(Maiai) (i=1 to (N−1))))/(ρaN−ρw)  (34)





M


w
waN(VfN−Σ(Maiai) (i=1 to (N−1)))−(MfN−ΣMai (i=1 to (N−1))))/(ρaN−ρw)  (35)



[0247] Here, ρai (i=1 to N) is the density of the aggregate of the i-th kind in the saturated surface-dried condition, and ρw is the density of water.


[0248] The total mass Mfi (i=1 to N) of the submergence aggregate is measured in real time or at predetermined time intervals while supplying the aggregate of the i-th kind (i=1 to N) continuously or intermittently at a predetermined rate, when throwing cumulatively the aggregate into the measurement tank, respectively. In addition, when the total mass Mfj of the submergence aggregate reaches the target mass Mdj while supplying the j-th aggregate, as mentioned above, it ends the j-th aggregate throwing. If aggregate which should be cumulatively supplied further exists (i.e., If a plurality of aggregates should be supplied cumulatively and the j-th aggregate is not the last aggregate), the (j+1)-th aggregate is similarly supplied continuously as mentioned above.


[0249] When the mass Mw of water and Mai (i=1 to N) are measured and calculated, the original field mixes set up according to the specified mix are compared with these calculating results, and the field mix is corrected if needed. That is, the mass of the measured aggregate and the aggregate mass of the field mix are compared, and the mixing volume of one batch is corrected according to the ratio obtained as a result of the comparison. And according to this ratio, it is supplemented with water of the insufficiency as secondary water, or excess water is drained. Furthermore, according to the ratio mentioned above, each amount of other concrete materials in the field mix, such as cement and a chemical admixture, is corrected. Next, above-mentioned concrete materials are measured according to the corrected field mix. Finally, these concrete materials are thrown into a kneading mixer, and are kneaded.


[0250] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition. That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0251] Furthermore, the total mass Mfi (i=1 to N) of the submergence aggregate is measured in real time or at predetermined time intervals while supplying the aggregate of the i-th kind (i=1 to N) to the measurement tank continuously or intermittently at a predetermined rate. Since the j-th aggregate throwing is ended when the total mass Mfj of the submergence aggregate reaches the target mass Mdj during the j-th aggregate throwing in the aggregate of the i-th kind mentioned above, it becomes possible to manage correctly the amount of the i-th (i=1 to N) aggregate, and to correct the field mix, consequently to make the concrete as the specified mix.


[0252] In addition, a plurality of aggregates whose kinds, such as density and grading, are different can be measured in high effectiveness and accuracy within one measurement tank in the procedure mentioned above.


[0253] (Another Measurement by the Submergence Method in the Case of Supplying a Plurality of Aggregates Whose Kinds are Different)


[0254] In another measuring method of concrete materials concerning the present invention, first, target mass Mdi (i=1 to N) of submergence aggregate at the time of ending throwing the i-th (i=1 to N) aggregate is set up respectively.


[0255] Next, aggregate of the first kind and water are supplied to the measurement tank so that the aggregate of the first kind may not come out from the water surface, namely, so that it may become submergence aggregate.


[0256] When throwing the aggregate and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregate is thrown in later, especially in the case of fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0257] Next, total mass Mf1 of the submergence aggregate is measured. In order to measure the total mass Mf1 of the submergence aggregate, the mass of only the measurement tank is subtracted from the mass of the measurement tank filled with the submergence aggregate.


[0258] Next, the total mass Mf1 of the submergence aggregate and the total volume Vf1 of the submergence aggregate are substituted for formula (32), and the mass Ma1 in the saturated surface-dried condition of the aggregate of the first kind is calculated. Vf1 is determined from first water level set up beforehand. Here, ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition, and ρw is the density of water.


[0259] The first water level can be beforehand set up by making the water in the submergence aggregate overflow from the measurement tank in a predetermined depth location in the measurement tank, or by carrying out suction drainage of the water in the submergence aggregate in the predetermined depth location.


[0260] Next, like the aggregate of the first kind, aggregate of the second kind is thrown into the measurement tank so that it may become submergence aggregate which does not come out from the water surface, and subsequently the total mass Mf2 of the submergence aggregate is measured.


[0261] Next, the total mass Mf2 of the submergence aggregate and the total volume Vf2 of the submergence aggregate are substituted for formula (33), and the mass Ma2 in the saturated surface-dried condition of the aggregate of the second kind is calculated. Vf2 is determined from the second water level set up beforehand. Here, ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition, ρa2 is the density of the aggregate of the second kind in the saturated surface-dried condition, and ρw is the density of water.


[0262] Like the first water level, the second water level can be beforehand set up by making the water in the submergence aggregate overflow from the measurement tank in a predetermined depth location in the measurement tank, or by carrying out suction drainage of the water in the submergence aggregate in the predetermined depth location.


[0263] Hereafter, by repeating the above-mentioned procedure, the mass of the aggregate in the saturated surface-dried condition is calculated one by one to the mass Ma(N−1) of the aggregate of (N−1)th kind in the saturated surface-dried condition, and finally, aggregate of the Nth kind is thrown into the measurement tank so that it may become submergence aggregate which does not come out from the water surface.


[0264] Next, the total mass MfN of the submergence aggregate is similarly measured as mentioned above.


[0265] Next, the total mass MfN and the total volume VfN of the submergence aggregate are substituted for formulas (34) and (35), and the mass MaN of the aggregate of the Nth kind in the saturated surface-dried condition and the mass Mw of water are calculated. Here, ρai (i=1 to N) is the density of the aggregate of the i-th kind in the saturated surface-dried condition, and ρw is the density of water. In addition, the total volume VfN of the submergence aggregate can be calculated from Nth water level, and the Nth water level can be set up like the first water level and the second water level which were mentioned above.


[0266] The total mass Mfi (i=1 to N) of the submergence aggregate is measured in real time or at predetermined time intervals while supplying the aggregate of i-th kind (i=1 to N) continuously or intermittently at a predetermined rate, when throwing cumulatively the aggregate into the measurement tank, respectively. While draining redundant water from the measurement tank so that the water level of the submergence aggregate may not exceed the j-th water level during the j-th aggregate throwing, the j-th aggregate throwing is ended when the total mass Mfj of the submergence aggregate reaches the target mass Mdj of the submergence aggregate.


[0267] On the other hand, if the water level of the submergence aggregate does not reach the j-th water level, when there is no redundant water, it is supplemented with water so that it may reach the j-th water level, and, subsequently re-measurement of the total mass Mfj of the submergence aggregate, recalculation of the mass Maj of the j-th aggregate in the saturated surface-dried condition, and recalculation of the mass Mw of water are performed.


[0268] If aggregate which should be cumulatively supplied further exists (i.e., If a plurality of aggregates should be supplied cumulatively and the j-th aggregate is not the last aggregate), the (j+1)-th aggregate is similarly supplied continuously as mentioned above.


[0269] Thus, after measuring the i-th (i=1 to N) aggregate and water, other concrete materials, such as cement and a chemical admixture, are appropriately measured. With these concrete materials, the i-th (i=1 to N) aggregate and water are fed into a kneading mixer and are kneaded.


[0270] Here, when the total mass Mfj of the submergence aggregate reaches the target mass Mdj of the submergence aggregate, while draining redundant water so that the water level of the submergence aggregate may not exceed the j-th water level set up beforehand, the mass Maj of the j-th aggregate in the saturated surface-dried condition becomes equal to the value set up first. Therefore, it is not necessary to correct the field mix.


[0271] On the other hand, when the water level of the submergence aggregate has not reached the j-th water level set up beforehand, it is supplemented with water so that it may reach this j-th water level. Therefore, the calculated value of the mass Maj of the j-th aggregate in the saturated surface-dried condition differs from the value set up first. In this case, the value measured and calculated is compared with the value of the field mix set up first according to the specified mix, and, subsequently corrects the field mix if needed. That is, the measured aggregate mass and the aggregate mass of the field mix set up first are compared, and the mixing volume of one batch is corrected according to the ratio obtained by the comparison. In addition, according to this ratio, it is supplemented with water of the insufficiency as secondary water, or excess water is drained. Similarly, also about the amount of other concrete materials, such as cement and a chemical admixture, the original field mix is corrected according to the ratio mentioned above, other concrete materials are measured according to the correction, and these are thrown into the kneading mixer and kneaded.


[0272] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition. That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0273] As mentioned above, when the total mass Mfj of the submergence aggregate reaches the target mass Mdj of the submergence aggregate, it ends j-th aggregate throwing, and when the water level of the submergence aggregate at that time has not reached the j-th water level set up beforehand, it is supplemented with water so that it may reach this j-th water level. And re-measurement of mass Mfj, recalculation of mass Maj, and recalculation of mass Mw are performed. Therefore, the total volume Vfi (i=1 to N) of the submergence aggregate serves as a known value, by which it becomes unnecessary to measure it and it can manage correctly the input of the i-th (i=1 to N) aggregate. And it becomes possible as the result to make the concrete as the specified mix.


[0274] In addition, a plurality of aggregates whose kinds, such as density and grading, are different are measured in high effectiveness and accuracy within one measurement tank in the procedure mentioned above.


[0275] The percentage of surface moisture of the i-th (i=1 to N) aggregate can be calculated in the following procedure. That is, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are first measured as accumulation values. Next, the amount of supplied water MI, the amount of discharged water MO, and the total mass Mfi (i=1 to N) are substituted for the following formula, and ΣMawj (j=1, 2, 3, . . . i) is calculated.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


[0276] Next, Mawi is calculated from the following formula.


ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0277] Next, Mawi is substituted for the following formula and a percentage of surface moisture is calculated.


(Mawi−Mai)/Mai  (13)


[0278] Here, the accumulation value of the amount of supplied water MI to the measurement tank does not necessarily increase, but can be the amount of water thrown first, in other words, the accumulation value can be fixed without change. Similarly, water is not necessarily drained by the amount of discharged water MO from the measurement tank, but the accumulation value can remain zero.


[0279] When taking into consideration the air content in submergence aggregate (a (%)), still higher-precision measurement can be performed with the actual total volume except the air content by replacing Vfi (i=1 to N) with Vfi (i=1 to N)∘(1−a/100).


[0280] (Program for Measurement by the Submergence Method in the Case of Supplying a Plurality of Aggregates Whose Kinds are Different)


[0281] In order to measure and calculate concrete materials using a program concerning the present invention, it is possible to make it run with a personal computer. That is, density ρai (i=1 to N) of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition, density ρw of water, and the target mass Mdi (i=1 to N) of submergence aggregate are first inputted using means for inputting data, such as a keyboard and a mouse. Here, the target mass Mdi (i=1 to N) of submergence aggregate is the target mass of submergence aggregate when the process for throwing the aggregate of the i-th kind (i=1 to N) is completed, respectively. Next, the inputted value is stored in means for storing data comprising a hard disk etc.


[0282] Next, the aggregate of the first kind and water are supplied to the measurement tank so that the aggregate of the first kind may not come out from the water surface, namely, so that it may become submergence aggregate.


[0283] When throwing the aggregate and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregate is thrown in later, especially in the case of fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0284] Next, total mass Mf1 of the submergence aggregate is measured. In order to measure the total mass Mf1 of the submergence aggregate, the mass of only the measurement tank is subtracted from the mass of the measurement tank filled with the submergence aggregate.


[0285] Next, total volume Vf1 of the submergence aggregate is measured. Here, in order to measure total volume Vf1 of the submergence aggregate, means for measuring a water level for measuring a level of the submergence aggregate, such as an electrode-type displacement sensor, can be used.


[0286] Next, the density ρa1 of the aggregate of the first kind and the density ρw of water are read from the means for storing data. Subsequently, the mass Ma1 of the aggregate of the first kind in the saturated surface-dried condition is calculated by means for calculating by substituting these read values for formula (32) with the total mass Mf1 of the submergence aggregate, and the total volume Vf1 of the submergence aggregate. Next, the calculated result is stored in the means for storing data.


[0287] Next, like the aggregate of the first kind, the aggregate of the second kind is thrown into the measurement tank so that it may become submergence aggregate which does not come out from the water surface, and subsequently the total mass Mf2 of the submergence aggregate is measured. In addition, the total volume Vf2 of the submergence aggregate is also measured.


[0288] Next, the density ρa1 in the saturated surface-dried condition of the aggregate of the first kind, the density ρa2 of the aggregate of the second kind, and the density ρw of water are read from the means for storing data. Subsequently, the mass Ma2 of the aggregate of the second kind in the saturated surface-dried condition is calculated by the means for calculating by substituting these read values for formula (33) with the total mass Mf2 of the submergence aggregate, and the total volume Vf2 of the submergence aggregate. Next, the calculated result is stored in the means for storing data.


[0289] Hereafter, the above-mentioned procedure is repeated, aggregate measurement is calculated one by one to the mass Ma(N−1) in the saturated surface-dried condition of the aggregate of the (N−1)th kind by the means for calculating, and the calculated result is stored in the means for storing data. Finally, the aggregate of the Nth kind is thrown into the measurement tank so that it may become submergence aggregate in which the aggregate of the Nth kind does not appear from the water surface.


[0290] Next, similarly mentioned above, the total mass MfN of the submergence aggregate is measured, and the total volume VfN of the submergence aggregate is measured further.


[0291] Next, the density ρai (i=1 to N) in the saturated surface-dried condition of the aggregate of the i-th kind (i=1 to N), and the density ρw of water are read from the means for storing data. Subsequently, the mass MaN of the aggregate of the Nth kind in the saturated surface-dried condition and the mass Mw of water are calculated by the means for calculating by substituting these read values for formulas (34) and (35) with the total mass MfN of the submergence aggregate and the total volume VfN of the submergence aggregate.


[0292] The total mass Mfi (i=1 to N) of the submergence aggregate is measured in real time or at predetermined time intervals while supplying the aggregate of the i-th kind (i=1 to N) continuously or intermittently at a predetermined rate, when throwing cumulatively the aggregate into the measurement tank, respectively. And when the total mass Mfj of the submergence aggregate reaches the target mass Mdj of the submergence aggregate, it ends throwing the j-th aggregate.


[0293] If aggregate which should be cumulatively supplied further exists (i.e., If a plurality of aggregates should be supplied cumulatively and the j-th aggregate is not the last aggregate), the (j+1)-th aggregate is similarly supplied continuously as mentioned above.


[0294] When the mass Mw of water and Mai (i=1 to N) are measured and calculated, The original field mixes set up according to the specified mix are compared with these calculating results, and the field mix is corrected if needed. That is, the measured aggregate mass and the aggregate mass of the field mix set up first are compared, and ratio obtained by the comparison is stored in the means for storing data. Next, the ratio is read from the means for storing data at any time, and the mixing volume of one batch is corrected according to the ratio. In addition, according to this ratio, it is supplemented with water of the insufficiency as secondary water, or excess water is drained. Similarly, also about the amount of other concrete materials, such as cement and a chemical admixture, the original field mix is corrected according to the ratio mentioned above, other concrete materials are measured according to the correction, and these are thrown into the kneading mixer and kneaded.


[0295] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition. That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0296] Furthermore, the total mass Mfi (i=1 to N) of the submergence aggregate is measured in real time or at predetermined time intervals while supplying the aggregate of the i-th kind (i=1 to N) into the measurement tank continuously or intermittently at a predetermined rate. Since the j-th aggregate throwing is ended when the total mass Mfj of the submergence aggregate reaches the target mass Mdj during the j-th aggregate throwing in the aggregate of the i-th kind mentioned above, it becomes possible to manage correctly the amount of the i-th (i=1 to N) aggregate, and to correct the field mix, consequently to make the concrete as the specified mix.


[0297] In addition, a plurality of aggregates whose kinds, such as density and grading, are different can be measured in high effectiveness and accuracy within one measurement tank in the procedure mentioned above.


[0298] (Another Program for Measurement by the Submergence Method in the Case of Supplying a plurality of Aggregates Whose Kinds are Different)


[0299] In order to measure and calculate concrete materials using another program concerning the present invention, as mentioned above, it is possible to make it run with a personal computer. That is, density ρai (i=1 to N) of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition, density ρw of water, and the target mass Mdi (i=1 to N) of submergence aggregate are first inputted using means for inputting data, such as a keyboard and a mouse. Here, the target mass Mdi (i=1 to N) of submergence aggregate is the target mass of submergence aggregate when the process for throwing the aggregate of the i-th kind (i 1 to N) is completed, respectively. Next, the inputted value is stored in means for storing data comprising a hard disk etc.


[0300] Next, aggregate of the first kind and water are supplied to the measurement tank so that the aggregate of the first kind may not come out from the water surface, namely, so that it may become submergence aggregate.


[0301] When throwing the aggregate and the water into the measurement tank, it is arbitrary which should be thrown previously, but if the water is thrown in previously and the aggregate is thrown in later, especially in the case of fine aggregate, air bubble mixing to the submergence aggregate can be suppressed considerably.


[0302] Next, total mass Mf1 of the submergence aggregate is measured. In order to measure the total mass Mf1 of the submergence aggregate, the mass of only the measurement tank is subtracted from the mass of the measurement tank filled with the submergence aggregate.


[0303] Next, the density ρa1 of the aggregate of the first kind and the density ρw of water are read from the means for storing data. Subsequently, the mass Ma1 of the aggregate of the first kind in the saturated surface-dried condition is calculated by means for calculating by substituting these read values for formulas (32) with the total mass Mf1 of the submergence aggregate, and the total volume Vf1 of the submergence aggregate. Next, the calculated result is stored in the means for storing data.


[0304] Vf1 is determined from the first water level set up beforehand.


[0305] The first water level can be beforehand set up by making the water in the submergence aggregate overflow from the measurement tank in a predetermined depth location in the measurement tank, or by carrying out suction drainage of the water in the submergence aggregate in the predetermined depth location.


[0306] Next, like the aggregate of the first kind, aggregate of the second kind is thrown into the measurement tank so that it may become submergence aggregate which does not come out from the water surface, and subsequently the total mass Mf2 of the submergence aggregate is measured.


[0307] Next, the density ρa1 in the saturated surface-dried condition of the aggregate of the first kind, the density ρa2 of the aggregate of the second kind, and the density ρw of water are read from the means for storing data. Subsequently, the mass Ma2 of the aggregate of the second kind in the saturated surface-dried condition is calculated by the means for calculating by substituting these read values for formula (33) with the total mass Mf2 of the submergence aggregate, and the total volume Vf2 of the submergence aggregate. Next, the calculated result is stored in the means for storing data.


[0308] Vf2 is determined from the second water level set up beforehand.


[0309] Hereafter, the above-mentioned procedure is repeated, aggregate measurement is calculated one by one to the mass Ma(N−1) in the saturated surface-dried condition of the aggregate of (N−1) th kind by the means for calculating, and the calculated result is stored in the means for storing data. Finally, the aggregate of the Nth kind is thrown into the measurement tank so that it may become submergence aggregate in which the aggregate of the Nth kind does not appear from the water surface.


[0310] Next, similarly mentioned above, the total mass MfN of the submergence aggregate is measured.


[0311] Next, the density ρai (i=1 to N) in the saturated surface-dried condition of the aggregate of the i-th kind (i=1 to N), and the density ρw of water are read from the means for storing data. Subsequently, the mass MaN of the aggregate of the Nth kind in the saturated surface-dried condition and the mass Mw of water are calculated by the means for calculating by substituting these read values for formulas (34) and (35) with the total mass MfN of the submergence aggregate and the total volume VfN of the submergence aggregate.


[0312] VfN is determined from the Nth water level set up beforehand.


[0313] The total mass Mfi (i=1 to N) of the submergence aggregate is measured in real time or at predetermined time intervals while supplying the aggregate of the i-th kind (i=1 to N) continuously or intermittently at a predetermined rate, when throwing cumulatively the aggregate into the measurement tank, respectively. While draining redundant water from the measurement tank so that the water level of the submergence aggregate may not exceed the j-th water level during the j-th aggregate throwing, the j-th aggregate throwing is ended when the total mass Mfj of the submergence aggregate reaches the target mass Mdj of the submergence aggregate.


[0314] On the other hand, when the water level of the submergence aggregate at that time has not reached the j-th water level set up beforehand, it is supplemented with water so that it may reach this j-th water level. And re-measurement of mass Mfj, recalculation of mass Maj, and recalculation of mass Mw are performed.


[0315] If aggregate which should be cumulatively supplied further exists (i.e., If a plurality of aggregates should be supplied cumulatively and the j-th aggregate is not the last aggregate), the (j+1)-th aggregate is similarly supplied continuously as mentioned above.


[0316] Thus, after measuring the i-th (i=1 to N) aggregate and water, other concrete materials, such as cement and a chemical admixture, are measured, and with these concrete materials, the i-th (i=1 to N) aggregate and water are fed into a kneading mixer, and are kneaded. Here, when the total mass Mfj of the submergence aggregate reaches the target mass Mdj of the submergence aggregate in draining redundant water so that the water level of the submergence aggregate may not exceed the j-th water level set up beforehand, the mass Maj of the j-th aggregate in the saturated surface-dried condition becomes equal to the value set up first. Therefore, it is not necessary to correct the field mix.


[0317] On the other hand, when the water level of the submergence aggregate has not reached the j-th water level set up beforehand, it is supplemented with water so that it may reach this j-th water level. Therefore, the calculated value of the mass Maj of the j-th aggregate in the saturated surface-dried condition differs from the value set up first. In this case, the value measured and calculated is compared with the value of the field mix set up first according to the specified mix, and the field mix is then corrected if needed. That is, the measured aggregate mass and the aggregate mass of the field mix set up first are compared, and ratio obtained by the comparison is stored in the means for storing data. Next, the ratio is read from the means for storing data at any time, and the mixing volume of one batch is corrected according to the ratio. In addition, according to this ratio, it is supplemented with water of the insufficiency as secondary water, or excess water is drained. Similarly, also about the amount of other concrete materials, such as cement and a chemical admixture, the original field mix is corrected according to the ratio mentioned above, other concrete materials are measured according to the correction, and these are thrown into the kneading mixer and kneaded.


[0318] Thus, the surface water of aggregate is indirectly computed as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of aggregate is computed as the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition. That is, since the mass of the aggregate and the water will be computed on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make the concrete by the amount of water as the specified mix.


[0319] Furthermore, when the total mass Mfj of the submergence aggregate reaches the target mass Mdj of the submergence aggregate, the j-th aggregate throwing is ended, and when the water level of the submergence aggregate at that time has not reached the j-th water level set up beforehand, it is supplemented with water so that it may reach this j-th water level. And re-measurement of mass Mfj, recalculation of mass Maj and recalculation of mass Mw are performed. Therefore, the total volume Vfi (i=1 to N) of the submergence aggregate serves as a known value, and it becomes unnecessary to measure it, and it can manage correctly the input of the i-th (i=1 to N) aggregate. And it becomes possible as the result to make the concrete as the specified mix.


[0320] In addition, a plurality of aggregates whose kinds, such as density and grading, are different can be measured in high effectiveness and accuracy within one measurement tank in the procedure mentioned above.


[0321] The percentage of surface moisture of the i-th (i 1 to N) aggregate can be calculated in the following procedure. That is, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are first measured as accumulation values, and the measured data are stored in the means for storing data. Next, the amount of supplied water MI, the amount of discharged water MO, and the total mass Mfi (i=1 to N) are read from the means for storing data, these data are substituted for the following formula, and ΣMawj (j=1, 2, 3, . . . i) is calculated by the means for calculating.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


[0322] Next, the measured data are stored in the means for storing data. Next, Mawi is calculated from the following formula by the means for calculating.


ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0323] Next, Mawi is substituted for the following formula and a percentage of surface moisture is calculated by the means for calculating.


(Mawi−Mai)/Mai  (13)


[0324] Here, the accumulation value of the amount of supplied water MI to the measurement tank does not necessarily increase, but can be the amount of water thrown first, in other words, the accumulation value can be fixed without change. Similarly, water is not necessarily drained by the amount of discharged water MO from the measurement tank, but the accumulation value can remain zero.


[0325] When taking into consideration the air content in submergence aggregate (a (%)), still higher-precision measurement can be performed with the actual total volume except the air content by replacing Vfi (i=1, 2, 3, . . . N) with Vfi (i=1, 2, 3, . . . N)∘(1−a/100).


[0326] The computer-readable recording medium of the present invention can be of any type such as FD, CD-ROM, CD-R, or MD naturally.


[0327] (Discharge Mechanism of a Measurement Container)


[0328] In a discharge mechanism of a measurement container of the present invention, after completing the measurement of submergence aggregate, a fall discharge of the submergence aggregate is carried out by opening a bottom lid. Thereafter, the top face of the bottom lid is sprayed with a gas flow by means of a gas spraying mechanism provided near the bottom lid with the bottom lid opened.


[0329] With this, the aggregate adhering to the top face of the bottom lid at the time of discharge of the submergence aggregate will be blown away by the gas flow. Therefore, even if the bottom lid is closed for preparation for the subsequent measurement, the aggregate is not caught between the body of the measurement container and the bottom lid.


[0330] Therefore, the mechanism prevents an occurrence of an error in the measurement which may be caused by a leakage of water from the clearance by the aggregate being caught. Furthermore, it does not damage the seal member provided in the body of the measurement container or the bottom lid.


[0331] In the discharge mechanism of the measurement container concerning the present invention, after completing the measurement of the submergence aggregate, the fall discharge of the submergence aggregate is carried out by opening the bottom lid. The bottom lid is not rotated around a horizontal axis as has been conventional, but the bottom lid is moved in the translation direction or rotated in the predetermined level surface.


[0332] Thus, in the prior art, if the bottom lid is opened, it will hang down. Therefore, the opening-and-closing space of the bottom lid must be secured in the height direction in the prior art. However, it is not necessary to secure the opening-and-closing space of the bottom lid in the height direction in the present invention, but it only needs to secure the space only in the level surface.


[0333] Therefore, a bottom opening of the body of the measurement container can be lowered by the indispensable opening-and-closing height in the prior art, and certain throwing into a kneading mixer is possible.


[0334] An arbitrary constitution may be used for moving the bottom lid in the translation or rotating direction in the level surface. For example, there can be a constitution having a pair of guide rails parallel to each other attached at a bottom end of the body of the measurement container so as to translate the bottom lid along the guide rails. Otherwise, there can be a constitution having a rotational axis installed in a protrusion extending from the rim of the bottom lid, with the rotational axis attached rotatably by inserting the axis into the hollow of a hinge member on the circumferential surface of the body of the measurement container, so that the bottom lid can rotate.


[0335] In the discharge mechanism of the measurement container of the present invention, after completing the measurement of the submergence aggregate, the fall discharge of the submergence aggregate is carried out by opening the bottom lid. Thereafter, the top face of the bottom lid is sprayed with a gas flow by means of the gas spraying mechanism provided near the bottom lid with the bottom lid opened.


[0336] With this, the aggregate adhering to the top face of the bottom lid at the time of discharging the submergence aggregate will be blown away by the gas flow. Therefore, even if the bottom lid is closed for a preparation for the subsequent measurement, the aggregate is not caught between the body of the measurement container and the bottom lid.


[0337] Therefore, the mechanism prevents an occurrence of an error in the measurement which may be caused by a leakage of water from the clearance by the aggregate being caught. Furthermore, it does not damage the seal member provided in the body of the measurement container or the bottom lid.


[0338] In the discharge mechanism of the measurement container of the present invention, it is arbitrary how the gas spraying mechanism should be configured and where it should be installed. For example, the gas spraying mechanism can be an air spray nozzle connected in communication with an air compressor.


[0339] Furthermore, in the discharge mechanism of the measurement container of the present invention, after completing the measurement of the submergence aggregate, the fall discharge of the submergence aggregate is carried out by opening the bottom lid. The bottom lid is not rotated around a horizontal axis as has been conventional, but it is moved in the translation direction or rotated in the predetermined level surface.


[0340] Thus, in the prior art, if the bottom lid is opened, it will hang down. Therefore, the opening-and-closing space of the bottom lid must be secured in the height direction in the prior art. However, it is not necessary to secure the opening-and-closing space of the bottom lid in the height direction in the present invention, but it only needs to secure the space only in the level surface.


[0341] Therefore, the bottom opening of the body of the measurement container can be lowered by the indispensable opening-and-closing height in the prior art, and certain throwing into a kneading mixer is possible.


[0342] The constitution is arbitrarily chosen to move the bottom lid between mechanisms for the translation and the rotation in the level surface. For example, there can be a constitution having a pair of guide rails parallel to each other attached at a bottom end of the body of the measurement container so as to translate the bottom lid along the guide rails. Otherwise, there can be a constitution having a rotational axis installed in a protrusion extending from the rim of the bottom lid, with the rotational axis attached rotatably by inserting the axis into the hollow of a hinge member on the circumferential surface of the body of the measurement container, so that the bottom lid can rotate.


[0343] In the measuring apparatus of the present invention, a plurality of measurement containers have volumes different from each other at a normal water level where they have the same depths. In the measurement, measurement containers are selected out of the plurality of measurement containers mentioned above according to each mass of aggregate required for kneading the concrete materials. Furthermore, the water levels are measured and monitored by the means for measuring a water level, while driving and controlling the means for regulating a water level so as to maintain the water levels of the submergence aggregates in the measurement containers at the normal water level.


[0344] With this, the measured water levels match the normal water level where they have the same depth even if any measurement containers are used for the measurement. Therefore, an accuracy of the water level measurement thus an accuracy of the conversion to the total volume of the submergence aggregate is uniform throughout all the measurement containers.


[0345] Accordingly, even if a required mass of aggregate differs, it is possible to uniform the accuracy of the total volume thus the accuracy of the aggregate measurement.


[0346] The means for regulating the water level can be a suction unit for sucking and removing water, for example. If the water level of the submergence aggregate in the measurement container exceeds the normal water level, the suction unit should be driven to control the water level with a measured value from the means for measuring the water level as a controlled variable.


[0347] The mass of aggregate required for kneading the concrete materials depends upon the specified mix proportion of the concrete materials or upon a given amount determined by a specification of a kneading mixer. It also depends upon whether the mixing volume should be the given amount or an amount smaller than the given amount. Furthermore, naturally each mass of aggregate differs with each proportion when a plurality of aggregates are mixed to obtain the desired grading, for example.


[0348] The above is considered by giving a concrete example. It is assumed that there are the following cases: aggregates are kneaded with a given amount of the kneading mixer as one batch, with two-thirds of the given amount as one batch, and with one-half of the given amount as one batch. In these circumstances, the measurement is conducted by using three measurement containers whose volumes are the given amount, the given amount multiplied by two-thirds, and the given amount multiplied by one-half, respectively, at the normal water level where they have the same depth.


[0349] (Measuring Apparatus Using a Plurality of Measurement Containers)


[0350] A measuring apparatus of concrete materials of the present invention comprises means for maintaining water levels of submergence aggregates in a plurality of measurement containers at a normal water level at which they have the same depth. In measurement, measurement containers are selected out of the plurality of measurement containers according to each mass of aggregate required for kneading the concrete materials. Furthermore, the water levels of the submergence aggregates are kept at the normal water level by the means for maintaining water levels mentioned above.


[0351] With this, the water levels of the submergence aggregates always match the normal water level where they have the same depth even if any measurement containers are used for the measurement. Therefore, an accuracy of the water level measurement thus an accuracy of the conversion to the total volume of the submergence aggregate is uniform throughout all the measurement containers.


[0352] Accordingly, even if a required mass of aggregate differs, it is possible to uniform the accuracy of the total volume thus the accuracy of the aggregate measurement.


[0353] The mass of aggregate required for kneading the concrete materials depends upon the specified mix proportion of the concrete materials or upon a given amount determined by a specification of a kneading mixer. It also depends upon whether the mixing volume should be the given amount or an amount smaller than the given amount. Furthermore, naturally each mass of aggregate differs with each proportion when a plurality of aggregates are mixed to obtain the desired grading, for example.


[0354] The above is considered by giving a concrete example. It is assumed that there are the following cases: aggregates are kneaded with a given amount of the kneading mixer as one batch, with two-thirds of the given amount as one batch, and with one-half of the given amount as one batch. In these circumstances, the measurement is conducted by using three measurement containers whose volumes are the given amount, the given amount multiplied by two-thirds, and the given amount multiplied by one-half, respectively, at the normal water level where they have the same depth.


[0355] Furthermore, the measuring apparatus of concrete materials of the present invention comprises the means for maintaining water levels, which maintains the water levels of the submergence aggregates in the plurality of measurement containers at the normal water level where they have the same depth. In the measurement, measurement containers are selected out of the plurality of measurement containers according to each mass of aggregate required for kneading the concrete materials. Furthermore, the water levels of the submergence aggregates are kept at the normal water level by the means for maintaining water levels mentioned above.


[0356] With this, the water levels of the submergence aggregates always match the normal water level where they have the same depth even if any measurement containers are used for the measurement. Therefore, an accuracy of the water level measurement thus an accuracy of the conversion to the total volume of the submergence aggregate is uniform throughout all the measurement containers.


[0357] Accordingly, even if a required mass of aggregate differs, it is possible to uniform the accuracy of the total volume thus the accuracy of the aggregate measurement.


[0358] In this specification, the term “means for measuring an amount of supplied or discharged water” does not mean means for measuring an amount of supplied water or an amount of discharged water individually, but it means one capable of measuring an amount of water obtained by subtracting an amount of discharged water from an amount of supplied water to the measurement container as an accumulation value. In the case where no water is supplied after throwing water into the measurement container first, for example, only the amount of discharged water need be measured.


[0359] The mass of aggregate required for kneading the concrete materials depends upon the specified mix proportion of the concrete materials or upon a given amount determined by the specification of the kneading mixer. It also depends upon whether the mixing volume should be the given amount or an amount smaller than the given amount. Furthermore, naturally each mass of aggregate differs with each proportion when a plurality of aggregates are mixed to obtain the desired grading, for example.


[0360] The above is considered by giving a concrete example. It is assumed that there are the following cases: aggregates are kneaded with a given amount of the kneading mixer as one batch, with two-thirds of the given amount as one batch, and with one-half of the given amount as one batch. In these circumstances, the measurement is conducted by using three measurement containers whose volumes are the given amount, the given amount multiplied by two-thirds, and the given amount multiplied by one-half, respectively, at the normal water level where they have the same depth.


[0361] As long as a fixed water level is maintained in the measurement containers, the constitution of the means for maintaining water levels is arbitrary. For example, the means can be a suction unit preventing the water level from increasing to exceed the normal water level or can be an opening for overflow formed on a wall of a measurement container so that water in the measurement container overflows into the outside of the measurement container when the water reaches the normal water level.







BRIEF DESCRIPTION OF THE DRAWINGS

[0362]
FIG. 1 is a general side view of a preferable measuring apparatus of concrete materials according to the present invention;


[0363]
FIG. 2 is another general side view of the preferable measuring apparatus of concrete materials according to the present invention;


[0364]
FIG. 3 is an expanded side view of the measuring apparatus in FIG. 2;


[0365]
FIG. 4 is an exploded perspective view showing an arrangement condition of a vibrating feeder 5, a screen device 23, and a measurement tank 6;


[0366]
FIG. 5 is an exploded perspective view showing an arrangement condition of an electrode-type displacement sensor 7 and the measurement tank 6;


[0367]
FIG. 6 is a diagram showing a condition where fine aggregate is thrown into the measurement tank 6 by using the preferable measuring apparatus of concrete materials according to the present invention, with a side view (a) and an arrow diagram (b) viewed along line A-A of (a);


[0368]
FIG. 7 is a side view showing a condition where a measurement is made on a water level of submergence fine aggregate thrown into the measurement tank 6 by using the preferable measuring apparatus of concrete materials according to the present invention;


[0369]
FIG. 8 is a general view of the preferable measuring apparatus of concrete materials according to the present invention;


[0370]
FIG. 9 is a cross section of the measurement tank taken along line B-B of FIG. 8;


[0371]
FIG. 10 is a flowchart showing a preferable measuring method of concrete materials according to the present invention;


[0372]
FIG. 11 is a diagram showing an action of the preferable measuring apparatus of concrete materials according to the present invention;


[0373]
FIG. 12 is a general view showing a measuring apparatus of concrete materials according to a modification of the invention;


[0374]
FIG. 13 is a cross section of a measurement tank taken along line C-C of FIG. 12;


[0375]
FIG. 14 is a general view showing a measuring apparatus of concrete materials according to another modification of the invention;


[0376]
FIG. 15 is a cross section of a measurement tank taken along line D-D of FIG. 14;


[0377]
FIG. 16 is a cross section of a measuring apparatus of concrete materials according to another modification of the invention;


[0378]
FIG. 17 is a general view of a measuring apparatus of concrete materials according to still another modification of the invention;


[0379]
FIG. 18 is a flowchart showing a measuring method of concrete materials according to another modification of the invention;


[0380]
FIG. 19 is a general view of a measuring apparatus of concrete materials according to another modification of the invention;


[0381]
FIG. 20 is a cross section of a measurement tank taken along line E-E of FIG. 19;


[0382]
FIG. 21 is a flowchart of a preferable measuring method of concrete materials according to the present invention;


[0383]
FIG. 22 is a diagram showing an action of a preferable measuring apparatus of concrete materials according to the present invention;


[0384]
FIG. 23 is a general view of a preferable measuring apparatus of concrete materials according to the present invention;


[0385]
FIG. 24 is a cross section of a submergence aggregate container taken along line F-F of FIG. 23;


[0386]
FIG. 25 is a flowchart of a preferable measuring method of concrete materials according to the present invention;


[0387]
FIG. 26 is a diagram showing an action of the preferable measuring apparatus of concrete materials according to the present invention;


[0388]
FIG. 27 is a general view of a measuring apparatus of concrete materials according to a modification of the invention;


[0389]
FIG. 28 is a cross section of the submergence aggregate container taken along line G-G of FIG. 27;


[0390]
FIG. 29 is a general view of a measuring apparatus of concrete materials according to another modification of the invention;


[0391]
FIG. 30 is a cross section of the submergence aggregate container taken along line H-H of FIG. 29;


[0392]
FIG. 31 is a cross section of a measuring apparatus of concrete materials according to another modification of the invention;


[0393]
FIG. 32 is a flowchart of a preferable measuring method of concrete materials according to the present invention;


[0394]
FIG. 33 is a flowchart of another preferable measuring method of concrete materials according to the present invention;


[0395]
FIGS. 34 and 35 are a series of flowcharts of still another preferable measuring method of concrete materials according to the present invention;


[0396]
FIGS. 36 and 37 are a series of flowcharts of still another preferable measuring method of concrete materials according to the present invention;


[0397]
FIG. 38 is a flowchart of a preferable measuring method of concrete materials according to the present invention;


[0398]
FIG. 39 is a flowchart of a preferable measuring method of concrete materials according to a modification of the invention;


[0399]
FIG. 40 is a flowchart of a preferable measuring method of concrete materials according to another modification of the invention;


[0400]
FIG. 41 is a flowchart of another preferable measuring method of concrete materials according to the present invention;


[0401]
FIG. 42 is a flowchart of still another preferable measuring method of concrete materials according to the present invention;


[0402]
FIG. 43 is a flowchart of a preferable measuring method of concrete materials according to a modification of the invention;


[0403]
FIGS. 44 and 45 are a series of flowcharts of a preferable measuring method of concrete materials according to the present invention;


[0404]
FIGS. 46 and 47 are a series of flowcharts of a preferable measuring method of concrete materials according to a modification of the present invention;


[0405]
FIG. 48 is a flowchart of a preferable measuring method of concrete materials according to the present invention;


[0406]
FIG. 49 is a flowchart of a preferable measuring method of concrete materials according to a modification of the invention;


[0407]
FIGS. 50 and 51 are a series of flowcharts of a preferable measuring method of concrete materials according to the present invention;


[0408]
FIGS. 52 and 53 are a series of flowcharts of another preferable measuring method of concrete materials according to the present invention;


[0409]
FIGS. 54 and 55 are a series of flowcharts of a processing procedure of a program for enabling concrete materials to be measured and calculated according to the present invention;


[0410]
FIG. 56 is a block diagram showing a hardware configuration for executing the program mentioned above;


[0411]
FIGS. 57 and 58 are a series of flowcharts of a processing procedure of another program for enabling concrete materials to be measured and calculated according to the present invention;


[0412]
FIG. 59 is a general view of a discharge mechanism of a preferable measurement container according to the present invention and a measuring apparatus to which it is applied;


[0413]
FIG. 60 is a vertical sectional view taken along line I-I of FIG. 59;


[0414]
FIG. 61 is a diagram showing an action of the discharge mechanism of the preferable measurement container according to the present invention;


[0415]
FIG. 62 is a diagram showing a condition where submergence aggregate is measured by using the measuring apparatus 401;


[0416]
FIG. 63 is a diagram of a discharge mechanism of another preferable measurement container according to the present invention, with a side view (a) and a horizontal sectional view (b) taken along line J-J of (a);


[0417]
FIG. 64 is a general view of a discharge mechanism of still another preferable measurement container according to the present invention;


[0418]
FIG. 65 is a diagram showing an action of the discharge mechanism of the measurement container shown in FIG. 64;


[0419]
FIG. 66 is a general view of a preferable measuring apparatus of concrete materials according to the present invention;


[0420]
FIG. 67 is a side view of measurement containers;


[0421]
FIG. 68 is a cross section taken along line K-K of FIG. 66;


[0422]
FIG. 69 is a diagram showing an action of the measuring apparatus of concrete materials;


[0423]
FIG. 70 is a general view of a preferable measuring apparatus of concrete materials according to the present invention;


[0424]
FIG. 71 is a side view of measurement containers;


[0425]
FIG. 72 is a cross section taken along line L-L of FIG. 70;


[0426]
FIG. 73 is a diagram showing an action of the measuring apparatus of concrete materials;


[0427]
FIG. 74 is a general view of a preferable measuring apparatus of concrete materials according to the present invention;


[0428]
FIG. 75 is a side view of measurement containers;


[0429]
FIG. 76 is a cross section taken along line M-M of FIG. 74; and


[0430]
FIG. 77 is a diagram showing an action of the measuring apparatus of concrete materials.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0431] Preferred embodiments of a measuring apparatus and a measuring method of concrete materials according to the present invention will now be described in detail hereinafter with reference to the accompanying drawings.


[0432] [First Embodiment]


[0433] Referring to FIGS. 1 and 2, there are shown general side views of a measuring apparatus of concrete materials according to a first embodiment, viewed from two sides at right angles to each other. Referring to FIG. 3, there is shown an expanded side view of FIG. 2. As shown in these diagrams, a measuring apparatus 1 of concrete materials according to this embodiment generally comprises a stock bin 2 for storing fine aggregate, a fine aggregate feed hopper 3 placed under the stock bin 2, a vibrating feeder 5 placed under a discharge opening 4 of the fine aggregate feed hopper 3, a screen device 23 placed in the vicinity of an exit of the vibrating feeder 5, a measurement tank 6 placed under the screen device 23, an electrode-type displacement sensor 7 as means for measuring a water level placed above the measurement tank 6, and load cells 8 as mass measuring means for measuring a mass of submergence fine aggregate contained in the measurement tank 6.


[0434] The measurement tank 6 is formed substantially in a shape of a cylinder having a height H as apparent from FIG. 3 so that it can contain submergence fine aggregate made of fine aggregate and water. Furthermore, it is formed in a shape in which the bore becomes larger as it goes below, in other words, in a shape of a hollow truncated cone so that the submergence fine aggregate can be easily taken out after the measurement.


[0435] At the lower end of the measurement tank 6, there is provided an opening-and-closing mechanism 15 comprising an opening-and-closing lid 12 attached to an opening at the lower end of the measurement tank 6 so as to be free to rotate around a pin 11 and a driving motor 13 connected to the opening-and-closing lid via an accouplement 14. By driving to operate the driving motor, the opening-and-closing lid 12 can be kept closed during the measurement and the inside submergence fine aggregate can be dropped to a mixer 9 by opening the opening-and-closing lid 12 on completion of the measurement.


[0436] Referring to FIG. 4, there is shown an exploded perspective view illustrating an arrangement condition of the vibrating feeder 5, the screen device 23, and the measurement tank 6. As apparent from FIG. 4, the load cell 8 is arranged in four places between a load bearing bracket 17 attached to the measurement tank 6 at a middle height and an upper surface of a stand 16.


[0437] The vibrating feeder 5 comprises a U-shaped conveyor 21 for conveying fine aggregate discharged from the discharge opening 4 of the fine aggregate feed hopper 3 and an electromagnetic vibrator 22 for vibrating the conveyor. By operating the electromagnetic vibrator 22, fine aggregate can be conveyed in a direction indicated by an arrow in FIG. 4 without granulation of the fine aggregate on the conveyor 21.


[0438] The screen device 23 is located near the exit of the vibrating feeder 5 and in an upper portion of the measurement tank 6. It comprises a rectangular vibrating plate 24 elastically supported by a stand not shown via four coil springs 25, a motor 26 for vibrating the vibrating plate, a funnel form guide chute 28 engaged in a circular opening 27 provided in the center of the vibrating plate 24, and a screen 29 attached to the guide chute 28, by which fine particles of aggregate can be thrown into the measurement tank 6 by vibrating the conveyed fine aggregate with the vibrating feeder 5 on the screen 29.


[0439] Referring to FIG. 5, there is shown an exploded perspective view illustrating an arrangement condition of the electrode-type displacement sensor 7 and the measurement tank 6. As apparent from FIG. 5, the electrode-type displacement sensor 7 comprises a guide 31 attached to a stand not shown, an elevator 32 free to move up and down along the guide 31, a detection electrode 33 provided in a hanging condition at a lower end of the elevator 32, and a power supply 34 for energizing the detection electrode 33, so that a water level of submergence fine aggregate can be measured by monitoring a change in the energized condition when the lower end of the detection electrode 33 contacts the water surface of the submergence fine aggregate in the measurement tank 6. At this point, one electrode terminal of the power supply 34 is electrically connected to the detection electrode 33, while the other electrode terminal may be electrically connected to the measurement tank 6 made of steel, for example, as shown in FIG. 5.


[0440] To measure the submergence fine aggregate in the measuring apparatus of concrete materials according to this embodiment, water is previously thrown into the measurement tank 6, first.


[0441] Subsequently, as shown in FIG. 6, fine aggregate in arbitrary wet condition is first discharged from a discharge opening 4 of the aggregate feed hopper 3 and it is conveyed with preventing granulation by using the vibrating feeder 5. The fine aggregate conveyed by the vibrating feeder 5 is then thrown into the guide chute 28, so that it is put on the screen 29. The motor 26 is driven in this condition to vibrate the screen 29, by which only the fine aggregate having a given particle diameter is dropped from the screen to be thrown into the measurement tank 6 to make submergence fine aggregate.


[0442] Subsequently, while measuring total mass Mf of the submergence fine aggregate, which consists of the fine aggregate and the water, held in the measurement tank 6 in this condition by using the load cell 8, its total volume Vf is measured by using the electrode-type displacement sensor 7 as shown in FIG. 7. Before measuring a water level with the electrode-type displacement sensor 7, the screen device 23 is detached, if necessary, to prevent it from affecting the measurement. For example, after throwing the fine aggregate into the measurement tank 6, the guide chute 28 to which the screen is attached may be removed from the circular opening 27 and put into the condition shown in FIG. 5.


[0443] The total mass Mf is obtained just by measuring the mass of only the measurement tank before the measurement of the submergence fine aggregate and then subtracting the mass from a measured value in the condition where the submergence fine aggregate is held in the measurement tank.


[0444] To measure the total volume Vf, a relation between a water level and a capacity is measured before the measurement of the submergence fine aggregate at 1-mm intervals, for example, first. It is then stored in a storage device of a computer, for example, and the capacity corresponding to the measured water level is read from the storage device.


[0445] At this point, to measure the water level of the submergence fine aggregate in the measurement tank 6 with the electrode-type displacement sensor 7, the elevator 32 is moved down along the guide 31 as shown in FIG. 7 so that the stopping deviation of 1 mm, for example, is secured while monitoring the energization condition between the detection electrode 33 and the measurement tank 6. Thereafter, the moment a tip of the detection electrode 33 touches a surface 42 of the submergence fine aggregate 41, energization is confirmed. Therefore, the moving-down operation of the guide 31 is controlled as to stoppage with the energization condition as a controlled variable to measure the water level of the submergence fine aggregate 41.


[0446] Subsequently, mass Mw of water and mass Ma of the fine aggregate in a saturated surface-dried condition are calculated by substituting the total mass Mf and the total volume Vf for the following two formulas.




M


a


+M


w


=M


f
  (1)





M


a
a+Mww=Vf  (2)



[0447] where ρa is the density of the fine aggregate in the saturated surface-dried condition and ρw is the density of water.


[0448] After measuring and calculating the mass Mw of water and the mass Ma of the fine aggregate in the saturated surface-dried condition in this manner, they are compared with a mix proportion shown by a specified mix. Subsequently, an insufficiency, which should be filled up, is measured and then the submergence fine aggregate is supplemented with additional water or aggregate when needed so as to let the fine aggregate and the water be concrete material.


[0449] At this point, if the supplement of fine aggregate is needed, the surface water of the fine aggregate is not strictly taken into consideration. The amount of supplement, however, is limited to small one by measuring an amount of fine aggregate and water whose ratio matches the ratio of the specified mix or is close to it. Since the surface water adhering to the supplement fine aggregate is a slight amount of the grade that can be disregarded compared with the required amount of water, there is no problem on the quality of concrete.


[0450] When putting fine aggregate and water into the measurement tank 6, it is preferable to supply them to the measurement tank 6, carrying out water binding of the fine aggregate so that a top of the fine aggregate maybe mostly in agreement with the water level. Thereby, the ratio of the fine aggregate to the water in the measurement tank 6 becomes close to the specified mix, thereby reducing the amount of supplement of fine aggregate dramatically.


[0451] As described above, according to the measuring apparatus 1 of concrete materials of this embodiment, surface water of fine aggregate is indirectly calculated as a pat of the mass Mw of water, even if the fine aggregate whose moisture state is not uniform is used, taking into consideration the variation, and the mass of fine aggregate is calculated as mass Ma in the saturated surface-dried condition. More specifically, since the mass of fine aggregate and water will be calculated on the same conditions as the specified mix, even if fine aggregate whose moisture state is not uniform is used, concrete can be made with the amount of water as in the specified mix without measuring a percentage of surface moisture of the fine aggregate.


[0452] Furthermore, according to the measuring apparatus 1 of concrete materials of this embodiment, the vibrating feeder 5 and the screen device 23 are provided, by which fine aggregate can be conveyed without granulation and the conveyed fine aggregate can be thrown into the measurement tank 6 in fine particles. Therefore, it becomes possible to suppress nearly thoroughly mixing of air bubbles into the submergence fine aggregate and to disregard an influence of air bubbles practically.


[0453] While the detection electrode 33 is electrically connected to one electrode terminal of the power supply 34, which is a component of the electrode-type displacement sensor 7, and the steel measurement tank 6 is electrically connected to the other electrode terminal in this embodiment, a reference electrode longer than the detection electrode 33 can be arranged almost in parallel to the detection electrode instead.


[0454] In this constitution, when moving down the elevator 32, a tip of the reference electrode penetrates to the submergence fine aggregate 41, first. At this point, however, the electrode is not energized yet. Only after the tip of the detection electrode contacts the water surface of the submergence fine aggregate 41, the electrode is energized.


[0455] If a stopping accuracy cannot be secured enough without decreasing the descending speed of the elevator 32, by which it takes long time in the measurement, it is also possible to further provide a speed-control electrode longer than the detection electrode 33 and shorter than the reference electrode.


[0456] In this constitution, the energization between the speed-control electrode and the reference electrode is monitored. When the speed-control electrode contacts the water surface of the submergence fine aggregate 41, the energization between them is achieved. Therefore, the descending speed of the elevator 32 can be controlled with it.


[0457] According to the constitution, the descending speed of the elevator 32 can be previously decreased when the detection electrode 33 approaches the water surface of the submergence fine aggregate 41 to some extent. Therefore, the elevator 32 can be stopped with enough accuracy.


[0458] Furthermore, the air content measurement can be omitted by preventing air bubbles from being mixed into the submergence fine aggregate in this embodiment. If the air content is measured separately, however, the vibrating feeder 5 and the screen device 23 can be omitted.


[0459] In this case, to measure the submergence fine aggregate, fine aggregate in arbitrary wet condition is first discharged from the discharge opening 4 of the fine aggregate feed hopper 3. It is then put into a measurement tank 6 with water to let them be submergence fine aggregate. The fine aggregate is thoroughly submerged in the water within the measurement tank as submergence aggregate.


[0460] Subsequently, the total mass Mf and the total Vf of the submergence fine aggregate, in other words, the fine aggregate and the water held in the measurement tank 6 in this condition are measured with the load cell 8 and the electrode-type displacement sensor 7, respectively, in the same manner as in the above embodiment.


[0461] Then, the mass Mw of water and the mass Ma of the fine aggregate in a saturated surface-dried condition are calculated by substituting the total mass Mf and the total volume Vf for the following two formulas.




M


a


+M


w


=M


f
  (1)





M


a
a+Mww=Vf∘(1−1/100)  (2-a)



[0462] where ρa is the density of the fine aggregate in the saturated surface-dried condition, ρw is the density of water, and “a” is an air content (%) included in the total volume Vf.


[0463] After measuring and calculating the mass Mw of water and the mass Ma of the fine aggregate in the saturated surface-dried condition in this manner, they are compared with a mix proportion shown by a specified mix. Subsequently, an insufficiency, which should be filled up, is measured and then the submergence fine aggregate is supplemented with additional water or aggregate when needed so as to let the fine aggregate and the water be concrete material.


[0464] [Second Embodiment]


[0465] Referring to FIG. 8, there is shown a general view illustrating a measuring apparatus of concrete materials according to a second embodiment. As shown in FIG. 8, the measuring apparatus 101 of concrete materials according to this embodiment comprises a water storage hopper 102 for storing water, a fine aggregate storage hopper 103 for storing fine aggregate used as aggregate, a measurement tank 104 for containing water and fine aggregate supplied from the water storage hopper 102 and the fine aggregate storage hopper 103 as submergence aggregate, and load cells 108 as submergence aggregate mass measuring means for measuring a mass of the submergence aggregate in the measurement tank 104. The water storage hopper 102 forms means for supplying water in conjunction with a water feed pipe 105 connected to the water storage hopper 102 at a bottom thereof and whose discharge opening is located above the measurement tank 104 and a closing valve 106 arranged in a predetermined position of the water feed pipe 105. The fine aggregate storage hopper 103 forms aggregate supply means in conjunction with a fine aggregate feed pipe 107 whose discharge opening is located above the measurement tank 104.


[0466] In this arrangement, the water storage hopper 102, the fine aggregate storage hopper 103, and the load cells 108 are mounted on a stand, which is not shown, and a collar circular ring 116 of the measurement tank 104 is put on the load cells to hold the measurement tank 104 in a suspended condition. Thereby, the mass of the measurement tank can be measured with the load cells 108. The load cells 108 are preferably placed, for example, in three places at 120° intervals on the same horizontal surface so that the measurement tank 104 can be held stably in a suspended condition during measurement.


[0467] Referring to FIG. 9, there is shown a longitudinal sectional view of the measurement tank 104. As apparent from FIGS. 8 and 9, it is possible to attach a bottom lid 109 capable of maintaining watertightness inside the measurement tank at a bottom opening 115 of the measurement tank 104 in such a way that the bottom lid 109 is free to open or close. In other words, the bottom lid 109 is made of a circular plate having an outside diameter substantially equivalent to or slightly larger than an outside diameter of the bottom opening of the measurement tank 104. Furthermore, a long hole 114 is formed at a tip of an L-shaped mounting arm 113 provided as an extension from a rim of the circular plate and a pin 110 fixed to a stand not shown is passed through the long hole 114, by which it becomes possible to rotate the bottom lid 109 around the pin 110 so as to open or close the bottom opening 115 of the measurement tank 104. Furthermore, in the condition where the bottom lid 109 is closed, the long hole 114 is oriented vertically, thereby preventing a reaction force from being generated at the pin 110 by a load of the measurement tank 104. In fixing the bottom lid 109 to the bottom opening 115 of the measurement tank 104, an appropriate method can be selected out of known methods such as fastening with a bolt or a clamp.


[0468] The measurement tank 104 is formed in a shape of a hollow truncated cone so that a bore of the measurement tank 104 gets larger as it goes below. Therefore, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank 104 can be achieved only by opening the bottom lid 109 without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer, which is not shown, together with cement and coarse aggregate measured separately.


[0469] As apparent from the sectional view in FIG. 9, a rectangular opening for overflow 111 is formed on a wall 112 of the measurement tank 104 at a predetermined height of the measurement tank 104 so that water of the submergence aggregate in the measurement tank 104 overflows outside. In addition, a grooved guide 117 is provided in a horizontally protruding condition along a lower edge of the opening for overflow 111. Overflow water flows on the guide and runs down from the tip thereof, thereby enabling water to overflow smoothly from the opening for overflow 111 without a flow on a circumferential surface of the measurement tank 104.


[0470] A volume of the measurement tank 104 is arbitrary. The volume of the measurement tank may be made in agreement with the total amount required for the unit of concrete mixing, i.e., one batch. Otherwise, it can be divided into some amounts in the measurement tank.


[0471] A flowchart in FIG. 10 shows a measurement procedure for measuring water and fine aggregate by using the measuring apparatus 101 of concrete materials according to this embodiment. As shown in FIG. 10, the bottom opening 115 of the measurement tank 104 is closed by the bottom lid 109 to put the inside of the measurement tank in the watertightness condition, first. The closing valve 106 is opened in the above condition. Water is then thrown from the water storage hopper 102 to the measurement tank 104 and the fine aggregate stored in the fine aggregate storage hopper 103 is thrown into the measurement tank 104 so that it is put in the submergence condition to fill the measurement tank 104 with submergence aggregate 121 as shown in FIG. 11 (step 1101).


[0472] When throwing the aggregate and the water into the measurement tank 104, preferably the water is thrown earlier and the fine aggregate is thrown later to prevent the submergence aggregate from being mixed with air bubbles 121. In addition, if the fine aggregate is not directly thrown from the fine aggregate storage hopper 103 to the measurement tank 104, but the fine aggregate is conveyed from a portion beneath the fine aggregate storage hopper 103 to an upper opening of the measurement tank 104 by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[0473] When throwing water and the fine aggregate into the measurement tank 104 to fill it with the submergence aggregate 121, care should be taken so that the fine aggregate is submerged in water and the water overflows the opening for overflow 111.


[0474] With this, a water level at which the water 122 overflows the opening for overflow 111 is predetermined. Therefore, if the measurement tank 104 is filled with the submergence aggregate 121 as mentioned above, the total volume Vf of the submergence aggregate 121 equal to a known value is obtained without measurement.


[0475] Subsequently, the total mass Mf of the submergence aggregate 121 is measured with the load cells 108 (step 1102). The total mass Mf of the submergence aggregate 121 can be obtained by subtracting a mass of an empty measurement tank 104 containing no submergence aggregate 121 from a value measured by the load cells 108.


[0476] Subsequently, mass Ma of the fine aggregate in the saturated surface-dried condition and mass Mw of the water are calculated by solving the following two formulas from the measured total mass Mf of the submergence aggregate 121 (step 1103).




M


a


+M


w


=M


f
  (1)





M


a
a+Mw/ρw=Vf  (2)



[0477] where ρa is the density of the fine aggregate in the saturated surface-dried condition and ρw is the density of the water.


[0478] After measuring and calculating the mass Mw of the water and the mass Ma of the fine aggregate in the saturated surface-dried condition as mentioned above, these values are compared with mix proportions shown by the specified mix, respectively. Thereafter, the insufficiency is measured and then the submergence aggregate 121 is supplemented with additional water or aggregate when needed so as to let the aggregate and the water be concrete materials (step 1104). If there is too much water, the excess water is sucked with a vacuum or the like.


[0479] As set forth hereinabove, according to the measuring apparatus and the measuring method of concrete materials of this embodiment, the surface water of the fine aggregate is indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of fine aggregate is calculated as the mass Ma of the fine aggregate in the saturated surface-dried condition. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0480] While the load cells 108 of compression type are used and they are placed in three places in this embodiment, it is arbitrary what type of load cells are used as means for measuring a mass of submergence aggregate. For example, load cells of tension type can be used or they can be placed in four or more places. If the measurement tank 4 can be held stably in a suspended condition, only one or two load cells can be used.


[0481] A correction of the air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the already-known total volume Vf should be multiplied by (1−a/100). For example, the following formula may be used instead of formula (2).




M


a
a+Mww=Vf∘(1−a/100)  (2-a)



[0482] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded. In other cases, the air content can be corrected similarly, if necessary.


[0483] Furthermore, the rectangular opening for overflow 111 is formed on the wall 112 of the measurement tank 104 at the predetermined height of the measurement tank 104 and the guide 117 is provided in a horizontally protruding condition along the lower edge of the opening for overflow 111 in this embodiment. As shown in FIGS. 12 and 13, however, three openings for overflow 131 can be provided at different heights on the wall 112 of the measurement tank 104 instead of the opening for overflow 111 and the guide 117 can be provided in a horizontally protruding condition along the lowest edge of the opening for overflow 131.


[0484] In this constitution, only the opening for overflow 131 corresponding to the required total volume Vf is opened, and all other openings for overflow 131 are sealed by using seal plugs 132 and 133 as shown in FIG. 13.


[0485] According to the constitution, it becomes unnecessary to prepare a measurement tank for each total volume Vf.


[0486] In the measuring apparatus of concrete materials shown in FIGS. 12 and 13, a measurement tank 104a having three openings for overflow 131 is used instead of the measurement tank 104 having the opening for overflow 111. The measurement tank 104a is the same as the measurement tank 104 in components except for the difference in the openings for overflow and it is the same as the above embodiment in the entire constitution. Therefore, the description of these points will be omitted here.


[0487] Furthermore, in this embodiment, the rectangular opening for overflow 111 is formed on the wall 112 of the measurement tank 104 at the predetermined height of the measurement tank 104 and the guide 117 is provided in the horizontally protruding condition along the lower edge of the opening for overflow. As shown in FIGS. 14 and 15, an opening for overflow 134 having an increased height thereof can be formed on the wall 112 instead of the opening for overflow 111 with the opening for overflow 134 covered with a bracket cover free to move up and down. Furthermore, the overflow height can be variable according to the position where the bracket cover 135 moves up and down.


[0488] The bracket cover 135 comprises a guide, which is similar to the guide 117, provided in the horizontally protruding condition from an upper edge of a curved cover plate moving up and down along a circumferential surface of the measurement tank 104b. The bracket cover 135 is fixed to the wall of the measurement tank 104b with a screw 136, by which it can be positioned at a desired height. A rubber gasket or the like may be used appropriately so that predetermined watertightness is secured between the curved cover plate and the wall of the measurement tank 104b.


[0489] In this constitution, the bracket cover 135 is moved up and down so that the guide of the bracket cover 135 is located at the desired height and then it is fixed with the screw 136. With this, the curved cover plate of the bracket cover 135 closes up a part of the opening for overflow 134 lower than the guide, by which it becomes possible to variably adjust the water level at which water of the submergence aggregate in the measurement tank 104b overflows. Therefore, there is no need to prepare a measurement tank for each total volume Vf.


[0490] In the measuring apparatus of concrete materials shown in FIGS. 14 and 15, a measurement tank 104b having the opening for overflow 134 and the bracket cover 135 for variably adjusting the overflow height of the opening for overflow 134 is used instead of the measurement tank 104 having the opening for overflow 111. The measurement tank 104b is the same as the measurement tank 104 in components except for the difference in the opening for overflow and its related member and it is the same as the above embodiment in the entire constitution. Therefore, the description of these points will be omitted here.


[0491] The following should be noted though it has not been particularly noted in this embodiment. If there is a possibility that the aggregate thrown into the measurement tank 104 will emerge from the water and will not be submergence aggregate, a vibrator is used to level the top of the aggregate.


[0492] Referring to FIG. 16, there is shown a modification as mentioned above. In FIG. 16, a rod vibrator 137 is installed above the measurement tank 104 so that the rod vibrator is free to move up and down and so that it may be buried in the submergence aggregate 121 in the downward location (indicated by a dash-single-dot line in FIG. 16).


[0493] In this constitution, during or after throwing fine aggregate, the vibrator 137 is lowered and operated in the shown condition.


[0494] With this, the fine aggregate thrown into the measurement tank 104 is leveled by vibration of the vibrator 137, by which the fine aggregate will be submerged in the water. Before measuring a mass of the submergence aggregate 121, the vibrator 137 is raised and put in a standby state until the next measurement in the upward location.


[0495] [Third Embodiment]


[0496] Referring to FIG. 17, there is shown a general view illustrating a measuring apparatus of concrete materials according to a third embodiment. As shown in FIG. 17, the measuring apparatus 141 of concrete materials according to this embodiment comprises a water storage hopper 102 for storing water, a fine aggregate storage hopper 103a for storing fine aggregate used as aggregate, a measurement tank 104 for containing water and fine aggregate supplied from the water storage hopper 102 and the fine aggregate storage hopper 103a as submergence aggregate, and load cells 108 as submergence aggregate mass measuring means for measuring a mass of the submergence aggregate in the measurement tank 104. The water storage hopper 102 forms means for supplying water in conjunction with a water feed pipe 105 connected to the water storage hopper 102 at a bottom thereof and whose discharge opening is located above the measurement tank 104 and a closing valve 106 arranged in a predetermined position of the water feed pipe 105. The fine aggregate storage hopper 103a forms means for feeding aggregate in conjunction with a fine aggregate feed pipe 107 whose discharge opening is located above the measurement tank 104.


[0497] In this arrangement, the water storage hopper 102 and the load cells 108 are attached to a stand, which is not shown, and a collar circular ring 116 of the measurement tank 104 is put on the load cells 108 to hold the measurement tank 104 in a suspended condition. Thereby, the mass of the measurement tank 104 can be measured with the load cells 108. The load cells 108 are preferably placed, for example, in three places at 120° intervals on the same horizontal surface so that the measurement tank 104 can be held stably in a suspended condition during measurement.


[0498] Furthermore, in this embodiment, load cells 108a as means for measuring a mass of aggregate are attached to a stand not shown and a collar circular ring 142 of the fine aggregate storage hopper 103a is put on the load cells 108a to hold the fine aggregate storage hopper 103a in a suspended condition, by which a mass of the fine aggregate storage hopper 103a can be measured by the load cells 108a. The load cells 108a are preferably placed in three places at 120° intervals on the same horizontal surface in the same manner as for the load cells 108 so that the fine aggregate storage hopper 103a can be held stably in a suspended condition during measurement.


[0499] The arrangements of the measurement tank 104, the bottom lid 109, and other components are the same as those of the second embodiment. Therefore, their description will be omitted here.


[0500] A flowchart in FIG. 18 shows a measurement procedure for measuring water and fine aggregate by using the measuring apparatus 141 of concrete materials according to this embodiment. As shown in FIG. 18, mass Maw of fine aggregate in wet condition stored in the fine aggregate storage hopper 103a is measured by the load cells 108a, first (step 1131).


[0501] On the other hand, the inside of the measurement tank 104 is put into the watertightness condition in the same manner as in the second embodiment. The closing valve 106 is opened in the above condition. Water is then thrown from the water storage hopper 102 to the measurement tank 104 and the measured fine aggregate stored in the fine aggregate storage hopper 103a is thrown into the measurement tank 104 so that it is submerged in water and so that water overflows an opening for overflow 111 to fill the measurement tank 104 with submergence aggregate (step 1101).


[0502] Hereinafter, in the same manner as in the second embodiment, total mass Mf of the submergence aggregate is measured with the load cells 108 (step 1102). Thereafter, mass Ma of the fine aggregate in the saturated surface-dried condition and mass Mw of the water are calculated by solving the formulas (1) and (2) from the measured total mass Mf of the submergence aggregate 121 (step 1103).


[0503] Subsequently, a percentage of surface moisture of the fine aggregate is calculated by substituting the calculated mass Ma of the fine aggregate in the saturated surface-dried condition and the previously measured mass Maw of the fine aggregate in wet condition for the following formula (step 1132).


(Maw−Ma)/Ma  (3)


[0504] Subsequently, the calculated mass Mw of the water and the mass Ma of the fine aggregate in the saturated surface-dried condition are compared with mix proportions shown by the specified mix, respectively, and the insufficiency is measured. Thereafter, the submergence aggregate is supplemented with additional water if the water is needed or with additional fine aggregate if the fine aggregate is needed as a result of referencing the percentage of surface moisture obtained in step 1132 while taking into consideration the percentage of surface moisture. Then, let the aggregate and the water be concrete materials (step 1133) If there is too much water, the excess water is sucked with a vacuum or the like.


[0505] As set forth hereinabove, according to the measuring apparatus and the measuring method of concrete materials of this embodiment, the surface water of the fine aggregate can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of fine aggregate can be calculated as the mass Ma of the fine aggregate in the saturated surface-dried condition in the same manner as in the second embodiment. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0506] Furthermore, according to the measuring apparatus and the measuring method of concrete materials of this embodiment, the percentage of surface moisture can be measured in parallel in addition to the action and effect mentioned above.


[0507] While the load cells 108 of compression type are used and they are placed in three places in this embodiment, it is arbitrary what type of load cells are used as means for measuring a mass of submergence aggregate. For example, load cells of tension type can be used or they can be placed in four or more places. If the measurement tank 4 can be held stably in a suspended condition, only one or two load cells can be used.


[0508] A correction of the air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the already-known total volume Vf should be multiplied by (1−a/100). For example, the following formula may be used instead of formula (2).




M


a
a+Mww=Vf∘(1−a/100)  (2-a)



[0509] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded.


[0510] While the modifications of the second embodiment described by referring to FIGS. 12 to 16 are directly applicable to the third embodiment, their constitution and their action and effect are the same as those of the second embodiment. Therefore, their description will be omitted here.


[0511] [Fourth Embodiment]


[0512] Referring to FIG. 19, there is shown a general view illustrating a measuring apparatus of concrete materials according to a fourth embodiment. As shown in FIG. 19, the measuring apparatus 151 of concrete materials according to this embodiment comprises a water storage hopper 102 for storing water, a fine aggregate storage hopper 103 for storing fine aggregate used as aggregate, a measurement tank 104 for containing water and fine aggregate supplied from the water storage hopper 102 and the fine aggregate storage hopper 103 as submergence aggregate, and load cells 108 as submergence aggregate mass measuring means for measuring a mass of the submergence aggregate in the measurement tank 104. The water storage hopper 102 forms means for supplying water in conjunction with a water feed pipe 105 connected to the water storage hopper 102 at a bottom thereof and whose discharge opening is located above the measurement tank 104, a closing valve 106 arranged in a predetermined position of the water feed pipe 105, and a flowmeter 152 as means for measuring feed water. The fine aggregate storage hopper 103 forms means for feeding aggregate in conjunction with a fine aggregate feed pipe 107 whose discharge opening is located above the measurement tank 104.


[0513] In this arrangement, the water storage hopper 102, the fine aggregate storage hopper 103, and the load cells 108 are attached to a stand, which is not shown, and a collar circular ring 116 of the measurement tank 104 is put on the load cells 108 to hold the measurement tank 104 in a suspended condition. Thereby, the mass of the measurement tank 104 can be measured with the load cells 108. The load cells 108 are preferably placed, for example, in three places at 120° intervals on the same horizontal surface so that the measurement tank 104 can be held stably in a suspended condition during measurement.


[0514] Furthermore, in this embodiment, as apparent from the sectional view in FIG. 20, the measuring apparatus comprises a storage container 153 for storing water overflowing an opening for overflow 111 and running down from a tip of a guide 117 and a massmeter 154 as means for measuring a mass of overflow water together with the storage container 153. It is capable of measuring the mass of water thrown into the measurement tank 104 by means of the above flowmeter 152 and the mass of overflow water from the measurement tank 104 by means of the massmeter 154.


[0515] The arrangements of the measurement tank 104, the bottom lid 109, and other components are the same as those of the second embodiment. Therefore, their description will be omitted here.


[0516] A flowchart in FIG. 21 shows a measurement procedure for measuring water and fine aggregate by using the measuring apparatus 151 of concrete materials according to this embodiment. As shown in FIG. 21, the inside of the measurement tank 104 is put into the watertightness condition in the same manner as in the second embodiment. The closing valve 106 is opened in the above condition. Water is then thrown from the water storage hopper 102 to the measurement tank 104 and the fine aggregate stored in the fine aggregate storage hopper 103 is thrown into the measurement tank 104 so that it is submerged in water and so that water overflows the opening for overflow 111 to fill the measurement tank 104 with submergence aggregate. In parallel to the above processing, the measuring apparatus measures the amount of supplied water MI to the measurement tank 104 by means of the flowmeter 152 and measures the amount of discharged water MO overflowing the measurement tank 104 by means of the massmeter 154 as shown in FIG. 22 (step 1161).


[0517] Hereinafter, in the same manner as in the second embodiment, total mass Mf of the submergence aggregate is measured with the load cells 108 (step 1102). Thereafter, mass Ma of the fine aggregate in the saturated surface-dried condition and mass Mw of the water are calculated by solving the formulas (1) and (2) from the measured total mass Mf of the submergence aggregate 121 (step 1103).


[0518] Subsequently, Maw is calculated from the following formula by using the calculated mass Ma of the fine aggregate in the saturated surface-dried condition, the amount of supplied water MI to the measurement tank 104 and the amount of discharged water MO overflowing the measurement tank 104 previously measured:




M


aw


=M


f
−(MI−MO)  (4)



[0519] A percentage of surface moisture of the fine aggregate is then calculated by substituting the calculated mass Maw for the following formula (step 1162).


(Maw−Ma)/Ma  (3)


[0520] Furthermore, the calculated mass Mw of the water and the mass Ma of the fine aggregate in the saturated surface-dried condition are compared with mix proportions shown by the specified mix, respectively, and the insufficiency is measured. Thereafter, the submergence aggregate is supplemented with additional water if the water is needed or with additional fine aggregate if the fine aggregate is needed as a result of referencing the percentage of surface moisture obtained in step 1162 while taking into consideration the percentage of surface moisture. Then, let the aggregate and the water be concrete materials (step 1163) If there is too much water, the excess water is sucked with a vacuum or the like.


[0521] As set forth hereinabove, according to the measuring apparatus and the measuring method of concrete materials of this embodiment, the surface water of the fine aggregate can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of fine aggregate can be calculated as the mass Ma of the fine aggregate in the saturated surface-dried condition in the same manner as in the second embodiment. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0522] Furthermore, according to the measuring apparatus and the measuring method of concrete materials of this embodiment, the percentage of surface moisture can be measured in parallel in addition to the action and effect mentioned above.


[0523] While the load cells 108 of compression type are used and they are placed in three places in this embodiment, it is arbitrary what type of load cells are used as means for measuring a mass of submergence aggregate. For example, load cells of tension type can be used or they can be placed in four or more places. If the measurement tank 4 can be held stably in a suspended condition, only one or two load cells can be used.


[0524] A correction of the air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the known total volume Vf should be multiplied by (1−a/100). For example, the following formula may be used instead of formula (2).




M


a
a+Mww=Vf∘(1−a/100)  (2-a)



[0525] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded.


[0526] While the modifications of the second embodiment described by referring to FIGS. 12 to 16 are directly applicable to the fourth embodiment, their constitution and their action and effect are the same as those of the second embodiment. Therefore, their description will be omitted here.


[0527] [Fifth Embodiment]


[0528] Referring to FIG. 23, there is shown a general view illustrating a measuring apparatus of concrete materials according to a fifth embodiment. A shown in FIG. 23, the measuring apparatus 201 of concrete materials of this embodiment comprises a water storage hopper 102 for storing water, a fine aggregate measurement container 203 as an aggregate measurement container storing fine aggregate as aggregate to be measured, a submergence aggregate container 204 for containing water and fine aggregate supplied from the water storage hopper 102 and the fine aggregate measurement container 203, respectively, as submergence aggregate, and load cells 108a as submergence aggregate mass measuring means for measuring a mass of the fine aggregate in the fine aggregate measurement container 203. The water storage hopper 102 forms means for supplying water in conjunction with a water feed pipe 105 connected to the water storage hopper 102 at a bottom thereof and whose discharge opening is located above the submergence aggregate container 204, a closing valve 106 arranged in a predetermined position of the water feed pipe 105, and a flowmeter 152 as means for measuring feed water.


[0529] Fine aggregate is supplied as needed from a stock bin not shown to the fine aggregate measurement container 203 and it is connected to a fine aggregate feed pipe 107 whose discharge opening is located above the submergence aggregate container 204.


[0530] In this arrangement, the water storage hopper 102, the submergence aggregate container 204, and the load cells 108a are attached to a stand, which is not shown, and a collar circular ring 142 attached to a top opening edge of the fine aggregate measurement container 203 is mounted on the load cells 108a to hold the fine aggregate measurement container 203 in a suspended condition. Thereby, the mass of the fine aggregate stored in the fine aggregate measurement container 203 can be measured with the load cells 108. The load cells 108a are preferably placed, for example, in three places at 120° intervals on the same horizontal surface so that the fine aggregate measurement container 203 can be held stably in the suspended condition during measurement.


[0531] Referring to FIG. 24, there is shown a longitudinal sectional view of the submergence aggregate container 204. As apparent from FIGS. 23 and 24, it is possible to attach a bottom lid 109 capable of maintaining watertightness inside the submergence aggregate container 204 at a bottom opening 115 of the submergence aggregate container 204 in such a way that the bottom lid 109 is free to open or close. In other words, the bottom lid 109 is made of a circular plate having an outside diameter substantially equivalent to or slightly larger than an outside diameter of the bottom opening of the submergence aggregate container 204. Furthermore, a long hole 114 is formed at a tip of an L-shaped mounting arm 113 provided as an extension from a rim of the circular plate and a pin 110 fixed to a stand not shown is passed through the long hole 114, by which it becomes possible to rotate the bottom lid 109 around the pin 110 so as to open or close the bottom opening 115 of the submergence aggregate container 204. In fixing the bottom lid 109 to the bottom opening 115 of the submergence aggregate container 204, an appropriate method can be selected out of known methods such as fastening with a bolt or a clamp.


[0532] The submergence aggregate container 204 is formed in a shape of a hollow truncated cone so that a bore of the submergence aggregate container 204 gets larger as it goes below. Therefore, when the measurement is finished, a free fall of the submergence aggregate in the submergence aggregate container 204 can be achieved only by opening the bottom lid 109 without a blockage of submergence aggregate in the submergence aggregate container 204 even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer, which is not shown, together with cement and coarse aggregate measured separately.


[0533] As apparent from the sectional view in FIG. 24, a rectangular opening for overflow 111 is formed on a wall 112 of the submergence aggregate container 204 at a predetermined height of the submergence aggregate container 204 so that water of the submergence aggregate in the submergence aggregate container 204 overflows outside. In addition, a grooved guide 117 is provided in a horizontally protruding condition along a lower edge of the opening for overflow 111. Overflow water flows on the guide and falls from the tip thereof, thereby enabling water to overflow smoothly from the opening for overflow 111 without a flow on a circumferential surface of the submergence aggregate container 204.


[0534] A volume of the submergence aggregate container 204 is arbitrary. The volume of the submergence aggregate container 204 may be made in agreement with the total amount required for the unit of concrete mixing, i.e., one batch. Otherwise, it can be divided into some amounts in the submergence aggregate container 204.


[0535] On the other hand, as apparent from a sectional view in FIG. 24, the measuring apparatus 201 of concrete materials according to this embodiment comprises a storage container 153 for storing water overflowing an opening for overflow 111 and running down from a tip of the guide 117 and a massmeter 154 as means for measuring a mass of overflow water. It is capable of measuring the mass of water thrown into the submergence aggregate container 204 by means of the above flowmeter 152 and the mass of overflow water from the submergence aggregate container 204 by means of the massmeter 154.


[0536] A flowchart in FIG. 25 shows a measurement procedure for measuring water and fine aggregate by using the measuring apparatus 201 of concrete materials according to this embodiment. As shown in FIG. 25, mass Maw of fine aggregate in wet condition stored in the fine aggregate measurement container 203 is measured by the load cells 108a, first (step 1201).


[0537] The mass Maw of the fine aggregate in the fine aggregate measurement container 203 can be obtained by subtracting a mass of an empty fine aggregate measurement container 203 containing no fine aggregate from the value measured by the load cells 108a. In this connection, fine aggregate is generally in wet condition.


[0538] Subsequently, the bottom opening 115 of the submergence aggregate container 204 is closed by the bottom lid 109 to put the inside of the submergence aggregate container 203 in the watertightness condition. The closing valve 106 is opened in the above condition. Water is then thrown from the water storage hopper 102 to the submergence aggregate container 204 (step 1202).


[0539] As shown in FIG. 26, the fine aggregate stored in the fine aggregate measurement container 203 is thrown into the submergence aggregate container 204 so that it is submerged in water and so that the water overflows the opening for overflow 111 to fill the submergence aggregate container with submergence aggregate 121. In parallel to the above processing, the measuring apparatus measures the amount of supplied water MI from the water storage hopper 102 as an accumulation value by means of the flowmeter 152, while storing water overflowing the opening for overflow 111 in the storage container 153 once and then measuring mass MO of the overflow water as an accumulation value by means of the massmeter 154 (step 1203).


[0540] In this manner, if the submergence aggregate 121 is let overflow the opening for overflow 111, the water level at which the water 122 overflows the opening for overflow 111 is predetermined. Therefore, if the submergence aggregate container is filled with the submergence aggregate 121 as mentioned above, the total volume Vf of the submergence aggregate 121 equal to a known value is obtained without measurement.


[0541] If the fine aggregate is not directly thrown from the fine aggregate measurement container 203 to the submergence aggregate container 204, but the fine aggregate is conveyed from a portion beneath the fine aggregate measurement container 203 to an upper opening of the submergence aggregate container 204 by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[0542] Subsequently, mass Ma of the fine aggregate in the saturated surface-dried condition and mass Mw of the water in the submergence aggregate 121 are calculated by solving the following two formulas.




M


a


+M


w


=M


aw
+(MI−MO)  (5)





M


a
a+Mww=Vf  (2)



[0543] where ρa is the density of the fine aggregate in the saturated surface-dried condition and ρw is the density of the water. In addition, a percentage of surface moisture of the fine aggregate is calculated by the following formula (step 1204).


(Maw−Ma)/Ma  (3)


[0544] After measuring and calculating the mass Mw of the water and the mass Ma of the fine aggregate in the saturated surface-dried condition as mentioned above, these values are compared with mix proportions shown by the specified mix, respectively. Thereafter, the insufficiency is measured and then the submergence aggregate is supplemented with additional aggregate if the aggregate is needed or with additional water if the water is needed so as to let the aggregate and the water be concrete materials, taking into consideration surface water by using the calculated percentage of surface moisture (step 1205). If there is too much water, the excess water is sucked with a vacuum or the like.


[0545] As set forth hereinabove, according to the measuring apparatus and the measuring method of concrete materials of this embodiment, the surface water of the fine aggregate is indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of fine aggregate is calculated as the mass Ma of the fine aggregate in the saturated surface-dried condition. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0546] While the load cells 108a of compression type are used and they are placed in three places in this embodiment, it is arbitrary what type of load cells are used as means for measuring a mass of submergence aggregate. For example, load cells of tension type can be used or they can be placed in four or more places. If the submergence aggregate container 204 can be held stably in a suspended condition, only one or two load cells can be used.


[0547] A correction of the air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the already-known total volume Vf should be multiplied by (1 a/100). For example, the following formula may be used instead of formula (2).




M


a
a+Mww=Vf∘(1−a/100)  (2-a)



[0548] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded. In other cases, the air content can be corrected similarly, if necessary.


[0549] The amount of supplied water MI thrown into the submergence aggregate container 204 is measured as an accumulation value by using the flowmeter 152 in this embodiment. If the water is thrown into the submergence aggregate container previously so that it overflows instead, however, the water level at which the water overflows the opening for overflow is predetermined as mentioned above and therefore the amount of supplied water MI gets equal to a known value even if it is not measured. Accordingly, this constitution does not need means for supplying water comprising the flowmeter 152 as means for measuring feed water, the water storage hopper 102, the water feed pipe 105, and the closing valve 106.


[0550] Since the water level does not fall even if water may overflow due to subsequent aggregate throwing in this case, the accumulation value of the amount of supplied water MI becomes fixed during measurement.


[0551] Furthermore, the rectangular opening for overflow 111 is formed on the wall 112 of the submergence aggregate container 204 at the predetermined height of the submergence aggregate container 204 and the guide 117 is provided in a horizontally protruding condition along the lower edge of the opening for overflow 111 in this embodiment. As shown in FIGS. 27 and 28, however, three openings for overflow 131 can be provided at different heights on the wall 112 of the submergence aggregate container 204 instead of the opening for overflow 111 and the guide 117 can be provided in a horizontally protruding condition along the lowest edge of the opening for overflow 131.


[0552] In this constitution, only the opening for overflow 131 corresponding to the required total volume Vf is opened, and all other openings for overflow 131 are sealed by using seal plugs 132 and 133 as shown in FIG. 28.


[0553] According to the constitution, it becomes unnecessary to prepare a submergence aggregate container for each total volume Vf.


[0554] In the measuring apparatus of concrete materials shown in FIGS. 27 and 28, a submergence aggregate container 204a having three openings for overflow 131 is used instead of the submergence aggregate container 204 having the opening for overflow 111. The submergence aggregate container 204a is the same as the submergence aggregate container 204 in components except for the difference in the openings for overflow and it is the same as the above embodiment in the entire constitution. Therefore, the description of these points will be omitted here.


[0555] Furthermore, in this embodiment, the rectangular opening for overflow 111 is formed on the wall 112 of the submergence aggregate container 204 at the predetermined height of the submergence aggregate container 204 and the guide 117 is provided in the horizontally protruding condition along the lower edge of the opening for overflow. As shown in FIGS. 29 and 30, an opening for overflow 134 with an increased height may be formed on the wall 112, instead of the opening for overflow 111, in a condition where the opening for overflow 134 is covered with a bracket cover free to move up and down. Furthermore, the overflow height can be variable according to the position where the bracket cover 135 moves up and down.


[0556] The bracket cover 135 comprises a guide, which is similar to the guide 117, provided in the horizontally protruding condition from an upper edge of a curved cover plate moving up and down along a circumferential surface of the submergence aggregate container 204b. The bracket cover 135 is fixed to the wall of the submergence aggregate container 204b with a screw 136, by which it can be positioned at a desired height. A rubber gasket or the like may be used appropriately so that predetermined watertightness is secured between the curved cover plate and the wall of the submergence aggregate container 204b.


[0557] In this constitution, the bracket cover 135 is moved up and down so that the guide of the bracket cover 135 is located at the desired height and then it is fixed with the screw 136. With this, the curved cover plate of the bracket cover 135 closes up a part of the opening for overflow 134 lower than the guide, by which it becomes possible to variably adjust the water level at which water of the submergence aggregate in the submergence aggregate container 204b overflows. Therefore, there is no need to prepare a submergence aggregate container for each total volume Vf.


[0558] In the measuring apparatus of concrete materials shown in FIGS. 29 and 30, a submergence aggregate container 204b having the opening for overflow 134 and the bracket cover 135 for variably adjusting the overflow height of the opening for overflow 134 is used instead of the submergence aggregate container 204 having the opening for overflow 111. The submergence aggregate container 204b is the same as the submergence aggregate container 204 in components except for the difference in the opening for overflow and its related member and it is the same as the above embodiment in the entire constitution. Therefore, the description of these points will be omitted here.


[0559] The following should be noted though it has not been particularly noted in this embodiment. If there is a possibility that the aggregate thrown into the submergence aggregate container 204 will emerge from the water and will not be submergence aggregate, a vibrator is used to level the top of the aggregate.


[0560] Referring to FIG. 31, there is shown a modification as mentioned above. In FIG. 31, a rod vibrator 137 is installed above the submergence aggregate container 204 so that it is free to move up and down and so that it may be buried in the submergence aggregate 121 in the downward location (indicated by a dash-single-dot line in FIG. 31).


[0561] In this constitution, during or after throwing fine aggregate, the vibrator 137 is lowered and operated in the shown condition.


[0562] With this, the fine aggregate thrown into the submergence aggregate container 204 is leveled by vibration of the vibrator 137, by which the fine aggregate will be submerged in the water. Before measuring a mass of the submergence aggregate 121, the vibrator 137 is raised and put in a standby state until the next measurement in the upward location.


[0563] [Sixth Embodiment]


[0564] Referring to FIG. 32, there is shown a flowchart of a procedure for a measuring method of concrete materials according to a sixth embodiment. The embodiment will now be described by giving an example of using fine aggregate of two kinds A and B. The measuring method of concrete materials according to this embodiment can be implemented by selecting appropriate one from the above measuring apparatuses.


[0565] As apparent from FIG. 32, in the measuring method of concrete materials according to this embodiment, first, water and fine aggregate A are thrown into a measurement tank so that the fine aggregate A is submerged in water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with the submergence aggregate (step 1301).


[0566] The measurement tank may be formed, for example, in a shape of a hollow truncated cone so that a bore of the measurement tank gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0567] If the water and the fine aggregate A are thrown into the measurement tank in this manner, a water level at which the water overflows the measurement tank is predetermined. Therefore, if the measurement tank is filled with the submergence aggregate as mentioned above, total volume Vf of the submergence aggregate equal to a known value is obtained without measurement.


[0568] Subsequently, the total mass Mf1 of the submergence aggregate is measured (step 1302). The total mass Mf1 of the submergence aggregate can be obtained by subtracting a measurement value of an empty measurement tank containing no submergence aggregate from a measurement value of the measurement tank filled with the submergence aggregate.


[0569] Subsequently, mass Ma1 of the fine aggregate A in the saturated surface-dried condition is calculated by solving the following formulas from the total mass Mf1 of the measured submergence aggregate (step 1303).




M


a1


+M


w


=M


f1
  (7)





M


a1
a1+Mww=Vf  (8)



[0570] where ρa1 is the density of the fine aggregate A in the saturated surface-dried condition and ρw is the density of the water.


[0571] After measuring and calculating the mass Ma1 of the fine aggregate A in the saturated surface-dried condition as mentioned above, the fine aggregate B, which is aggregate of the second kind, is thrown into the measurement tank so that the fine aggregate B is submerged in water as submergence aggregate and so that the water overflows the measurement tank (step 1304).


[0572] When throwing the aggregates A and B and the water into the measurement tank, preferably the water is thrown earlier and the fine aggregates are thrown later to prevent the submergence aggregate from being mixed with air bubbles. In addition, if the fine aggregates A and B are not directly thrown into the measurement tank, but the fine aggregates are conveyed to the measurement tank by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregates thus air bubble mixing.


[0573] Subsequently, total mass Mf2 of the submergence aggregate is measured (step 1305).


[0574] Thereafter, mass Ma2 of the fine aggregate B in the saturated surface-dried condition and mass Mw of the water are calculated from the measured total mass Mf2 of the submergence aggregate by using the following formulas (step 1306).




M


ai


+M


a2


+M


w


=M


f2
  (9)





M


a1
a1+Ma2a2+Mww=Vf  (10)



[0575] where ρa2 is the density of the fine aggregate B in the saturated surface-dried condition.


[0576] After measuring and calculating the mass Mw of the water, the mass Ma1 of the fine aggregate A in the saturated surface-dried condition, and the mass Ma2 of the fine aggregate B in the saturated surface-dried condition in this manner, these values are compared with mix proportions shown by the specified mix, respectively. Thereafter, the insufficiency is measured and then the submergence aggregate is supplemented by the amount of the insufficiency so as to let the aggregate and the water be concrete materials. If there is too much water, the excess water is sucked with a vacuum or the like (step 1307).


[0577] As set forth hereinabove, according to the measuring method of concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate A and that of the fine aggregate B can be calculated as the mass Mai (i=1, 2) of the fine aggregate in the saturated surface-dried condition. In other words, since the mass of the fine aggregates and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0578] In addition, even if the fine aggregates A and B differ from each other in the density, the grading, or the like, they can be measured in a single measurement tank efficiently and very accurately.


[0579] Furthermore, according to the measuring method of concrete materials of this embodiment, the fine aggregates A and B are thrown into the measurement tank so that the water overflows the measurement tank, by which the total volume Vfi (i=1, 2) of the submergence aggregate is maintained at a steady value Vf that is an internal volume of the measurement tank in the overflow condition and therefore the total volume Vfi (i=1, 2) of the submergence aggregate need not be measured every time.


[0580] While the total volume Vfi (i=1, 2) of the submergence aggregate is maintained at the steady value Vf by causing the water to overflow the measurement tank in this embodiment as mentioned above, the total volume Vf i (i=1, 2) of the submergence aggregate can be measured by using an electrode-type displacement sensor or the like, instead.


[0581] The electrode-type displacement sensor can be one capable of measuring a water level of the submergence aggregate by monitoring a change in the energized condition when a lower end of a detection electrode contacts the water surface of the submergence fine aggregate in the measurement tank, for example.


[0582] Furthermore, while this embodiment has been described by giving the example of fine aggregate of two kinds, naturally aggregate of an arbitrary number of kinds can be used. This method is applicable to a measurement of coarse aggregate and also applicable to a combination of fine aggregate and coarse aggregate.


[0583] A correction of the air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the known total volume Vf should be multiplied by (1−a/100). For example, the following formula may be used instead of formula (8).




M


a1
a1+Mww=Vf∘(1−a/100)



[0584] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded.


[0585] Furthermore, the following should be noted though it has not been particularly noted in this embodiment. If there is a possibility that the aggregates thrown into the measurement tank will emerge from the water and will not be submergence aggregate, the vibrator is lowered during or after throwing the fine aggregates A and B and operated in this condition. Thereby, the fine aggregates A and B thrown into the measurement tank can be leveled by vibration of the vibrator, so that the fine aggregates A and B are submerged in the water. Before measuring a mass of the submergence aggregate, the vibrator is raised and put in a standby state until the next measurement in the upward location.


[0586] While the following has not been particularly noted in this embodiment, percentages of surface moisture of the fine aggregates A and B can be calculated from the following formula by previously measuring the mass Mawi (i=1, 2) of the fine aggregates A and B in wet condition.


(Mawi−Mai)/Mai  (13)


[0587] Referring to FIG. 33, there is shown a flowchart of a procedure of the measuring method according to this modification.


[0588] This modification is described by giving an example of using two fine aggregates A and B in the same manner as for the above embodiment. First, measurements are made previously on the mass Mawi (i=1, 2) of the fine aggregates A and B in wet condition (step 1311).


[0589] On the other hand, in the same manner as for the above embodiment, water is thrown into the measurement tank and the measured fine aggregate A is thrown into the measurement tank so that the aggregate A is submerged in water as submergence aggregate and so that the water overflows the measurement tank (step 1301).


[0590] Hereinafter, in the same manner as for the above embodiment, the total mass Mf1 of the submergence aggregate is measured (step 1302), the mass Ma1 of the fine aggregate A in the saturated surface-dried condition is calculated from the measured total mass Mf1 of the submergence aggregate by using the formulas (7) and (8) (step 1303). Subsequently, the measured fine aggregate B is thrown into the measurement tank so that the fine aggregate B is submerged in water as submergence aggregate and so that the water overflows the measurement tank (step 1304). Thereafter, the total mass Mf2 of the submergence aggregate is measured (step 1305) and the mass Ma2 of the fine aggregate B in the saturated surface-dried condition and the mass Mw of the water are calculated from the measured total mass Mf2 of the submergence aggregate by using the formulas (9) and (10) (step 1306).


[0591] Percentages of surface moisture of the fine aggregates A and B are then calculated from the following formula by using the calculated mass Mai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition and the previously measured mass Mawi (i=1, 2) of the fine aggregates in wet condition (step 1312).


(Mawi (i=1, 2)−Mai (i=1, 2)/Mai (i=1, 2)  (13)


[0592] Subsequently, the calculated mass Mw of the water and the mass Mai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition are compared with mix proportions shown by the specified mix, respectively, and the insufficiency is measured. The submergence aggregate is supplemented with additional water if the water is needed or with additional aggregate if the aggregate is needed, taking into consideration the surface water on the basis of the percentages of surface moisture calculated in step 1312. The aggregates and the water are then treated as concrete materials. If there is too much water, the excess water is sucked and removed with a vacuum or the like (step 1313).


[0593] Furthermore, if the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are previously measured as accumulation values similarly, ΣMawj (j=1 to i) can be calculated from the following formula.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


[0594] Mawi is then calculated from the following formula.


ΣMawj(j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0595] Thereafter, the percentages of surface moisture of the aggregate of the i-th kind (i=1 to N) can be calculated by substituting the Mawi for the following formula.


(Mawi−Mai)/Mai  (13)


[0596] Referring to FIGS. 34 and 35, there is shown a flowchart of a procedure for the measuring method according to the modification. In the measuring method, two fine aggregates A and B are used, for example. Water is thrown first into the measurement tank in the same manner as for the above embodiment, and then the fine aggregate A is thrown into the measurement tank so that it is submerged in water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with submergence aggregate. In parallel to the above processing, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are measured (step 1321).


[0597] Thereafter, total mass Mf1 of the submergence aggregate is measured in the same manner as for the above embodiment (step 1302) and mass Ma1 of the fine aggregate A in the saturated surface-dried condition is calculated from the measured total mass Mf1 of the submergence aggregate by using the formulas (7) and (8) (step 1303).


[0598] Subsequently, ΣMawj (j=1) or Mawi is calculated by using the amount of supplied water MI and the amount of discharged water MO from the following formula.


ΣMawj (j=1)=Mf1−(MI−MO)  (14)


[0599] A percentage of surface moisture of the fine aggregate A is calculated by substituting the Maw1 for the following formula (step 1322).


(Maw1−Ma1)/Ma1  (13)


[0600] Subsequently, the fine aggregate B is thrown into the measurement tank so that the fine aggregate B is submerged in water as submergence aggregate and so that the water overflows the measurement tank while measuring the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank (step 1323). Total mass Mf2 of the submergence aggregate is then measured (step 1305) and mass Ma2 of the fine aggregate B and mass Mw of the water are calculated from the measured total mass Mf2 of the submergence aggregate by using the formulas (9) and (10) (step 1306).


[0601] Thereafter, ΣMawj (j=1, 2) is calculated by using the amount of supplied water MI and the amount of discharged water MO from the following formula.


ΣMawj (j=1, 2)=Mf2−(MI−MO)  (14)


[0602] ΣMaw2 is then calculated from the following formula.


ΣMawj (j=1, 2)−ΣMawj (j=1)  (15)


[0603] A percentage of surface moisture of the fine aggregate B is calculated by substituting the above Maw2 for the following formula (step 1324).


(Maw2−Ma2)/Ma2  (13)


[0604] Subsequently, the mass Mw of the water, the mass Ma1 of the fine aggregate A in the saturated surface-dried condition, and the mass Ma2 of the fine aggregate B in the saturated surface-dried condition calculated in the above are compared with mix proportions shown by the specified mix, respectively, and the insufficiency is measured. The submergence aggregate is supplemented with additional water if the water is needed or with additional fine aggregate if the fine aggregate is needed, taking into consideration the surface water on the basis of the percentages of surface moisture calculated in step 1324. The aggregates and the water are then treated as concrete materials. If there is too much water, the excess water is sucked and removed with a vacuum or the like (step 1325).


[0605] [Seventh Embodiment]


[0606] Referring to FIGS. 36 and 37, there is shown a flowchart of a procedure for a measuring method of concrete materials according to a seventh embodiment. The embodiment will now be described by giving an example of using fine aggregate of two kinds A and B as aggregate of a first kind and aggregate of a second kind, respectively. The measuring method of concrete materials according to this embodiment can be implemented by selecting appropriate one from the above measuring apparatuses.


[0607] As apparent from FIGS. 36 and 37, in the measuring method of concrete materials according to this embodiment, mass Maw1 of the fine aggregate A in wet condition is measured, first (step 1331).


[0608] Water is then thrown into a submergence aggregate container (step 1332).


[0609] The submergence aggregate container can be formed in a shape of a hollow truncated cone so that a bore of the submergence aggregate container gets larger as it goes below. With this, when the measurement is finished, a free fall of submergence aggregate in the submergence aggregate container can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the submergence aggregate container even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0610] Subsequently, the fine aggregate A and water are thrown into the submergence aggregate container so that the fine aggregate A is submerged in water and so that the water overflows the submergence aggregate container to fill it with submergence aggregate. Then, an amount of supplied water MI to the submergence aggregate container and an amount of discharged water MO from the submergence aggregate container are measured as accumulation values (step 1333).


[0611] If the water and the fine aggregate A are thrown into the submergence aggregate container in this manner, a water level at which the water overflows the submergence aggregate container is predetermined. Therefore, if the submergence aggregate container is filled with the submergence aggregate as mentioned above, total volume Vf of the submergence aggregate equal to a known value is obtained without measurement.


[0612] When throwing the aggregates A into the submergence aggregate container or throwing the aggregate B in post-processing, preferably the fine aggregates A and B are conveyed to the submergence aggregate container by using a vibrating feeder having an electromagnetic vibrator, for example.


[0613] Subsequently, mass Ma1 of the fine aggregate A in the saturated surface-dried condition is calculated by solving the following formulas.




M


a1


+M


w


=M


aw1
+(MI−MO)  (16)





M


a1
a1+Mww=Vf  (17)



[0614] where ρa1 is the density of the fine aggregate A in the saturated surface-dried condition and ρw is the density of the water. In addition, a percentage of surface moisture of the fine aggregate A is calculated from the following formula (step 1334).


(Maw1−Ma1)/Ma1  (18)


[0615] Mass Maw2 of the fine aggregate B in wet condition is measured (step 1335).


[0616] The fine aggregate B and water are then thrown into the submergence aggregate container so that the fine aggregate B is submerged in water and so that the water overflows the submergence aggregate container to fill it with submergence aggregate. In addition, an amount of supplied water MI and an amount of discharge water MO are measured as accumulation values (step 1336).


[0617] Subsequently, mass Ma2 of the fine aggregate B in the saturated surface-dried condition and mass Mw of the water in the submergence aggregate are calculated from the following two formulas (step 1337).




M


a1


+M


a2


+M


w


=M


aw1


+M


aw2
+(MI−MO)  (19)





M


a1
a1+Ma2a2+Mww=Vf  (20)



[0618] where ρa2 is the density of the fine aggregate B in the saturated surface-dried condition and ρw is the density of the water. In addition, a percentage of surface moisture of the fine aggregate B is calculated from the following formula (step 1337).


(Maw2−Ma2)/Ma2  (21)


[0619] After measuring and calculating the mass Mw of the water, the mass Mai (i=1, 2) of the fine aggregate A and the fine aggregate B in the saturated surface-dried condition, and percentages of surface moisture of the fine aggregates A and B, these values are compared with mix proportions shown by the specified mix, respectively, and the insufficiency is measured. The submergence aggregate is supplemented with additional water if the water is needed or with additional fine aggregate if the fine aggregate is needed, taking into consideration the surface water on the basis of the percentages of surface moisture calculated in the above. The aggregates and the water are then treated as concrete materials. If there is too much water, the excess water is sucked and removed with a vacuum or the like (step 1338).


[0620] As set forth hereinabove, according to the measuring method of concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregates A and that of the fine aggregate B can be calculated as the mass Mai (i=1, 2) of the fine aggregate in the saturated surface-dried condition. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0621] In addition, even if the fine aggregates A and B differ from each other in the density, the grading, or the like, they can be measured in a single measurement tank efficiently and very accurately.


[0622] Furthermore, the percentages of the fine aggregates A and B can be calculated, by which the surface water can be considered on the basis of the calculated percentages of surface moisture when the fine aggregates are added for supplement.


[0623] While this embodiment has been described by giving the example fine aggregate of two kinds, naturally aggregate of an arbitrary number of kinds can be used. This method is applicable to a measurement of coarse aggregate and also applicable to a combination of fine aggregate and coarse aggregate.


[0624] A correction of the air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the known total volume Vf should be multiplied by (1−a/100) in the same manner as for the above embodiment.


[0625] This constitution enables more accurate measurement since actual total volume is used for the measurement with the air content excluded.


[0626] Furthermore, the following should be noted though it has not been particularly noted in this embodiment. If there is a possibility that the aggregates thrown into the submergence aggregate container will emerge from the water and will not be submergence aggregate, the vibrator is lowered during or after throwing the fine aggregates A and B and operated in this condition. Thereby, the fine aggregates A and B thrown into the submergence aggregate container can be leveled by vibration of the vibrator, so that the fine aggregates A and B are submerged in the water. Before measuring a mass of the submergence aggregate, the vibrator is raised and put in a standby state until the next measurement in the upward location.


[0627] [Eighth Embodiment]


[0628] Referring to FIG. 38, there is shown a flowchart of a procedure for a measuring method of concrete materials according to an eighth embodiment. The embodiment will now be described by giving an example of using fine aggregate of two kinds A and B. The measuring method of concrete materials according to this embodiment can be implemented by selecting appropriate one from the above measuring apparatuses.


[0629] As apparent from FIG. 38, in the measuring method of concrete materials according to this embodiment, mean-density ρave of the whole aggregate is first calculated from a mass ratio of the fine aggregate A as aggregate of a first kind to the fine aggregate B as aggregate of a second kind and density ρai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition (step 1401).


[0630] The fine aggregates A and B can be stored in a predetermined storage hopper collectively in a condition where the mass ratio is known. Otherwise, two storage hoppers can be prepared individually to calculate the mass ratio from the speed at which the aggregates are conveyed from the location beneath them to the measurement tank. Contrarily, the conveyance speed can be adjusted so as to achieve the target mass ratio.


[0631] Subsequently, water is thrown into the measurement tank and the fine aggregates A and B are thrown at a time into the measurement tank so that the fine aggregates A and B are submerged in the water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with the submergence aggregate (step 1402).


[0632] The measurement tank may be formed, for example, in a shape of a hollow truncated cone so that a bore of the measurement tank gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0633] When throwing the fine aggregates A and B at a time into the measurement tank, preferably the water is thrown earlier and the fine aggregates A and B are thrown later at a time to prevent the submergence aggregate from being mixed with air bubbles. In addition, if the fine aggregates A and B are conveyed to the measurement tank by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregates thus air bubble mixing.


[0634] If the water and the fine aggregate A and B are thrown into the measurement tank in this manner, a water level at which the water overflows the measurement tank is predetermined. Therefore, if the measurement tank is filled with the submergence aggregate as mentioned above, total volume Vf of the submergence aggregate equal to a known value is obtained without measurement.


[0635] Subsequently, the total mass Mf of the submergence aggregate is measured (step 1403). The total mass Mf of the submergence aggregate can be obtained by subtracting a measurement value of an empty measurement tank containing no submergence aggregate from a measurement value of the measurement tank filled with the submergence aggregate.


[0636] Subsequently, summation ΣMai (i=1, 2), that is, total mass of the aggregates A and B in the saturated surface-dried condition and mass Mw of water are calculated from the measured total mass Mf of the submergence aggregate by solving the following formulas (step 1404).


ΣMai (i=1, 2)+Mw=Mf  (25)


ΣMai (i=1, 2)/ρave+Mww=Vf  (26)


[0637] where ρa1 is the density of the fine aggregate A in the saturated surface-dried condition, ρa2 is the density of the fine aggregate B in the saturated surface-dried condition, and ρw is the density of the water.


[0638] After measuring and calculating the mass Mw of the water and the summation ΣMai (i=1, 2), that is, the total mass of the fine aggregates A and B in the saturated surface-dried condition as mentioned above, these values are compared with mix proportions shown by the specified mix, respectively. Thereafter, the insufficiency is measured and then the submergence aggregate is supplemented with additional water or aggregate when needed so as to let the aggregates and the water be concrete materials. If there is too much water, the excess water is sucked and removed with a vacuum or the like (step 1405).


[0639] As set forth hereinabove, according to the measuring method of concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate A and that of the fine aggregate B can be calculated as the summation ΣMai (i=1, 2), that is, the total mass of the fine aggregates in the saturated surface-dried condition. In other words, since the mass of the fine aggregates and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0640] In addition, even if the fine aggregates A and B differ from each other in the density, the grading, or the like, they can be measured in a single measurement tank efficiently and very accurately.


[0641] Furthermore, according to the measuring method of concrete materials of this embodiment, the fine aggregates A and B are thrown into the measurement tank at a time so that the water overflows the measurement tank, by which the total volume Vf of the submergence aggregate is maintained at a steady value that is an internal volume of the measurement tank in the overflow condition and therefore the total volume Vf of the submergence aggregate need not be measured every time.


[0642] While the total volume Vf of the submergence aggregate is maintained at the steady value by causing the water to overflow the measurement tank in this embodiment as mentioned above, the total volume Vf of the submergence aggregate can be measured by using an electrode-type displacement sensor or the like, instead.


[0643] The electrode-type displacement sensor can be one capable of measuring a water level of the submergence aggregate by monitoring a change in the energized condition when a lower end of a detection electrode contacts the water surface of the submergence aggregate in the measurement tank, for example.


[0644] Furthermore, while this embodiment has been described by giving the example of fine aggregate of two kinds, naturally aggregate of an arbitrary number of kinds can be used. This method is applicable to a measurement of coarse aggregate and also applicable to a combination of fine aggregate and coarse aggregate.


[0645] A correction of the air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the known total volume Vf should be multiplied by (1−a/100). For example, the following formula may be used instead of formula (26).


ΣMai (i=1 to N)/ρave+Mww=Vf∘(1−a/100)


[0646] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded.


[0647] Furthermore, the following should be noted though it has not been particularly noted in this embodiment. If there is a possibility that the aggregates thrown into the measurement tank will emerge from the water and will not be submergence aggregate, the vibrator is lowered during or after throwing the fine aggregates A and B and operated in this condition. Thereby, the fine aggregates A and B thrown into the measurement tank can be leveled by vibration of the vibrator, so that the fine aggregates A and B are submerged in the water. Before measuring a mass of the submergence aggregate, the vibrator is raised and put in a standby state until the next measurement in the upward location.


[0648] While the following has not been particularly noted in this embodiment, if the summation ΣMawi (i=1 to N) that is the total mass of a plurality of aggregates of the i-th kind (i=1 to N) in wet condition is previously measured, the average percentage of surface moisture can be calculated from the following formula.


(ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (27)


[0649] Referring to FIG. 39, there is shown a flowchart of a procedure for the measuring method according to this modification.


[0650] This modification shown in FIG. 39 is described by giving an example of using two fine aggregates A and B in the same manner as for the above embodiment. First, measurements are made previously on summation ΣMawi (i=1, 2) of the fine aggregates A and B in wet condition (step 1411).


[0651] On the other hand, in the same manner as for the above embodiment, a mean-density of the whole aggregate ρave is calculated from a mass ratio of the fine aggregate A to the fine aggregate B and the densities ρai (i=1, 2) of the fine aggregate A and the fine aggregate B in the saturated surface-dried condition (step 1401).


[0652] Subsequently, water is thrown into the measurement tank and the fine aggregates A and B are thrown at a time into the measurement tank so that the aggregates A and B are submerged in water as submergence aggregate and so that the water overflows the measurement tank (step 1402).


[0653] Hereinafter, in the same manner as for the above embodiment, the total mass Mf of the submergence aggregate is measured (step 1403). The summation ΣMai, that is, the total mass of the aggregates A and B in the saturated surface-dried condition and the mass Mw of the water are calculated from the measured total mass Mf of the submergence aggregate by using the formulas (25) and (26) (step 1404).


[0654] Percentages of surface moisture of the fine aggregates A and B are then calculated from the following formula by using the calculated summation ΣMai (i=1, 2), that is, the total mass of the fine aggregates A and B in the saturated surface-dried condition and the previously measured summation ΣMawi (i=1, 2), that is, the total mass of the fine aggregates A and B in wet condition (step 1412).


(ΣMawi (i=1, 2)−ΣMai (i=1, 2)/ΣMai (i=1, 2)  (27)


[0655] Subsequently, the calculated mass Mw of the water and the mass Mai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition are compared with mix proportions shown by the specified mix, respectively, and the insufficiency is measured. The submergence aggregate is supplemented with additional water if the water is needed or with additional fine aggregates if the fine aggregates are needed, taking into consideration the surface water on the basis of the percentages of surface moisture calculated in step 1412. The aggregates and the water are then treated as concrete materials. If there is too much water, the excess water is sucked and removed with a vacuum or the like (step 1413).


[0656] Furthermore, if the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are previously measured as accumulation values similarly, ΣMawi (i=1 to N) is calculated from the following formula.


ΣMawi (i=1 to N)=Mf−(MI−MO)  (28)


[0657] An average percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) can be calculated by substituting ΣMawi (i=1 to N) for the following formula.


(ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (27)


[0658] Referring to FIG. 40, there is shown a flowchart of a procedure for the measuring method according to the modification. In the measuring method, two fine aggregates A and B are used, for example. First, in the same manner as for the above embodiment, the mean-density ρave is calculated from the mass ratio of the fine aggregate A to the fine aggregate B and the density ρai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition (step 1401).


[0659] Water is then thrown into the measurement tank and the fine aggregates A and B are thrown into the measurement tank at a time so that the fine aggregates A and B are submerged in water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with the submergence aggregate. In parallel to the above processing, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are measured (step 1421).


[0660] Thereafter, total mass Mf of the submergence aggregate is measured in the same manner as for the above embodiment (step 1403) and the summation ΣMai (i=1, 2), that is, the total mass of the fine aggregates A and B in the saturated surface-dried condition and the mass Mw of the water are calculated from the measured total mass Mf of the submergence aggregate by using the formulas (25) and (26) (step 1404).


[0661] Subsequently, ΣMawi (i=1, 2) is calculated by using the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank from the following formula.


ΣMawi (i=1, 2)=Mf−(MI−MO)  (28)


[0662] An average percentage of surface moisture of the fine aggregates A and B is calculated by substituting the ΣMawi for the following formula (step 1422).


(ΣMawi (i=1, 2)−ΣMai (i=1, 2))/ΣMai (i=1, 2)  (27)


[0663] Subsequently, the mass Mw of the water and the summation ΣMai (i=1, 2), that is, the total mass of the fine aggregates A and B in the saturated surface-dried condition are compared with mix proportions shown by the specified mix, respectively, and the insufficiency is measured. The submergence aggregate is supplemented with additional water if the water is needed or with additional fine aggregates if the fine aggregates are needed, taking into consideration the surface water on the basis of the percentages of surface moisture calculated in step 1422. The aggregates and the water are then treated as concrete materials. If there is too much water, the excess water is sucked and removed with a vacuum or the like (step 1423).


[0664] [Ninth Embodiment]


[0665] Referring to FIG. 41, there is shown a flowchart of a procedure for a measuring method of concrete materials according to a ninth embodiment. The embodiment will now be described by giving an example of using fine aggregate of two kinds A and B. The measuring method of concrete materials according to this embodiment can be implemented by selecting appropriate one from the above measuring apparatuses.


[0666] As apparent from FIG. 41, in the measuring method of concrete materials according to this embodiment, the fine aggregate A as aggregate of a first kind and the fine aggregate B as aggregate of a second kind are measured in wet condition, first (step 1431).


[0667] Subsequently, mean-density ρave of the whole aggregate is calculated from a mass ratio of the fine aggregate A to the fine aggregate B and density ρai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition (step 1432).


[0668] The fine aggregates A and B can be stored in a predetermined storage hopper collectively in a condition where the mass ratio is known. Otherwise, two storage hoppers can be prepared to measure the fine aggregates A and B individually and to calculate the mass ratio at that time.


[0669] Water is then thrown into a submergence aggregate container (step 1433).


[0670] The submergence aggregate container may be formed, for example, in a shape of a hollow truncated cone so that a bore of the submergence aggregate container gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the submergence aggregate container can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the submergence aggregate container even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0671] Subsequently, the fine aggregates A and B are thrown into the submergence aggregate container so that the fine aggregates A and B are submerged in water and so that the water overflows the submergence aggregate container to fill the submergence aggregate container with the submergence aggregate. In addition, an amount of supplied water MI to the submergence aggregate is measured as an accumulation value, while measuring an amount of discharged water MO from the submergence aggregate container as an accumulation value (step 1434).


[0672] If the water and the fine aggregate A are thrown into the submergence aggregate container in this manner, a water level at which the water overflows the submergence aggregate container is predetermined. Therefore, if the submergence aggregate container is filled with the submergence aggregate as mentioned above, total volume Vf of the submergence aggregate equal to a known value is obtained without measurement.


[0673] When throwing the fine aggregates A and B into the submergence aggregate container at a time, preferably the aggregate is conveyed to the submergence aggregate container by using a vibrating feeder having an electromagnetic vibrator, for example.


[0674] Subsequently, summation ΣMai (i=1, 2), that is, total mass of the aggregates A and B in the saturated surface-dried condition and mass Mw of water in the submergence aggregate are calculated from the following two formulas.


ΣMai (i=1, 2)+Mw=ΣMawi (i=1, 2)+(MI−MO)  (29)


ΣMai (i=1, 2)/ρave+Mww=Vf  (30)


[0675] where ρw is the density of the water. In addition, an average percentage of surface moisture of the fine aggregates A and B is calculated from the following formula (step 1435).


(ΣMawi (i=1, 2)−ΣMai (i=1, 2)/ΣMai (i=1, 2)  (31)


[0676] By comparing the mass Mw of the water and the summation ΣMai (i=1, 2), that is, the total mass of the fine aggregates A and B in the saturated surface-dried condition calculated as mentioned above with mix proportions shown by the specified mix, respectively, the insufficiency is measured. The submergence aggregate is then supplemented with additional water if the water is needed or with additional aggregate if the aggregate is needed, taking into consideration the surface water on the basis of the calculated average percentage of surface moisture, so as to let the aggregates and the water be concrete materials. If there is too much water, the excess water is sucked and removed with a vacuum or the like (step 1436).


[0677] As set forth hereinabove, according to the measuring method of concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate A and that of the fine aggregate B can be calculated as the summation ΣMai (i=1, 2), that is, the total mass of the fine aggregates A and B in the saturated surface-dried condition. In other words, since the mass of the fine aggregates and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0678] In addition, even if the fine aggregates A and B differ from each other in the density, the grading, or the like, they can be measured in a single submergence aggregate container efficiently and very accurately.


[0679] Furthermore, the percentages of surface moisture of the fine aggregates A and B can also be calculated, by which it is possible to take into consideration the surface water by using the calculated percentages of surface moisture when the submergence aggregate is supplemented with the fine aggregates.


[0680] Furthermore, while this embodiment has been described by giving the example of fine aggregate of two kinds, naturally aggregate of an arbitrary number of kinds can be used. This method is applicable to a measurement of coarse aggregate and also applicable to a combination of fine aggregate and coarse aggregate.


[0681] A correction of the air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the known total volume Vf should be multiplied by (1−a/100).


[0682] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded.


[0683] Furthermore, the following should be noted though it has not been particularly noted in this embodiment. If there is a possibility that the aggregates thrown into the submergence aggregate container will emerge from the water and will not be submergence aggregate, the vibrator is lowered during or after throwing the fine aggregates A and B and operated in this condition. Thereby, the fine aggregates A and B thrown into the submergence aggregate container can be leveled by vibration of the vibrator, so that the fine aggregates A and B are submerged in the water. Before measuring a mass of the submergence aggregate, the vibrator is raised and put in a standby state until the next measurement in the upward location.


[0684] [10th Embodiment]


[0685] Referring to FIG. 42, there is shown a flowchart of a procedure for a measuring method of concrete materials according to a 10th embodiment. The measuring method of concrete materials according to this embodiment can be implemented by selecting appropriate one from the above measuring apparatuses.


[0686] As apparent from FIG. 42, in the measuring method of concrete materials according to this embodiment, water and fine aggregate are thrown into a measurement tank so that the fine aggregate, namely, aggregate is submerged in water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with the submergence aggregate (step 1501).


[0687] When throwing the fine aggregate and water into the measurement tank, preferably the water is thrown earlier and the fine aggregate is thrown later to prevent the submergence aggregate from being mixed with air bubbles. In addition, if the fine aggregate is not directly thrown into the measurement tank, but conveyed to the measurement tank by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[0688] The measurement tank may be formed, for example, in a shape of a hollow truncated cone so that a bore of the measurement tank gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0689] If the water and the fine aggregate are thrown into the measurement tank in this manner, a water level at which the water overflows the measurement tank is predetermined. Therefore, if the measurement tank is filled with the submergence aggregate as mentioned above, total volume Vf of the submergence aggregate equal to a known value is obtained without measurement.


[0690] Subsequently, the total mass Mf of the submergence aggregate is measured (step 1502). The total mass Mf of the submergence aggregate can be obtained by subtracting a measurement value of an empty measurement tank containing no submergence aggregate from a measurement value of the measurement tank filled with the submergence aggregate.


[0691] Subsequently, mass Ma of the fine aggregate in the saturated surface-dried condition and mass Mw of the water are calculated from the measured total mass Mf of the submergence aggregate by using the following formulas (step 1503).




M


a


+M


w


=M


f
  (1)





M


a
a+Mww=Vf  (2)



[0692] where ρa is the density of the fine aggregate in the saturated surface-dried condition and ρw is the density of the water.


[0693] When measuring the fine aggregate in the procedure mentioned above, the aggregate is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf of the submergence aggregate in real time or at predetermined time intervals repeatedly (steps 1501 to 1503) until the mass Ma of the aggregate in the saturated surface-dried condition reaches a scheduled input (step 1504, NO).


[0694] Thereafter, when the mass Ma of the fine aggregate in the saturated surface-dried condition reaches the scheduled input (step 1504, YES), throwing the fine aggregate is terminated.


[0695] After measuring the fine aggregate of the scheduled input, the mass Mw of the water at the termination of throwing the fine aggregate is compared with the mix proportion of water shown by the specified mix. If the water is insufficient, required water is added. If there is too much water, the excess water is sucked and removed with a vacuum or the like, for example. The aggregate and the water are then treated as concrete materials (step 1505).


[0696] As set forth hereinabove, according to the measuring method of concrete materials of this embodiment, the surface water of the fine aggregate can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate can be calculated as the mass Ma of the fine aggregate in the saturated surface-dried condition. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0697] Furthermore, the fine aggregate is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf of the submergence aggregate in real time or at predetermined time intervals and throwing the fine aggregate is terminated when the mass Ma of the fine aggregate in the saturated surface-dried condition reaches the scheduled input. Therefore, there is no possibility of excess or deficiency in the measurement of fine aggregate, thereby improving the efficiency of measuring aggregate.


[0698] Still further, according to the measuring method of concrete materials of this embodiment, the fine aggregate is thrown into the measurement tank so that the water overflows the measurement tank, the total volume Vf of the submergence aggregate is maintained at a steady value that is an internal volume of the measurement tank in the overflow condition and therefore the total volume Vf of the submergence aggregate need not be measured every time.


[0699] While the total volume Vf of the submergence aggregate is maintained at the steady value by causing the water to overflow the measurement tank in this embodiment as mentioned above, the total volume Vf of the submergence aggregate can be measured by using an electrode-type displacement sensor or the like, instead.


[0700] The electrode-type displacement sensor can be one capable of measuring a water level of the submergence aggregate by monitoring a change in the energized condition when a lower end of a detection electrode contacts the water surface of the submergence aggregate in the measurement tank, for example.


[0701] A correction of an air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the known total volume Vf should be multiplied by (1−a/100). For example, the following formula may be used instead of formula (2).




M


a
a+Mww=Vf∘(1−a/100)



[0702] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded.


[0703] Furthermore, the following should be noted though it has not been particularly noted in this embodiment. If there is a possibility that the aggregate thrown into the measurement tank will emerge from the water and will not be submergence aggregate, the vibrator is lowered during or after throwing the fine aggregate and operated in this condition. Thereby, the fine aggregate thrown into the measurement tank can be leveled by vibration of the vibrator, so that the fine aggregate is submerged in the water. Before measuring amass of the submergence aggregate, the vibrator is raised and put in a standby state until the next measurement in the upward location.


[0704] While the following has not been particularly noted in this embodiment, the percentage of surface moisture of the fine aggregate can be calculated by measuring an amount of supplied water MI to the measurement tank and an amount of discharged water MO from the measurement tank as accumulation values.


[0705] Referring to FIG. 43, there is shown a flowchart of a procedure for the measuring method according to this modification. In the measuring method, in the same manner as for the embodiment, water is thrown into the measurement tank, first, and fine aggregate is thrown into the measurement tank so that the fine aggregate is submerged in the water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with the submergence aggregate. In parallel to the above processing, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are measured as accumulation values (step 1511).


[0706] Thereafter, total mass Mf of the submergence aggregate is measured in the same manner as for the above embodiment (step 1502) and the mass Ma of the fine aggregate in the saturated surface-dried condition and the mass Mw of the water are calculated from the measured total mass Mf of the submergence aggregate by using the formulas (1) and (2) (step 1503). In measuring the fine aggregate in the above procedure, the fine aggregate is thrown into the measurement tank at a predetermined speed continuously or intermittently here, too, while measuring the total mass Mf of the submergence aggregate in real time or at predetermined time intervals repeatedly (steps 1511, 1502, 1503), until the mass Ma of the aggregate in the saturated surface-dried condition reaches a scheduled input (step 1512, NO).


[0707] When the mass Ma of the fine aggregate in the saturated surface-dried condition reaches the scheduled input (step 1512, YES), throwing the fine aggregate is terminated.


[0708] After measuring the fine aggregate of the scheduled input, the mass Mw of the water at the termination of throwing the fine aggregate is compared with mix proportion of water shown by the specified mix. If the water is insufficient, required water is added. If there is too much water, excess water is sucked and removed with a vacuum or the like, for example. The aggregate and the water are then treated as concrete materials (step 1505).


[0709] On the other hand, mass Maw of the fine aggregate in wet condition is calculated by using the total mass Mf of the submergence aggregate at the termination of throwing the fine aggregate, the amount of supplied water MI to the measurement tank, and the amount of discharged water MO from the measurement tank from the following formula.




M


aw


=M


f
−(MI−MO)  (4)



[0710] A percentage of surface moisture of the fine aggregate is calculated by substituting the above Maw for the following formula (step 1516).


(Maw−Ma)/Ma  (3)


[0711] In this constitution, the calculated percentage of surface moisture can be used as a measure of an amount of thrown water for the next measurement.


[0712] [11th Embodiment]


[0713] Referring to FIGS. 44 and 45, there is shown a flowchart a procedure for a measuring method of concrete materials according to a 11th embodiment. This embodiment will now be described on the assumption that two fine aggregates A and B are thrown cumulatively and that an aggregate input reaches a scheduled input during the throwing operation of the fine aggregate B. The measuring method of concrete materials according to this embodiment can be implemented by selecting appropriate one from the measuring apparatuses mentioned above.


[0714] As apparent from FIGS. 44 and 45, in the measuring method of concrete materials according to this embodiment, water and the fine aggregate A are thrown into a measurement tank first so that the fine aggregate A is submerged in water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with the submergence aggregate (step 1521).


[0715] The measurement tank may be formed, for example, in a shape of a hollow truncated cone so that a bore of the measurement tank gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0716] If the water and the fine aggregate A are thrown into the measurement tank in this manner, a water level at which the water overflows the measurement tank is predetermined. Therefore, if the measurement tank is filled with the submergence aggregate as mentioned above, total volume Vf of the submergence aggregate equal to a known value is obtained without measurement.


[0717] Subsequently, the total mass Mf1 of the submergence aggregate is measured (step 1522). The total mass Mf1 of the submergence aggregate can be obtained by subtracting a measurement value of an empty measurement tank containing no submergence aggregate from a measurement value of the measurement tank filled with the submergence aggregate.


[0718] Subsequently, mass Ma1 of the fine aggregate A in the saturated surface-dried condition is calculated from the measured total mass Mf1 of the submergence aggregate by using the following formulas (step 1523).




M


a1


+M


w


=M


f1
  (7)





M


a1
a1+Mww=Vf  (8)



[0719] where ρa1 is the density of the fine aggregate A in the saturated surface-dried condition and ρw is the density of the water.


[0720] When measuring the fine aggregate A in the procedure mentioned above, the aggregate A is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf1 of the submergence aggregate in real time or at predetermined time intervals repeatedly until the mass Ma1 of the aggregate A in the saturated surface-dried condition reaches a scheduled input. In this embodiment, however, it is assumed that the aggregate input will not reach the scheduled input even after a completion of throwing all the fine aggregate A. Therefore, the aggregate of the second kind, namely, the fine aggregate B is thrown into the measurement tank so that the fine aggregate B is submerged in water as submergence aggregate and so that the water overflows the measurement tank (step 1524).


[0721] When throwing the fine aggregates A and B and water into the measurement tank, preferably the water is thrown earlier and the fine aggregates A and B are thrown later to prevent the submergence aggregate from being mixed with air bubbles. In addition, if the fine aggregates A and B are not directly thrown into the measurement tank, but conveyed to the measurement tank by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregates thus air bubble mixing.


[0722] Total mass Mf2 of the submergence aggregate is then measured (step 1525).


[0723] Subsequently, mass Ma2 of the fine aggregate B in the saturated surface-dried condition and mass Mw of the water are calculated from the measured total mass Mf2 of the submergence aggregate by using the following formulas (step 1526).




M


a1


+M


a2


+M


w


=M


f2
  (9)





M


a1
a1+Ma2a2+Mww=Vf  (10)



[0724] where ρa2 is the density of the fine aggregate B in the saturated surface-dried condition.


[0725] In measuring the fine aggregate B in the above procedure, the fine aggregate B is thrown into the measurement tank at a predetermined speed continuously or intermittently, while measuring the total mass Mf of the submergence aggregate in real time or at predetermined time intervals repeatedly (steps 1524 to 1526), until summation ΣMai (i=1, 2), which is total mass of the fine aggregates A and B thrown by then in the saturated surface-dried condition, reaches the scheduled input (step 1527, NO).


[0726] When the summation ΣMai (i=1, 2), which is the total mass of the thrown fine aggregates A and B in the saturated surface-dried condition, reaches the scheduled input (step 1527, YES), throwing the fine aggregate B is terminated in the middle of the throwing operation.


[0727] If measuring the aggregate of the scheduled input is accomplished in the middle of throwing the fine aggregate B as mentioned above, the mass Mw of the water at the termination of throwing the aggregate is compared with mix proportion of water shown by the specified mix. If the water is insufficient, required water is added. If there is too much water, excess water is sucked and removed with a vacuum or the like, for example. The aggregate and the water are then treated as concrete materials (step 1528).


[0728] As set forth hereinabove, according to the measuring method of concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate A and the mass of the fine aggregate B can be calculated as the mass Mai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0729] Furthermore, the fine aggregates A an B are thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mfi (i=1, 2) of the submergence aggregate in real time or at predetermined time intervals. In addition, throwing the fine aggregate is terminated when the mass Mai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition reaches the scheduled input. Therefore, there is no possibility of excess or deficiency in the measurement of fine aggregates, thereby improving the efficiency of measuring aggregate.


[0730] Even if the fine aggregates A and B differ from each other in the density, the grading, or the like, they can be measured in a single measurement tank efficiently and very accurately.


[0731] Still further, according to the measuring method of concrete materials of this embodiment, the fine aggregates A and B are thrown into the measurement tank so that the water overflows the measurement tank, the total volume Vfi (i=1, 2) of the submergence aggregate is maintained at a steady value Vf that is an internal volume of the measurement tank in the overflow condition and therefore the total volume Vfi (i=1, 2) of the submergence aggregate need not be measured every time.


[0732] While the total volume Vfi (i=1, 2) of the submergence aggregate is maintained at the steady value Vf by causing the water to overflow the measurement tank in this embodiment as mentioned above, the total volume Vfi (i=1, 2) of the submergence aggregate can be measured by using an electrode-type displacement sensor or the like, instead.


[0733] The electrode-type displacement sensor can be one capable of measuring a water level of the submergence aggregate by monitoring a change in the energized condition when a lower end of a detection electrode contacts the water surface of the submergence aggregate in the measurement tank, for example.


[0734] Furthermore, while this embodiment has been described by giving the example of fine aggregate of two kinds, naturally aggregate of an arbitrary number of kinds can be used. This method is applicable to a measurement of coarse aggregate and also applicable to a combination of fine aggregate and coarse aggregate.


[0735] A correction of an air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the known total volume Vf should be multiplied by (1−a/100). For example, the following formula may be used instead of formula (8).




M


a1
a1+Mww=Vf1∘(1−a/100)



[0736] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded.


[0737] Furthermore, the following should be noted though it has not been particularly noted in this embodiment. If there is a possibility that the fine aggregate thrown into the measurement tank will emerge from the water and will not be submergence aggregate, the vibrator is lowered during or after throwing the fine aggregate A or B and operated in this condition. Thereby, the fine aggregate A or B thrown into the measurement tank can be leveled by vibration of the vibrator, so that the fine aggregate is submerged in the water. Before measuring a mass of the submergence aggregate, the vibrator is raised and put in a standby state until the next measurement in the upward location.


[0738] While the following has not been particularly noted in this embodiment, if an amount of supplied water MI to the measurement tank and an amount of discharged water MO from the measurement tank are previously measured as accumulation values, ΣMawj (j=1 to i) can be calculated from the following formula.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


[0739] Mawi is then calculated from the following formula.


ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0740] Thereafter, the percentages of surface moisture of the aggregate of the i-th kind (i=1 to N) can be calculated by substituting Mawi for the following formula.


(Mawi−Mai)/Mai  (13)


[0741] Referring to FIGS. 46 and 47, there is shown a flowchart of a procedure for the measuring method according to this modification. The measuring method will be described by giving an example of using fine aggregate of two kinds A and B on the assumption that an input of the fine aggregate B reaches a scheduled input in the same manner as for the embodiment.


[0742] In this modification, water is thrown into the measurement tank, first, and the fine aggregate A is then thrown into the measurement tank so that it is submerged in water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with the submergence aggregate. In parallel to the above processing, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are measured (step 1531).


[0743] Thereafter, total mass Mf1 of the submergence aggregate is measured in the same manner as for the above embodiment (step 1522). The mass Ma1 of the fine aggregate A in the saturated surface-dried condition is then calculated from the measured total mass Mf1 of the submergence aggregate by using the formulas (7) and (8) (step 1523).


[0744] Subsequently, ΣMawj (j=1), namely, Maw1 is calculated by using the amount of supplied water MI and the amount of discharged water MO from the following formula.


ΣMawj (j=1)=Mf1−(MI−MO)  (14)


[0745] Thereafter, the percentage of surface moisture of the aggregate A is calculated by substituting Maw1 for the following formula (step 1532).


(Maw1−Ma1)/Ma1  (13)


[0746] Subsequently, the fine aggregate B is thrown into the measurement tank so that it is submerged in water as submergence aggregate and so that the water overflows the measurement tank in the same manner as for the embodiment (step 1524). Total mass Mf2 of the submergence aggregate is measured (step 1525). Then, mass Ma2 of the fine aggregate B in the saturated surface-dried condition and mass Mw of the water are calculated from the measured total mass Mf2 of the submergence aggregate by using the formulas (9) and (10) (step 1526).


[0747] In measuring the fine aggregate B in the above procedure, the fine aggregate B is thrown into the measurement tank at a predetermined speed continuously or intermittently, while measuring the total mass Mf2 of the submergence aggregate in real time or at predetermined time intervals repeatedly (steps 1524 to 1526), until the summation ΣMai (i=1, 2), which is the total mass of the fine aggregates A and B thrown by then in the saturated surface-dried condition, reaches the scheduled input (step 1527, NO).


[0748] When the summation ΣMai (i=1, 2) of the thrown fine aggregates A and B in the saturated surface-dried condition reaches the scheduled input (step 1527, YES), throwing the fine aggregate B is terminated in the middle of the operation.


[0749] Subsequently, ΣMawj (j=1, 2) is calculated by using the amount of supplied water MI and the amount of discharged water MO at the termination of throwing the fine aggregate B from the following formula.


ΣMawj (j=1, 2)=Mf2−(MI−MO)  (14)


[0750] Maw2 is then calculated from the following formula.


ΣMawj (j=1, 2)−ΣMawj (j=1)  (15)


[0751] Furthermore, a percentage of surface moisture of the fine aggregate B is calculated by substituting Maw2 for the following formula (step 1533).


(Maw2−Ma2)/Ma2  (13)


[0752] Thereafter, by comparing the mass Mw of the water, the mass Ma1 of the fine aggregate A in the saturated surface-dried condition, and the mass Ma2 of the fine aggregate B in the saturated surface-dried condition calculated in the above with mix proportions shown by the specified mix, the insufficiency is measured. If the water is insufficient, required water is added. If the fine aggregate is insufficient, required fine aggregate is added to the above submergence aggregate, taking into consideration the surface water on the basis of the percentage of surface moisture calculated in step 1533, so as to let the water and the fine aggregates be concrete materials. If there is too much water, excess water is sucked and removed with a vacuum or the like, for example (step 1534).


[0753] [12th Embodiment]


[0754] Referring to FIG. 48, there is shown a flowchart of a procedure for a measuring method of concrete materials according to a 12th embodiment. The measuring method of concrete materials according to this embodiment can be implemented by selecting appropriate one from the above measuring apparatuses.


[0755] As apparent from FIG. 48, the embodiment will now be described by giving an example of using fine aggregate of two kinds A and B. Mean-density of the whole aggregate ρave is first calculated from a mass ratio of the fine aggregate A as aggregate of a first kind to the fine aggregate B as aggregate of a second kind and density ρai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition (step 1541).


[0756] The fine aggregates A and B can be stored in a predetermined storage hopper collectively in a condition where the mass ratio is known. Otherwise, two storage hoppers can be prepared individually to calculate the mass ratio from the speed at which the aggregates are conveyed from the location beneath them to the measurement tank. Contrarily, the conveyance speed can be adjusted so as to achieve the target mass ratio.


[0757] Subsequently, water is thrown into the measurement tank and the fine aggregates A and B are thrown at a time into the measurement tank so that the fine aggregates A and B are submerged in the water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with the submergence aggregate (step 1542).


[0758] The measurement tank may be formed, for example, in a shape of a hollow truncated cone so that a bore of the measurement tank gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0759] When throwing the fine aggregates A and B at a time into the measurement tank, preferably the water is thrown earlier and the fine aggregates A and B are thrown later at a time to prevent the submergence aggregate from being mixed with air bubbles. In addition, if the fine aggregates A and B are conveyed to the measurement tank by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregates thus air bubble mixing.


[0760] If the water and the fine aggregates A and B are thrown into the measurement tank in this manner, a water level at which the water overflows the measurement tank is predetermined. Therefore, if the measurement tank is filled with the submergence aggregate as mentioned above, total volume Vf of the submergence aggregate equal to a known value is obtained without measurement.


[0761] Subsequently, the total mass Mf of the submergence aggregate is measured (step 1543). The total mass Mf of the submergence aggregate can be obtained by subtracting a measurement value of an empty measurement tank containing no submergence aggregate from a measurement value of the measurement tank filled with the submergence aggregate.


[0762] Subsequently, summation ΣMai (i=1, 2), that is, total mass of the aggregates A and B in the saturated surface-dried condition and mass Mw of water are calculated from the measured total mass Mf of the submergence aggregate by solving the following formulas (step 1544).


ΣMai (i=1, 2)+Mw=Mf  (25)


ΣMai (i=1, 2)/ρave+Mww=Vf  (26)


[0763] When measuring the fine aggregates A and B in the procedure mentioned above, the aggregates are thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf of the submergence aggregate in real time or at predetermined time intervals repeatedly (steps 1542 to 1544) until the summation ΣMai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition reaches a scheduled input (step 1545, NO).


[0764] Thereafter, when the summation ΣMai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition reaches the scheduled input (step 1545, YES), throwing the fine aggregates A and B is terminated in the middle.


[0765] After measuring the fine aggregate of the scheduled input, the mass Mw of the water at the termination of throwing the fine aggregates is compared with the mix proportion of water shown by the specified mix. If the water is insufficient, required water is added. If there is too much water, the excess water is sucked and removed with a vacuum or the like, for example. The aggregates and the water are then treated as concrete materials (step 1546).


[0766] As set forth hereinabove, according to the measuring method of concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate can be calculated as the summation ΣMai (i=1, 2) of the aggregates A and B in the saturated surface-dried condition. In other words, since the mass of the fine aggregates and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete with water of the amount as shown by the specified mix.


[0767] Furthermore, the fine aggregate is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf of the submergence aggregate in real time or at predetermined time intervals, and throwing the fine aggregate is terminated when the summation ΣMai (i=1, 2) of the aggregates A and B in the saturated surface-dried condition reaches the scheduled input. Therefore, there is no possibility of excess or deficiency in the measurement of fine aggregates, thereby improving the efficiency of measuring aggregate.


[0768] Even if the fine aggregates A and B differ from each other in the density, the grading, or the like, they can be measured in a single measurement tank efficiently and very accurately.


[0769] Still further, according to the measuring method of concrete materials of this embodiment, the fine aggregates A and B are thrown into the measurement tank at a time so that the water overflows the measurement tank, the total volume Vf of the submergence aggregate is maintained at a steady value that is an internal volume of the measurement tank in the overflow condition and therefore the total volume Vf of the submergence aggregate need not be measured every time.


[0770] While the total volume Vf of the submergence aggregate is maintained at the steady value by causing the water to overflow the measurement tank in this embodiment as mentioned above, the total volume Vf of the submergence aggregate can be measured by using an electrode-type displacement sensor or the like, instead.


[0771] The electrode-type displacement sensor can be one capable of measuring a water level of the submergence aggregate by monitoring a change in the energized condition when a lower end of a detection electrode contacts the water surface of the submergence aggregate in the measurement tank, for example.


[0772] Furthermore, while this embodiment has been described by giving the example of fine aggregate of two kinds, naturally aggregate of an arbitrary number of kinds can be used. This method is applicable to a measurement of coarse aggregate and also applicable to a combination of fine aggregate and coarse aggregate.


[0773] A correction of an air content has not been described particularly in this embodiment. If the air content a (%) of the submergence aggregate is considered, however, the known total volume Vf should be multiplied by (1−a/100). For example, the following formula may be used instead of formula (26).


ΣMai (i=1 to N)/ρave+Mww=Vf∘(1−a/100)


[0774] This enables more accurate measurement since actual total volume is used for the measurement with the air content excluded.


[0775] Furthermore, the following should be noted though it has not been particularly mentioned in this embodiment. If there is a possibility that the aggregates thrown into the measurement tank will emerge from the water and will not be submergence aggregate, the vibrator is lowered during or after throwing the fine aggregates A and B and operated in this condition. Thereby, the fine aggregates A and B thrown into the measurement tank can be leveled by vibration of the vibrator, so that the fine aggregates are submerged in the water. Before measuring a mass of the submergence aggregate, the vibrator is raised and put in a standby state until the next measurement in the upward location.


[0776] While the following has not been particularly mentioned in this embodiment, the percentage of surface moisture of the aggregates of the i-th kind (i=1 to N) can be calculated by measuring an amount of supplied water MI to the measurement tank and an amount of discharged water MO from the measurement tank as accumulation values.


[0777] Referring to FIG. 49, there is shown a flowchart of a procedure for the measuring method according to this modification. The measuring method will be described by giving an example of using fine aggregate of two kinds A and B. In the same manner as for the above embodiment, a mean-density of the whole aggregate ρave is calculated from a mass ratio of the fine aggregate A to the fine aggregate B and the densities ρai (i=1, 2) of the fine aggregate A and the fine aggregate B in the saturated surface-dried condition (step 1541).


[0778] Subsequently, water is thrown into the measurement tank and the fine aggregates A and B are thrown into the measurement tank at a time so that the fine aggregates A and B are submerged in the water as submergence aggregate and so that the water overflows the measurement tank to fill the measurement tank with the submergence aggregate. In parallel to the above processing, the amount of supplied water MI to the measurement tank and the amount of discharged water MO from the measurement tank are measured (step 1551).


[0779] Thereafter, total mass Mf of the submergence aggregate is measured in the same manner as for the above embodiment (step 1543) and the summation ΣMai (i=1, 2), that is, the total mass of the fine aggregates A and B in the saturated surface-dried condition and the mass Mw of the water are calculated from the measured total mass Mf of the submergence aggregate by using the formulas (25) and (26) (step 1544).


[0780] When measuring the fine aggregates A and B in the procedure mentioned above, the aggregates are thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf of the submergence aggregate in real time or at predetermined time intervals repeatedly (steps 1551, 1543, and 1544) until the summation ΣMai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition reaches a scheduled input (step 1545, NO).


[0781] Thereafter, when the summation ΣMai (i=1, 2) of the fine aggregates A and B in the saturated surface-dried condition reaches the scheduled input (step 1545, YES), throwing the fine aggregates A and B is terminated in the middle.


[0782] After measuring the fine aggregates of the scheduled input, the mass Mw of the water at the termination of throwing the fine aggregates is compared with the mix proportion of water shown by the specified mix. If the water is insufficient, required water is added. If there is too much water, the excess water is sucked and removed with a vacuum or the like, for example. The aggregates and the water are then treated as concrete materials (step 1546).


[0783] On the other hand, ΣMawi (i=1, 2) is calculated by using the total mass Mf of the submergence aggregate at the termination of throwing the fine aggregates, the amount of supplied water MI to the measurement tank, and the amount of discharged water MO from the measurement tank with the following formula.


ΣMawi (i=1, 2)=Mf−(MI−MO)  (28)


[0784] Thereafter, an average percentage of surface moisture of the fine aggregates is calculated by substituting ΣMawi (i=1, 2) for the following formula (step 1552).


(ΣMawi (i=1, 2)−ΣMai (i=1, 2)/ΣMai (i=1, 2)  (27)


[0785] According to this constitution, the calculated percentage of surface moisture can be used as a standard of the water input for the subsequent measurement.


[0786] [13th Embodiment]


[0787] Referring to FIGS. 50 and 51, there is shown a flowchart of a procedure for a measuring method of concrete materials according to a 13th embodiment. The measuring method of concrete materials according to this embodiment can be implemented by selecting an appropriate one from the measuring apparatuses mentioned above.


[0788] As apparent from FIGS. 50 and 51, in the measuring method of concrete materials according to this embodiment, there is set up a target mass Mdi (i=1, 2) of submergence aggregate at the end of throwing fine aggregates A and B, first (step 1601).


[0789] In the setup of the target mass Mdi (i=1, 2) filling factor F of the submergence aggregate, which is a volume ratio of fine aggregate in the total volume of water and fine aggregate, is set up first. Then, a mixing volume N0 of one batch is set up. A volume of the fine aggregate is set up on the basis of the filling factor F of the submergence aggregate and the mixing volume N0 of one batch. Subsequently, a target input mass of the fine aggregates A and B in the saturated surface-dried condition is determined from a mixture ratio of the fine aggregates A and B and densities thereof in the saturated surface-dried condition. Then, amass of water thrown first (primary measurement water) and the fine aggregate A thrown into the water may be considered to be target mass Md1 of the submergence aggregate and a mass of the submergence aggregate and the fine aggregate B thrown into the submergence aggregate may be considered to be target mass Md2 of the submergence aggregate. When the target mass Mdi (i=1, 2) of the submergence aggregate is determined, a correction after measurement can be reduced by setting the most appropriate percentage of surface moisture and including it in the primary measurement water.


[0790] Subsequently, the fine aggregate A and the water are thrown into a predetermined measurement tank so that the fine aggregate is submerged in the water so as to be submergence aggregate (step 1602). When throwing the fine aggregate and the water into the measurement tank, preferably the water is thrown earlier and the fine aggregate is thrown later to prevent the submergence aggregate from being mixed with air bubbles. In addition, if the fine aggregate is not directly thrown into the measurement tank, but it is conveyed to the measurement tank by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[0791] The measurement tank may be formed, for example, in a shape of a hollow truncated cone so that a bore of the measurement tank gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0792] Subsequently, the total mass Mf1 of the submergence aggregate is measured (step 1603). The total mass Mf1 of the submergence aggregate can be measured by subtracting a measurement value of an empty measurement tank from the mass of the measurement tank filled with the submergence aggregate. The mass measurement can be performed with tension-type load cells, for example.


[0793] When measuring total mass Mf1 of the submergence aggregate, the aggregate A is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf1 of the submergence aggregate in real time or at predetermined time intervals. Thereafter, when the total mass Mf1 of the submergence aggregate reaches the target mass Md1 of the submergence aggregate at the end of throwing the fine aggregate A during throwing the fine aggregate A, throwing the fine aggregate A is terminated.


[0794] Subsequently, total volume Vf1 of the submergence aggregate is measured (step 1604). The total volume Vf1 of the submergence aggregate can be measured with, for example, means for measuring a water level of the submergence aggregate, more specifically, an electrode-type displacement sensor.


[0795] Then, mass Ma1 of the fine aggregate A in the saturated surface-dried condition is calculated by substituting the total mass Mf1 of the submergence aggregate and the total volume Vf1 thereof for the following formula (step 1605).




M


a1
a1(Mf1−ρwVf1)/(ρa1−ρw)  (32)



[0796] where ρa1 is the density of the fine aggregate A in the saturated surface-dried condition and ρw is the density of the water.


[0797] Subsequently, in the same manner as for the fine aggregate A, the fine aggregate B is thrown into the measurement tank so that it is submerged in the water so as to be submergence aggregate (step 1606). Then, the total mass Mf2 of the submergence aggregate is measured (step 1607). When measuring the total mass Mf2 of the submergence aggregate, the aggregate B is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf2 of the submergence aggregate in real time or at predetermined time intervals in the same manner as for the fine aggregate A. Thereafter, when the total mass Mf2 of the submergence aggregate reaches the target mass Md2 of the submergence aggregate at the end of throwing the fine aggregate B during throwing the fine aggregate B, throwing the fine aggregate B is terminated.


[0798] Subsequently, total volume Vf2 of the submergence aggregate is measured (step 1608). The total volume Vf2 of the submergence aggregate can be measured with, for example, means for measuring a water level of the submergence aggregate, more specifically, an electrode-type displacement sensor.


[0799] The electrode-type displacement sensor is configured so as to measure a water level of the submergence aggregate by monitoring a change in the energized condition when the lower end of typically, for example, a detection electrode contacts the water surface of the submergence aggregate.


[0800] Then, mass Ma2 of the fine aggregate B in the saturated surface-dried condition and mass Mw of the water are calculated by substituting the total mass Mf2 of the submergence aggregate and the total volume Vf2 thereof for the following formulas (step 1609).




M


a2
a2((Mf2−ΣMai (i=1, 2))−ρw(Vf2−Σ(Maiai) (i=1, 2)))/(ρa2−Σw)  (34)





M


w
wa2(Vf2−Σ(Maiai) (i=1, 2))−(Mf2−ΣMai (i=1, 2)))/(ρa2−ρw)  (35)



[0801] where ρa1 is the density of the fine aggregate A in the saturated surface-dried condition, ρa2 is the density of the fine aggregate B in the saturated surface-dried condition, and ρw is the density of the water.


[0802] After measuring the fine aggregates A and B and the water as mentioned above, the measurement results are compared with the initial field mix set according to the specified mix and then the field mix is corrected (step 1610).


[0803] In other words, the measured mass of the aggregate is compared with the mass of aggregate of the initially set field mix. Calculation is then made on a ratio of the measured total mass of the fine aggregates A and B in the saturated surface-dried condition to the preset total mass of the fine aggregates A and B in the saturated surface-dried condition. If it is 0.9, for example, the measured mass of the fine aggregates A and B is 10% less and therefore there is a need for decreasing the mixing volume N0 of one batch by 10% so as to be 0.9N0. Accordingly, also regarding other concrete materials such as cement and admixture, the initial field mix is corrected by using the corresponding ratio for measurement. Furthermore, regarding the water, the initially set amount of water is compared with the measured amount of water. Then, required water is added as secondary water or excess water is discharged. Thereafter, the concrete materials are thrown into the kneading mixer for mixing.


[0804] As set forth hereinabove, according to the measuring method of concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate can be calculated as the mass Mai (i=1, 2) of the aggregates A and B in the saturated surface-dried condition. In other words, since the mass of the fine aggregates and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete as shown by the specified mix.


[0805] Furthermore, the fine aggregates A and B are thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mfi (i=1, 2) of the submergence aggregate in real time or at predetermined time intervals, and throwing the fine aggregates are terminated when the total masses Mf1 and Mf2 of the submergence aggregate reach the target masses Md1 and Md2, respectively, during throwing the fine aggregates A and B into the measurement tank. Thereby, it becomes possible to manage the inputs of the fine aggregates A and B accurately and to correct the field mix, which results in making concrete as shown by the specified mix.


[0806] Furthermore, even if the plurality of fine aggregates differ from each other in the density, the grading, or the like, they can be measured in a single measurement tank efficiently and very accurately while calculating an effect of the surface water caused by a difference in the moisture state as a part of the final amount of water.


[0807] The following should be noted though it has not been particularly mentioned in this embodiment. Mass MI of water supplied to the measurement tank and mass MO of water discharged from the measurement tank are measured as accumulation values. ΣMawj (j=1 to i) is calculated by substituting the mass MI of water supplied to the measurement tank, the mass MO of water discharged from the measurement tank, and the total mass Mfi (i=1, 2) of the submergence aggregate for the following formula.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


[0808] Thereafter, the following formula is calculated.


ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0809] Mawi is then substituted for the following formula.


(Mawi−Mai)/Mai  (13)


[0810] Thereby, percentages of surface moisture of the fine aggregates A and B can be calculated and they can be used as setting values for the subsequent measurement.


[0811] Furthermore, the following should be noted though it has not been particularly mentioned in this embodiment. If Vfi(i=1, 2)∘(1−a/100) is used instead of Vfi (i=1, 2) assuming that a (%) is the air content of the submergence aggregate, more accurate measurement is achieved with the air content considered.


[0812] Still further, the following should be noted though it has not been particularly mentioned in this embodiment. If there is a possibility that the aggregates thrown into the measurement tank will emerge from the water and will not be submergence aggregate, the vibrator is lowered during or after throwing the fine aggregates A and B and operated in this condition. Thereby, the fine aggregates A and B thrown into the measurement tank can be leveled by vibration of the vibrator, so that the fine aggregates are submerged in the water. Before measuring a mass of the submergence aggregate, the vibrator is raised and put in a standby state until the next measurement in the upward location.


[0813] [14th Embodiment]


[0814] Referring to FIGS. 52 and 53, there is shown a flowchart of a procedure for a measuring method of concrete materials according to a 14th embodiment. The measuring method of concrete materials according to this embodiment can be implemented by selecting an appropriate one from the measuring apparatuses mentioned above.


[0815] As apparent from FIGS. 52 and 53, in the measuring method of concrete materials according to this embodiment, there is set up a target mass Mdi (i=1, 2) of submergence aggregate at the end of throwing fine aggregates A and B, first (step 1621).


[0816] In the setup of the target mass Mdi (i=1, 2) filling factor F of the submergence aggregate, which is a volume ratio of fine aggregate in the total volume of water and fine aggregate, is set up first. Then, a mixing volume N0 of one batch is set up. A volume of the fine aggregate is set up on the basis of the filling factor F of the submergence aggregate and the mixing volume N0 of one batch. Subsequently, a target input mass of the fine aggregates A and B in the saturated surface-dried condition is determined from a mixture ratio of the fine aggregates A and B and densities thereof in the saturated surface-dried condition. Then, amass of water thrown first (primary measurement water) and the fine aggregate A thrown into the water may be considered to be target mass Md1 of the submergence aggregate and a mass of the submergence aggregate and the fine aggregate B thrown into the submergence aggregate may be considered to be target mass Md2 of the submergence aggregate. When the target mass Mdi (i=1, 2) of the submergence aggregate is determined, a correction after measurement can be reduced by setting the most appropriate percentage of surface moisture and including it in the primary measurement water.


[0817] Subsequently, the fine aggregate A and the water are thrown into a predetermined measurement tank so that the fine aggregate is submerged in the water so as to be submergence aggregate (step 1622). When throwing the fine aggregate and the water into the measurement tank, preferably the water is thrown earlier and the fine aggregate is thrown later to prevent the submergence aggregate from being mixed with air bubbles. In addition, if the fine aggregate is not directly thrown into the measurement tank, but it is conveyed to the measurement tank by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[0818] The measurement tank may be formed, for example, in a shape of a hollow truncated cone so that a bore of the measurement tank gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0819] Subsequently, the total mass Mf1 of the submergence aggregate is measured (step 1623). The total mass Mf1 of the submergence aggregate can be measured by subtracting a measurement value of an empty measurement tank from the mass of the measurement tank filled with the submergence aggregate. The mass measurement can be performed with tension-type load cells, for example.


[0820] When measuring total mass Mf1 of the submergence aggregate, the aggregate A is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf1 of the submergence aggregate in real time or at predetermined time intervals. Thereafter, when the total mass Mf1 of the submergence aggregate reaches the target mass Md1 of the submergence aggregate while excess water is discharged so that the water level of the submergence aggregate does not exceed a preset first water level during throwing the fine aggregate A, throwing the fine aggregate A is terminated.


[0821] The first water level can be preset by causing the water in the submergence aggregate to overflow the measurement tank at a predetermined depth or by discharging the water with suction.


[0822] Subsequently, mass Ma1 of the fine aggregate A in the saturated surface-dried condition is calculated by substituting the total mass Mf1 of the submergence aggregate and the total volume Vf1 thereof calculated for the preset first water level for the following formula (step 1624).




M


a1
a1(Mf1−ρwVf1)/(ρa1−ρw)  (32)



[0823] where ρa1 is the density of the fine aggregate A in the saturated surface-dried condition and ρw is the density of the water.


[0824] On the other hand, if the water level at which the total mass Mf1 of the submergence aggregate reaches the target mass Md1 thereof is lower than the preset first water level, required water is added so that it is equal to the first water level. Then, the total mass Mf1 of the submergence aggregate is measured again and the mass Ma1 of the fine aggregate A in the saturated surface-dried condition is calculated again, too (step 1625).


[0825] Subsequently, in the same manner as for the fine aggregate A, the fine aggregate B is thrown into the measurement tank so that it is submerged in the water so as to be submergence aggregate (step 1626). Then, the total mass Mf2 of the submergence aggregate is measured (step 1627). When measuring the total mass Mf2 of the submergence aggregate, the fine aggregate B is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf2 of the submergence aggregate in real time or at predetermined time intervals in the same manner as for the fine aggregate A. Thereafter, when the total mass Mf2 of the submergence aggregate reaches the target mass Md2 of the submergence aggregate while excess water is discharged so that the water level of the submergence aggregate does not exceed a preset second water level during throwing the fine aggregate B, throwing the fine aggregate B is terminated.


[0826] The second water level can also be preset by causing the water in the submergence aggregate to overflow the measurement tank at a predetermined depth or by discharging the water with suction.


[0827] Subsequently, mass Ma2 of the fine aggregate B in the saturated surface-dried condition and mass Mw of the water are calculated by substituting the total mass Mf2 of the submergence aggregate and the total volume Vf2 thereof calculated for the preset second water level for the following formulas (step 1628).




M


a2
a2((Mf2−ΣMai (i=1, 2))−ρw(Vf2−Σ(Maiai) (i=1, 2)))/(ρa2−ρw)  (34)





M


w
wa2(Vf2−Σ(Maiai) (i=1, 2))−(Mf2−ΣMai (i=1, 2)))/(ρa2−ρw)  (35)



[0828] where ρa1 is the density of the fine aggregate A in the saturated surface-dried condition, ρa2 is the density of the fine aggregate B in the saturated surface-dried condition, and ρw is the density of the water.


[0829] On the other hand, if the water level at which the total mass Mf2 of the submergence aggregate reaches the target mass Md2 thereof is lower than the preset second water level, required water is added so that it becomes equal to the second water level. Then, the total mass Mf2 of the submergence aggregate is measured again and the mass Ma2 of the fine aggregate B in the saturated surface-dried condition and the mass Mw of the water are calculated again (step 1629).


[0830] After measuring the fine aggregates A and B and the water as mentioned above, the measurement results are compared with the initial field mix set according to the specified mix and then the field mix is corrected, if necessary (step 1630).


[0831] In other words, excess water is discharged so that the water level of the submergence aggregate does not exceed the first and second water levels. If the total mass Mfi (i=1, 2) of the submergence aggregate reaches the target mass Md2 during discharging the water, the total mass Mfi (i=1, 2) of the submergence aggregate and the total volume Vfi (i=1, 2) of the submergence aggregate are equal to the initial setting values. Therefore, the field mix need not be corrected and the submergence aggregate is thrown into the kneading mixer together with other concrete materials for mixing.


[0832] On the other hand, unless the water level of the submergence aggregate reaches the first or second water level, required water is added so that the water level reaches the first or second water level. Therefore, the total mass Mfi (i=1, 2) of the submergence aggregate measured again thus the masses of the fine aggregates A and B in the saturated surface-dried condition derived from the total mass result in values different from the initial setting values.


[0833] Therefore, if so, in the same manner as for the above embodiment, the measured masses of the aggregates A and B are compared with the masses of the aggregates A and B of the initially set field mix. Calculation is then made on a ratio of the measured total mass of the fine aggregates A and B in the saturated surface-dried condition to the preset total mass of the fine aggregates A and B in the saturated surface-dried condition. If it is 0.9, for example, the measured mass of the fine aggregates A and B is 10% less and therefore there is a need for decreasing the mixing volume N0 of one batch by 10% so as to be 0.9N0. Accordingly, also regarding other concrete materials such as cement and admixture, the initial field mix is corrected by using the corresponding ratio for measurement. Furthermore, regarding the water, the initially set amount of water is compared with the measured amount of water. Then, required water is added as secondary water or excess water is discharged. Thereafter, the concrete materials are thrown into the kneading mixer for mixing.


[0834] As set forth hereinabove, according to the measuring method of concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the aggregate can be calculated as the mass Mai (i=1 to N) of the aggregate in the saturated surface-dried condition. In other words, since the mass of the aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make concrete as shown by the specified mix.


[0835] Furthermore, according to the measuring method of concrete materials of this embodiment, if the total mass Mfi (i=1, 2) of the submergence aggregate reaches the target mass Md2 thereof while discharging excess water so that the water level of the submergence aggregate does not exceed the first and second water levels, not only the total volume Vfi (i=1, 2) of the submergence aggregate need not be measured, but also the total mass Mfi (i=1, 2) of the submergence aggregate and the total volume Vfi (i=1, 2) thereof become equal to the initial setting values. Therefore, the field mix need not be corrected and the submergence aggregate can be thrown into the kneading mixer together with other concrete materials for mixing.


[0836] Still further, according to the measuring method of concrete materials of this embodiment, if the water level of the submergence aggregate does not reach the preset first or second water level, required water need be added so that it reaches the first or second water level, but the total volume Vfi (i=1, 2) of the submergence aggregate need not be measured in the same manner as for the above. By measuring the total mass Mfi (i=1, 2) of the submergence aggregate again, it becomes possible to manage the inputs of the fine aggregates A and B accurately and to correct the field mix, which results in making concrete as shown by the specified mix.


[0837] Furthermore, even if the plurality of fine aggregates differ from each other in the density, the grading, or the like, they can be measured in a single measurement tank efficiently and very accurately while calculating an effect of the surface water caused by a difference in the moisture state as a part of the final amount of water.


[0838] The following should be noted though it has not been particularly mentioned in this embodiment. Mass MI of water supplied to the measurement tank and mass MO of water discharged from the measurement tank are measured as accumulation values. ΣMawj (j=1 to i) is calculated by substituting the mass MI of water supplied to the measurement tank, the mass M of water discharged from the measurement tank, and the total mass Mfi (i=1, 2) of the submergence aggregate for the following formula.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


[0839] Thereafter, the following formula is calculated.


ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0840] Mawi is then substituted for the following formula.


(Mawi−Mai)/Mai  (13)


[0841] Thereby, percentages of surface moisture of the fine aggregates A and B can be calculated and they can be used as setting values for the subsequent measurement.


[0842] Furthermore, the following should be noted though it has not been particularly mentioned in this embodiment. If Vfi (i=1, 2)∘(1−a/100) is used instead of Vfi (i=1, 2) assuming that a (%) is the air content of the submergence aggregate, more accurate measurement is achieved with the air content considered.


[0843] Still further, the following should be noted though it has not been particularly mentioned in this embodiment. If there is a possibility that the aggregates thrown into the measurement tank will emerge from the water and will not be submergence aggregate, the vibrator is lowered during or after throwing the fine aggregates A and B and operated in this condition. Thereby, the fine aggregates A and B thrown into the measurement tank can be leveled by vibration of the vibrator, so that the fine aggregates are submerged in the water. Before measuring a mass of the submergence aggregate, the vibrator is raised and put in a standby state until the next measurement in the upward location.


[0844] [15th Embodiment]


[0845] The following describes a program for an execution of measuring and calculating concrete materials according to a 15th embodiment and a computer-readable recording medium where the program is recorded.


[0846] Referring to FIGS. 54 and 55, there is shown a flowchart of a processing procedure of the program for an execution of measuring and calculating concrete materials according to this embodiment. Referring to FIG. 56, there is shown a block diagram of a hardware configuration for executing the program. As apparent from FIG. 56, a personal computer 301 for processing a program for an execution of measuring and calculating concrete materials according to this embodiment comprises a keyboard 302 as input means, a mouse 303, a memory 304 incorporated in a body of the personal computer, a processing unit 305 for performing various kinds of arithmetic processing, a hard disk 306 as storage means for storing input data or a result of processing, a display 307 for displaying a setting input screen or a result of processing, and a printer for printing setting values and a result of processing.


[0847] The program for an execution of measuring and calculating concrete materials according to this embodiment may be previously recorded into a computer-readable recording medium such as, for example, the hard disk 306, a CD-ROM not shown, an MO disk, a CDR or the like and may be loaded into the memory 304 in the personal computer 301 for executing the program.


[0848] In the program for an execution of measuring and calculating concrete materials according to this embodiment, an input operation is performed first via the keyboard 302 or the mouse 303 by entering target mass Mdi (i=1, 2) of submergence aggregate at an end of throwing fine aggregates A and B, densities ρa1 and ρa2 of the fine aggregates A and B in the saturated surface-dried condition, and density ρw of water, and they are stored in the hard disk 306 (step 1631).


[0849] In the setup of the target mass Mdi (i=1, 2) filling factor F of the submergence aggregate, which is a volume ratio of fine aggregate in the total volume of water and fine aggregate, is set up first. Then, mixing volume N0 of one batch is set up. A volume of the fine aggregate is set up on the basis of the filling factor F of the submergence aggregate and the mixing volume N0 of one batch. Subsequently, a target input mass of the fine aggregates A and B in the saturated surface-dried condition is determined from a mixture ratio of the fine aggregates A and B and densities thereof in the saturated surface-dried condition. Then, amass of water thrown first (primary measurement water) and the fine aggregate A thrown into the water may be considered to be target mass Md1 of the submergence aggregate and a mass of the submergence aggregate and the fine aggregate B thrown into the submergence aggregate may be considered to be target mass Md2 of the submergence aggregate.


[0850] An input operation should be appropriately made, if necessary, by entering a percentage of surface moisture of fine aggregate obtained by the previous measurement, the presence or absence of compaction with vibration at measurement, physical-properties values of various materials, a mixing volume of one batch, a percentage of surface moisture of coarse aggregate, and other data related to the specified mix and the field mix. By entering the percentages of surface moisture obtained by the previous measurement as initial values as mentioned above, a correction can be reduced after measurement.


[0851] Subsequently, the fine aggregate A and the water are thrown into a predetermined measurement tank so that the fine aggregate is submerged in the water so as to be submergence aggregate (step 1632). When throwing the fine aggregate and the water into the measurement tank, preferably the water is thrown earlier and the fine aggregate is thrown later to prevent the submergence aggregate from being mixed with air bubbles. In addition, if the fine aggregate is not directly thrown into the measurement tank, but it is conveyed to the measurement tank by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[0852] The measurement tank may be formed, for example, in a shape of a hollow truncated cone so that a bore of the measurement tank gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0853] Subsequently, the total mass Mf1 of the submergence aggregate is measured (step 1633). The total mass Mf1 of the submergence aggregate can be measured by subtracting a measurement value of an empty measurement tank from the mass of the measurement tank filled with the submergence aggregate. The mass measurement can be performed with tension-type load cells, for example. The measured total mass Mf1 of the submergence aggregate is preferably written into the hard disk 306, if necessary.


[0854] When measuring total mass Mf1 of the submergence aggregate, the fine aggregate A is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf1 of the submergence aggregate in real time or at predetermined time intervals. Thereafter, when the total mass Mf1 of the submergence aggregate reaches the target mass Md1 of the submergence aggregate at an end of throwing the fine aggregate A during throwing the fine aggregate A, throwing the fine aggregate A is terminated.


[0855] Subsequently, the total volume Vf1 of the submergence aggregate is measured (step 1634). The total volume Vf1 of the submergence aggregate may be measured by using the electrode-type displacement sensor mentioned above. The measured total volume Vf1 of the submergence aggregate is preferably written into the hard disk 306, if necessary, too.


[0856] Then, the density ρa1 of the fine aggregate A in the saturated surface-dried condition and the density ρw of the water previously stored in the hard disk 306 are read from the hard disk (step 1635).


[0857] Subsequently, the processing unit 305 is operated to calculate the mass Ma1 of the fine aggregate A in the saturated surface-dried condition by substituting the total mass Mf1 of the submergence aggregate and the total volume Vf1 thereof for the following formula.




M


a1
a1(Mf1−ρwVf1)/(ρa1−ρw)  (32)



[0858] where ρa1 is the read-out density of the fine aggregate A in the saturated surface-dried condition and ρw is the read-out density of the water. In addition, a result of the calculation is stored in the hard disk 306 (step 1636).


[0859] Subsequently, in the same manner as for the fine aggregate A, the fine aggregate B is thrown into the measurement tank so that it is submerged in the water so as to be submergence aggregate (step 1637). Then, the total mass Mf2 of the submergence aggregate is measured (step 1638). When measuring the total mass Mf2 of the submergence aggregate, the aggregate B is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf2 of the submergence aggregate in real time or at predetermined time intervals in the same manner as for the fine aggregate A. Thereafter, when the total mass Mf2 of the submergence aggregate reaches the target mass Md2 of the submergence aggregate at an end of throwing the fine aggregate B during throwing the fine aggregate B, throwing the fine aggregate B is terminated. The measured total mass Mf2 of the submergence aggregate is preferably written into the hard disk 306, if necessary.


[0860] Subsequently, total volume Vf2 of the submergence aggregate is measured (step 1639). The total volume Vf2 of the submergence aggregate can be measured with, for example, an electrode-type displacement sensor mentioned above.


[0861] Then, the density ρa1 of the fine aggregate A in the saturated surface-dried condition, the density ρa2 of the fine aggregate B in the saturated surface-dried condition, and the density ρw of the water previously stored in the hard disk 306 are read from the hard disk (step 1640).


[0862] Then, mass Ma2 of the fine aggregate B in the saturated surface-dried condition and mass Mw of the water are calculated with processing unit 305 by substituting the total mass Mf2 of the submergence aggregate and the total volume Vf2 thereof for the following formulas.




M


a2
a2((Mf2−ΣMai (i=1, 2))−ρw(Vf2−Σ(Maiai) (i=1, 2)))/(ρa2−ρw)  (34)





M


w
wa2(Vf2−Σ(Maiai) (i=1, 2))−(Mf2−ΣMai (i=1, 2)))/(ρa2−ρw)  (35)



[0863] where ρa1 is the read-out density of the fine aggregate A in the saturated surface-dried condition, ρa2 is the read-out density of the fine aggregate B in the saturated surface-dried condition, and ρw is the read-out density of the water. In addition, a result of the calculation is stored in the hard disk 306 (step 1641).


[0864] After measuring the fine aggregates A and B and the water as mentioned above, the measurement results are compared with the initial field mix set according to the specified mix and then the field mix is corrected (step 1642).


[0865] In other words, the measured mass of the aggregate is compared with the mass of aggregate of the initially set field mix. Calculation is then made on a ratio of the measured total mass of the fine aggregates A and B in the saturated surface-dried condition to the preset total mass of the fine aggregates A and B in the saturated surface-dried condition. If it is 0.9, for example, the measured mass of the fine aggregates A and B is 10% less and therefore there is a need for decreasing the mixing volume N0 of one batch by 10% so as to be 0.9N0. Accordingly, also regarding other concrete materials such as cement and admixture, the initial field mix is corrected by using the corresponding ratio for measurement. Furthermore, regarding the water, the initially set amount of water is compared with the measured amount of water. Then, required water is added as secondary water or excess water is discharged. Thereafter, the concrete materials are thrown into the kneading mixer for mixing.


[0866] As set forth hereinabove, according to the program for an execution of measuring and calculating concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate can be calculated as the mass Mai (i=1, 2) of the aggregates A and B in the saturated surface-dried condition. In other words, since the mass of the fine aggregates and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete as shown by the specified mix.


[0867] Furthermore, the fine aggregates A and B are thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mfi (i=1, 2) of the submergence aggregate in real time or at predetermined time intervals, and throwing the fine aggregates A and B are terminated when the total masses Mf1 and Mf2 of the submergence aggregate reach the target masses Md1 and Md2 thereof, respectively, during throwing the fine aggregates A and B into the measurement tank. Thereby, it becomes possible to manage the inputs of the fine aggregates A and B accurately and to correct the field mix, which results in making concrete as shown by the specified mix.


[0868] Furthermore, even if the plurality of fine aggregates differ from each other in the density, the grading, or the like, they can be measured in a single measurement tank efficiently and very accurately while calculating an effect of the surface water caused by a difference in the moisture state as a part of the final amount of water.


[0869] The following should be noted though it has not been particularly mentioned in this embodiment. Mass MI of water supplied to the measurement tank and mass MO of water discharged from the measurement tank are measured as accumulation values. In addition, a result of the calculation is stored in the hard disk 306. Then, ΣMawj (j=1 to i) is calculated with the processing unit 305 by reading the mass MI of water supplied to the measurement tank, the mass MO of water discharged from the measurement tank, and the total mass Mfi (i=1, 2) of the submergence aggregate from the hard disk 306 and substituting them for the following formula.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


[0870] In addition, a result of the calculation is stored in the hard disk 306. Thereafter, the following formula is calculated to obtain Mawi.


ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0871] Mawi is then substituted for the following formula to obtain the percentages of surface moisture of the fine aggregates A and B with the processing unit 305.


(Mawi−Mai)/Mai  (13)


[0872] Thereby, the percentages of surface moisture can be calculated.


[0873] Furthermore, the following should be noted though it has not been particularly mentioned in this embodiment. If Vfi (i=1, 2)∘(1−a/100) is used instead of Vfi (i=1, 2) assuming that a (%) is the air content of the submergence aggregate, more accurate measurement is achieved with the air content considered.


[0874] [16th Embodiment]


[0875] The following describes a program for an execution of measuring and calculating concrete materials according to a 16th embodiment and a computer-readable recording medium where the program is recorded.


[0876] Referring to FIGS. 57 and 58, there is shown a flowchart of a processing procedure of the program for an execution of measuring and calculating concrete materials according to this embodiment. It is assumed that the personal computer 301 described in the 15th embodiment is used for executing the program according to this embodiment and its description is omitted here.


[0877] The program for an execution of measuring and calculating concrete materials according to this embodiment may be previously recorded into a computer-readable recording medium such as, for example, a hard disk 306, a CD-ROM not shown, an MO disk, a CDR or the like and may be loaded into a memory 304 in the personal computer 301 for executing the program.


[0878] In the program for an execution of measuring and calculating concrete materials according to this embodiment, an input operation is performed first via a keyboard 302 or a mouse 303 by entering target mass Mdi (i=1, 2) of submergence aggregate at an end of throwing fine aggregates A and B, densities ρa1 and ρa2 of the fine aggregates A and B in the saturated surface-dried condition, and density ρw of water, and they are stored in the hard disk 306 (step 1641).


[0879] In the setup of the target mass Mdi (i=1, 2) filling factor F of the submergence aggregate, which is a volume ratio of fine aggregate in the total volume of water and fine aggregate, is set up first. Then, mixing volume N0 of one batch is set up. A volume of the fine aggregate is set up on the basis of the filling factor F of the submergence aggregate and the mixing volume N0 of one batch. Subsequently, a target input mass of the fine aggregates A and B in the saturated surface-dried condition is determined from a mixture ratio of the fine aggregates A and Band densities thereof in the saturated surface-dried condition. Then, amass of water thrown first (primary measurement water) and the fine aggregate A thrown into the water may be considered to be target mass Md1 of the submergence aggregate and a mass of the submergence aggregate and the fine aggregate B thrown into the submergence aggregate may be considered to be target mass Md2 of the submergence aggregate.


[0880] An input operation should be appropriately made, if necessary, by entering a percentage of surface moisture of fine aggregate obtained by the previous measurement, the presence or absence of compaction with vibration at measurement, physical-properties values of various materials, a mixing volume of one batch, a percentage of surface moisture of coarse aggregate, and other data related to the specified mix and the field mix. By entering the percentages of surface moisture obtained by the previous measurement as initial values as mentioned above, a correction can be reduced after measurement.


[0881] Subsequently, the fine aggregate A and the water are thrown into a predetermined measurement tank so that the fine aggregate is submerged in the water so as to be submergence aggregate (step 1642). When throwing the fine aggregate and the water into the measurement tank, preferably the water is thrown earlier and the fine aggregate is thrown later to prevent the submergence aggregate from being mixed with air bubbles. In addition, if the fine aggregate is not directly thrown into the measurement tank, but it is conveyed to the measurement tank by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[0882] The measurement tank may be formed, for example, in a shape of a hollow truncated cone so that a bore of the measurement tank gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the measurement tank can be achieved only by opening a bottom lid without a blockage of submergence aggregate in the measurement tank even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer together with cement and coarse aggregate measured separately.


[0883] Subsequently, the total mass Mf1 of the submergence aggregate is measured (step 1643). The total mass Mf1 of the submergence aggregate can be measured by subtracting a measurement value of an empty measurement tank from the mass of the measurement tank filled with the submergence aggregate. The mass measurement can be performed with tension-type load cells, for example. The measured total mass Mf1 of the submergence aggregate is preferably written into the hard disk 306, if necessary.


[0884] When measuring total mass Mf1 of the submergence aggregate, the fine aggregate A is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf1 of the submergence aggregate in real time or at predetermined time intervals. Thereafter, when the total mass Mf1 of the submergence aggregate reaches the target mass Md1 of the submergence aggregate while excess water is discharged so that the water level of the submergence aggregate does not exceed a preset first water level during throwing the fine aggregate A, throwing the fine aggregate A is terminated.


[0885] The first water level can be preset by causing the water in the submergence aggregate to overflow the measurement tank at a predetermined depth or by discharging the water with suction.


[0886] Then, the density ρa1 of the fine aggregate A in the saturated surface-dried condition and the density ρw of the water previously stored in the hard disk 306 are read from the hard disk (step 1644).


[0887] Subsequently, the processing unit 305 is operated to calculate the mass Ma1 of the fine aggregate A in the saturated surface-dried condition by substituting the total mass Mf1 of the submergence aggregate and the total volume Vf1 thereof for the following formula.




M


a1
a1(Mf1−ρwVf1)/(ρa1−ρw)  (32)



[0888] where ρa1 is the read-out density of the fine aggregate A in the saturated surface-dried condition and ρw is the read-out density of the water. In addition, a result of the calculation is stored in the hard disk 306 (step 1645).


[0889] On the other hand, if the water level at which the total mass Mf1 of the submergence aggregate reaches the target mass Md1 thereof is lower than the preset first water level, required water is added so that it is equal to the first water level. Then, the total mass Mf1 of the submergence aggregate is measured again and the mass Ma1 of the fine aggregate A in the saturated surface-dried condition is calculated again, too (step 1646).


[0890] Subsequently, in the same manner as for the fine aggregate A, the fine aggregate B is thrown into the measurement tank so that it is submerged in the water so as to be submergence aggregate (step 1647). Then, the total mass Mf2 of the submergence aggregate is measured (step 1648). When measuring the total mass Mf2 of the submergence aggregate, the aggregate B is thrown into the measurement tank at a predetermined speed continuously or intermittently while measuring the total mass Mf2 of the submergence aggregate in real time or at predetermined time intervals in the same manner as for the fine aggregate A. Thereafter, when the total mass Mf2 of the submergence aggregate reaches the target mass Md2 of the submergence aggregate while excess water is discharged so that the water level of the submergence aggregate does not exceed a preset second water level during throwing the fine aggregate B, throwing the fine aggregate B is terminated. The measured total mass Mf2 of the submergence aggregate is preferably written into the hard disk 306, if necessary.


[0891] The second water level can also be preset by causing the water in the submergence aggregate to overflow the measurement tank at a predetermined depth or by discharging the water with suction.


[0892] Then, the density ρa1 of the fine aggregate A in the saturated surface-dried condition, the density ρa2 of the fine aggregate B in the saturated surface-dried condition, and the density ρw of the water previously stored in the hard disk 306 are read from the hard disk (step 1649).


[0893] Then, mass Ma2 of the fine aggregate B in the saturated surface-dried condition and mass Mw of the water are calculated with the processing unit 305 by substituting the total mass Mf2 of the submergence aggregate and the total volume Vf2 thereof for the following formulas.




M


a2
a2((Mf2−ΣMai (i=1, 2))−ρw(Vf2−Σ(Maiai) (i=1, 2)))/(ρa2−ρw)  (34)





M


w
wa2(Vf2−Σ(Maiai) (i=1, 2))−(Mf2−ΣMai (i=1, 2)))/(ρa2−ρw)  (35)



[0894] where ρa1 is the read-out density of the fine aggregate A in the saturated surface-dried condition, ρa2 is the read-out density of the fine aggregate B in the saturated surface-dried condition, and ρw is the read-out density of the water. In addition, a result of the calculation is stored in the hard disk 306 (step 1650).


[0895] On the other hand, if the water level at which the total mass Mf2 of the submergence aggregate reaches the target mass Md2 thereof is lower than the preset second water level, required water is added so that it is equal to the second water level. Then, the total mass Mf2 of the submergence aggregate is measured again and the mass Ma2 of the fine aggregate B in the saturated surface-dried condition and the mass Mw of the water are calculated again, too (step 1651).


[0896] After measuring the fine aggregates A and B and the water as mentioned above, the measurement results are compared with the initial field mix set according to the specified mix and then the field mix is corrected, if necessary (step 1652).


[0897] In other words, if the total mass Mfi (i=1, 2) of the submergence aggregate reaches the target mass Md2 while excess water is discharged so that the water level of the submergence aggregate does not exceed the first and second water levels, the total mass Mfi (i=1, 2) of the submergence aggregate and the total volume Vfi (i=1, 2) of the submergence aggregate are equal to the initial setting values. Therefore, the field mix need not be corrected and the submergence aggregate is thrown into the kneading mixer together with other concrete materials for mixing.


[0898] On the other hand, unless the water level of the submergence aggregate reaches the first or second water level, required water is added so that the water level reaches the first or second water level. Therefore, the total mass Mfi (i=1, 2) of the submergence aggregate measured again thus the masses of the fine aggregates A and B in the saturated surface-dried condition derived from the total mass result in values different from the initial setting values.


[0899] Therefore, if so, in the same manner as for the above embodiment, the measured masses of the aggregates A and B are compared with the masses of the aggregates A and B of the initially set field mix. Calculation is then made on a ratio of the measured total mass of the fine aggregates A and B in the saturated surface-dried condition to the preset total mass of the fine aggregates A and B in the saturated surface-dried condition. If it is 0.9, for example, the measured mass of the fine aggregates A and B is 10% less and therefore there is a need for decreasing the mixing volume N0 of one batch by 10% so as to be 0.9N0. Accordingly, also regarding other concrete materials such as cement and admixture, the initial field mix is corrected by using the corresponding ratio for measurement. Furthermore, regarding the water, the initially set amount of water is compared with the measured amount of water. Then, required water is added as secondary water or excess water is discharged. Thereafter, the concrete materials are thrown into the kneading mixer for mixing.


[0900] As set forth hereinabove, according to the program for an execution of measuring and calculating the concrete materials of this embodiment, the surface water of the fine aggregates A and B can be indirectly calculated as a part of the mass Mw of the water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the aggregate can be calculated as the mass Mai (i=1, 2) of the aggregate in the saturated surface-dried condition. In other words, since the mass of the aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the aggregate is not fixed at every measurement, it becomes possible to make concrete as shown by the specified mix.


[0901] Furthermore, according to the program for an execution of measuring and calculating the concrete materials of this embodiment, if the total mass Mfi (i=1, 2) of the submergence aggregate reaches the target mass Md2 thereof while excess water is discharged so that the water level of the submergence aggregate does not exceed the first and second water levels, not only the total volume Vfi (i=1, 2) of the submergence aggregate need not be measured, but also the total mass Mfi (i=1, 2) of the submergence aggregate and the total volume Vfi (i=1, 2) thereof become equal to the initial setting values. Therefore, the field mix need not be corrected and the submergence aggregate can be thrown into the kneading mixer together with other concrete materials for mixing.


[0902] Still further, according to the program for an execution of measuring and calculating concrete materials of this embodiment, if the water level of the submergence aggregate does not reach the preset first or second water level, required water need be added so that it reaches the first or second water level, but the total volume Vfi (i=1, 2) of the submergence aggregate need not be measured in the same manner as for the above. By measuring the total mass Mfi (i=1, 2) of the submergence aggregate again, it becomes possible to manage the inputs of the fine aggregates A and B accurately and to correct the field mix, which results in making concrete as shown by the specified mix.


[0903] Furthermore, even if the plurality of fine aggregates differ from each other in the density, the grading, or the like, they can be measured in a single measurement tank efficiently and very accurately while calculating an effect of the surface water caused by a difference in the moisture state as a part of the final amount of water.


[0904] The following should be noted though it has not been particularly mentioned in this embodiment. Mass MI of water supplied to the measurement tank and mass MO of water discharged from the measurement tank are measured as accumulation values. In addition, a result of the calculation is stored in the hard disk 306. Then, ΣMawj (j=1 to i) is calculated with the processing unit 305 by reading the mass MI of water supplied to the measurement tank, the mass MO of water discharged from the measurement tank, and the total mass Mfi (i=1, 2) of the submergence aggregate from the hard disk 306 and substituting them for the following formula.


ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14)


[0905] In addition, a result of the calculation is stored in the hard disk 306. Thereafter, the following formula is calculated to obtain Mawi.


ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15)


[0906] Mawi is then substituted for the following formula to obtain the percentages of surface moisture of the fine aggregates A and B with the processing unit 305.


(Mawi−Mai)/Mai  (13)


[0907] Thereby, the percentages of surface moisture can be calculated.


[0908] Furthermore, the following should be noted though it has not been particularly mentioned in this embodiment. If Vfi (i=1, 2)∘(1−a/100) is used instead of Vfi (i=1, 2) assuming that a (%) is the air content of the submergence aggregate, more accurate measurement is achieved with the air content considered.


[0909] [17th Embodiment]


[0910] Referring to FIG. 59, there is shown a general view of a discharge mechanism 421 of a measurement container with a measuring apparatus 401 to which the discharge mechanism is applied. Referring to FIG. 60, there is shown a sectional view taken along line I-I in FIG. 59.


[0911] First, the measuring apparatus 401 to which the discharge mechanism 421 of the measurement container is applied according to a 17th embodiment comprises a water storage hopper 102 for storing water, a fine aggregate storage hopper 103 for storing fine aggregate as aggregate, a measurement container 111 for containing water and fine aggregate supplied from the water storage hopper 102 and the fine aggregate storage hopper 103 as submergence aggregate, respectively, load cells 108 for measuring a mass of submergence aggregate in the measurement container, and an electrode-type displacement sensor 412 for measuring a water level in the measurement container 111. The water storage hopper 102 forms means for supplying water in conjunction with a water feed pipe 105 connected to the water storage hopper 102 at a bottom thereof and whose discharge opening is located above the measurement container 111 and a closing valve 106 arranged in a predetermined position of the water feed pipe 105. The fine aggregate storage hopper 103 forms means for feeding aggregate in conjunction with a fine aggregate feed pipe 107 whose discharge opening is located above the measurement container 111.


[0912] The measurement container 111 comprises a body of the container 104 and a bottom lid 109 attachable so as to be free to open or close at a bottom opening 115 of the body of the container. The body of the container 104 is formed in a shape of a hollow truncated cone so that a bore of the container gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the container can be achieved only by opening the bottom lid 109 without a blockage of submergence aggregate in the container even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer, which is not shown, together with cement and coarse aggregate measured separately. In abutting portions of the bottom lid 109 and the bottom opening 115 of the body of the container 104, sealing members, which are not shown, are appropriately attached so that watertightness is secured between the bottom lid 109 and the body of the container 104 when the bottom lid 109 is closed.


[0913] A volume of the measurement container 111 is arbitrary. The volume may be made in agreement with the total amount required for the unit of concrete mixing, i.e., one batch. Otherwise, it can be divided into some amounts for measurement.


[0914] The electrode-type displacement sensor 412 is capable of measuring a water level of submergence aggregate by monitoring a change in the energized condition when a lower end of a detection electrode contacts the water surface of the submergence aggregate in the measurement container 111.


[0915] The water storage hopper 102, the fine aggregate storage hopper 103, and the load cells 108 are attached to a stand, which is not shown, and a collar circular ring 116 of the measurement container 111 is put on the load cells 108 to hold the measurement container 111 in a suspended condition. Thereby, the mass of the measurement container 111 can be measured with the load cells 108. The load cells 108 are preferably placed, for example, in three places at 120° intervals in the same level surface so that the measurement container 111 can be held stably in a suspended condition during measurement.


[0916] On the other hand, the discharge mechanism 421 of the measurement container according to this embodiment causes the measurement container 111 to contain fine aggregate as submergence aggregate with water when the bottom lid 109 is closed to measure the submergence aggregate and causes the submergence aggregate to be discharged down below when the measurement is finished by opening the bottom lid 109.


[0917] The bottom lid 109 is made of a circular plate having an outside diameter substantially equivalent to or slightly larger than an outside diameter of the bottom opening of the body of the container 104. Furthermore, along hole 114 is formed at a tip of an L-shaped mounting arm 113 provided as an extension from a rim of the circular plate and a pin 110 fixed to a stand not shown is passed through the long hole 114, by which it becomes possible to rotate the bottom lid 109, around the pin 110 so as to open or close the bottom opening 115 of the body of the container 104. Furthermore, in the condition where the bottom lid 109 is closed, the long hole 114 is oriented vertically, thereby preventing a reaction force from being generated at the pin 110 by a load of the measurement container 111. In fixing the bottom lid 109 to the bottom opening 115 of the body of the container 104, an appropriate method can be selected out of known methods such as fastening with a bolt or a clamp.


[0918] In the discharge mechanism 421 of the body of the container, an air spray nozzle 424 as a gas spray mechanism connected in communication with an air compressor 422 is fixed to a nozzle holding part 425 arranged in a standing condition on an L-shaped mounting arm 113 in the vicinity of the bottom lid 109. In the condition where the bottom lid 109 is opened, airflow can be blown against an upper surface of the bottom lid 109 from a tip of the air spray nozzle 424.


[0919] In the discharge mechanism 421 of the measurement container according to this embodiment, the bottom lid 109 is opened to achieve a free fall of submergence aggregate for discharging it after measurement of the submergence aggregate is finished. Thereafter, the air compressor 422 is operated in the condition where the bottom lid 109 is opened as shown in FIG. 61 to blow airflow against the upper surface of the bottom lid 109 from the tip of the air spray nozzle 424.


[0920] With this, even if fine aggregate is adhering to the upper surface of the bottom lid 109 at discharging the submergence aggregate, the fine aggregate is blown off by the airflow, thereby preventing the fine aggregate from being caught between the body of the container 104 and the bottom lid 109 when the bottom lid 109 is closed for the subsequent measurement.


[0921] In the discharge mechanism 421 of the measurement container according to this embodiment, the bottom opening 115 of the body of the container 104 is closed by the bottom lid 109 to put the inside of the measurement container 111 in the watertightness condition, first. The closing valve 106 is opened in the above condition. Water is then thrown from the water storage hopper 102 to the measurement container 111 and the fine aggregate stored in the fine aggregate storage hopper 103 is thrown into the measurement container 111 so that it is put in the submergence condition to fill the measurement container 111 with submergence aggregate 431 as shown in FIG. 62. Thereafter, a water level of the submergence aggregate 431 is measured with the electrode-type displacement sensor 412 and total volume Vf of the submergence aggregate 431 is measured from the water level. In addition, total mass Mf of the submergence aggregate is measured with the load cells 108. Regarding the measuring method of the submergence aggregate, however, an arbitrary method can be selected out of the various measuring methods as mentioned above. Therefore, its detailed description is omitted here.


[0922] As set forth hereinabove, according to the discharge mechanism 421 of the measurement container of this embodiment, the air compressor 422 is operated in the condition where the bottom lid 109 is opened to blow airflow against the upper surface of the bottom lid 109 from the tip of the air spray nozzle 424, so that fine aggregate is blown off by the airflow even if it is adhering to the upper surface of the bottom lid 109 at discharging the submergence aggregate. Thereby, there is no possibility of inclusions of fine aggregate between the body of the container 104 and the bottom lid 109 when the bottom lid 109 is closed for the subsequent measurement.


[0923] Therefore, it becomes possible to prevent an occurrence of an error in measurement that may be caused by water leakage from a clearance gap generated by inclusions of fine aggregate and to prevent seal members provided on the body of the container 104 or on the bottom lid 109 from being damaged.


[0924] While the discharge mechanism of the measurement container according to the invention is applied to the measuring apparatus 401 as an example in this embodiment, the discharge mechanism of the measurement container according to the invention is characterized in that a gas flow is blown against an upper surface of a bottom lid from a gas spraying mechanism in the condition where the bottom lid is opened. Therefore, the discharge mechanism is applicable to all kinds of measuring apparatuses as well as the measuring apparatuses mentioned above if only the apparatus is capable of containing submergence aggregate in a measurement container or a container having a bottom lid attached so as to be free to open or close at a bottom opening of a body of the container.


[0925] Furthermore, while the air compressor 422 is connected in communication with the air spray nozzle 424 so as to blow airflow from the tip of the air spray nozzle 424 by supplying air from the air compressor with pressure in this embodiment, it is not always limited to the air compressor 422, but any configuration is applicable if only it enables a gas supply with pressure. For example, a bottle of compressed nitrogen can be used instead of the air compressor 422.


[0926] Still further, while fine aggregate is used as aggregate in this embodiment, naturally the invention is applicable to coarse aggregate.


[0927] [18th Embodiment]


[0928] The following describes another preferable embodiment of a discharge mechanism of measurement container according to the preset invention. Like reference characters indicate parts substantially identical to the discharge mechanism 421 of the measurement container and the measuring apparatus 401 mentioned above. Therefore, their description is omitted here.


[0929] Referring to FIG. 63, there is shown a discharge mechanism 441 of a measurement container according to this embodiment. As apparent from FIG. 63, on the assumption that there is used a measurement container 443 comprising a body of the container 104 and a bottom lid 442 attachable so as to be free to open or close at a bottom opening 115 of the body of the container, the discharge mechanism 441 of the measurement container according to this embodiment is configured to contain fine aggregate, which is aggregate, with water as submergence aggregate in the measurement container 443 when the bottom lid is closed for measuring the submergence aggregate and to discharge the submergence aggregate downward by opening the bottom lid 442 after the measurement is finished.


[0930] The bottom lid 442 is made of a circular plate having an outside diameter substantially equivalent to or slightly larger than an outside diameter of the bottom opening of the body of the container 104. A protrusion 444 is then provided as an extension from a rim of the circular plate.


[0931] At this point, a rotational axis 445 is arranged in a standing condition in a protrusion 444, with the rotational axis inserted into a hollow of hinge members 446, 446 having a two-stage structure provided in a protruding condition in a horizontal direction on the circumferential surface of the body of the container 104 and with the rotational axis 445 clamped at the top by a nut 447. With this constitution, the discharge mechanism 441 of the measurement container according to this embodiment can rotate the bottom lid 442 around a vertical axis, in other words, in a level surface to open or close the bottom lid 442 while supporting an empty weight of the bottom lid 442 by means of a locking action between the nut 447 and the hinge members 446 in the upper stage.


[0932] In the discharge mechanism 441 of the measurement container according to this embodiment, after completing the measurement of the submergence aggregate, the fall discharge of the submergence aggregate is carried out by opening the bottom lid 442. When being opened, the bottom lid 442 is not rotated around a horizontal axis, but it is rotated in a level surface and then the aggregate in the measurement container 443 is dropped and discharged.


[0933] In other words, the bottom lid 442 is moved by a rotation in the level surface toward the body of the container 104, first. Thereafter, the bottom opening 115 of the body of the container 104 is closed to put the inside of the measurement container in the watertightness condition. After measuring the submergence aggregate in this condition, the bottom lid 442 is rotated in the level surface in the opposite direction and then the submergence aggregate in the measurement container 443 is dropped downward and thrown into a kneading mixer.


[0934] A measuring method of the submergence aggregate can be arbitrarily chosen from various measuring methods as mentioned above. Therefore, its detailed description is omitted here.


[0935] As set forth hereinabove, according to the discharge mechanism 441 of the measurement container of this embodiment, the bottom lid 442 is rotated in the level surface, by which there is no need to secure an opening-and-closing space in the height direction up to the kneading mixer, but it is only necessary to secure a space in the level surface, while the bottom lid will hang down if it is opened and therefore an opening-and-closing space of the bottom lid need be secured by the distance up to the kneading mixer in the conventional opening-and-closing mechanism.


[0936] Therefore, the bottom opening 115 of the body of the container 104 can be lowered up to just above an inlet of the kneading mixer by a distance equivalent to the opening-and-closing height that has been conventionally indispensable, by which the submergence aggregate can be thrown into the kneading mixer reliably after the measurement is finished.


[0937] While the discharge mechanism of the measurement container according to the present invention is applied to the measuring apparatus 401 as an example, the discharge mechanism of the measurement container according to the present invention is characterized in that the bottom lid is moved in the translation direction or rotated in the level surface to open or close the bottom lid. Therefore, the discharge mechanism is applicable to all kinds of measuring apparatuses as well as the measuring apparatuses mentioned above if only the apparatus is capable of containing submergence aggregate in a measurement container or a container having a bottom lid attached so as to be free to open or close at a bottom opening of a body of the container.


[0938] Furthermore, while fine aggregate is used as aggregate in this embodiment, naturally the invention is applicable to coarse aggregate.


[0939] [19th Embodiment]


[0940] The following describes still another preferable embodiment of a discharge mechanism of measurement container according to the preset invention. Like reference characters indicate parts substantially identical to the discharge mechanism 421 of the measurement container and the measuring apparatus 401 mentioned above. Therefore, their description is omitted here.


[0941] Referring to FIG. 64, there is shown a discharge mechanism 451 of a measurement container according to this embodiment. As apparent from FIG. 64, on the assumption that there is used a measurement container 443 comprising a body of the container 104 and a bottom lid 442 attachable so as to be free to open or close at a bottom opening 115 of the body of the container, the discharge mechanism 451 of the measurement container according to this embodiment is configured to contain fine aggregate, which is aggregate, with water as submergence aggregate in the measurement container 443 when the bottom lid is closed for measuring the submergence aggregate and to discharge the submergence aggregate downward by opening the bottom lid 442 after the measurement is finished.


[0942] The bottom lid 442 is made of a circular plate having an outside diameter substantially equivalent to or slightly larger than an outside diameter of the bottom opening of the body of the container 104. A protrusion 444 is then provided as an extension from a rim of the circular plate.


[0943] At this point, a rotational axis 445 is arranged in a standing condition in a protrusion 444, with the rotational axis inserted into a hollow of hinge members 446, 446 having a two-stage structure provided in a protruding condition in a horizontal direction on the circumferential surface of the body of the container 104 and with the rotational axis 445 clamped at the top by a nut 447. With this constitution, the discharge mechanism 451 of the measurement container according to this embodiment can rotate the bottom lid 442 around a vertical axis, in other words, in a level surface to open or close the bottom lid 442 while supporting an empty weight of the bottom lid 442 by means of a locking action between the nut 447 and the hinge members 446 in the upper stage.


[0944] In the discharge mechanism 451 of the body of the container according to this embodiment, an air spray nozzle 424 as a gas spraying mechanism connected in communication with an air compressor 422 via a hose 423 is fixed aside of the lower-stage hinge member 446 provided in a protruding condition in a horizontal direction from the body of the container 104 in the vicinity of the bottom lid 442. In the condition where the bottom lid 442 is opened, airflow can be blown against an upper surface of the bottom lid 442 from a tip of the air spray nozzle 424.


[0945] In the discharge mechanism 451 of the measurement container according to this embodiment, after completing the measurement of the submergence aggregate, the fall discharge of the submergence aggregate is carried out by opening the bottom lid 442. When being opened, the bottom lid 442 is not rotated around a horizontal axis, but it is rotated in a level surface and then the aggregate in the measurement container 443 is dropped and discharged.


[0946] In other words, the bottom lid 442 is moved by a rotation in the level surface toward the body of the container 104, first. Thereafter, the bottom opening 115 of the body of the container 104 is closed to put the inside of the measurement container in the watertightness condition. After measuring the submergence aggregate in this condition, the bottom lid 442 is rotated in the level surface in the opposite direction and then the submergence aggregate in the measurement container 443 is dropped downward and thrown into a kneading mixer.


[0947] Subsequently, the air compressor 422 is operated in the condition where the bottom lid 442 is opened as shown in FIG. 65 to blow airflow against the upper surface of the bottom lid 442 from the tip of the air spray nozzle 424.


[0948] With this, even if fine aggregate is adhering to the upper surface of the bottom lid 442 at discharging the submergence aggregate, the fine aggregate is blown off by the airflow, thereby preventing the fine aggregate from being caught between the body of the container 104 and the bottom lid 442 when the bottom lid 442 is closed for the subsequent measurement.


[0949] As set forth hereinabove, according to the discharge mechanism 451 of the measurement container of this embodiment, the bottom lid 442 is rotated in the level surface, by which there is no need to secure an opening-and-closing space in the height direction up to the kneading mixer, but it is only necessary to secure a space in the level surface, while the bottom lid will hang down if it is opened and therefore an opening-and-closing space of the bottom lid need be secured by the distance up to the kneading mixer in the conventional opening-and-closing mechanism.


[0950] Therefore, the bottom opening 115 of the body of the container 104 can be lowered up to just above an inlet of the kneading mixer by a distance equivalent to the opening-and-closing height that has been conventionally indispensable, by which the submergence aggregate can be thrown into the kneading mixer reliably after the measurement is finished.


[0951] As set forth hereinabove, according to the discharge mechanism 451 of the measurement container of this embodiment, the air compressor 422 is operated in the condition where the bottom lid 109 is opened to blow airflow against the upper surface of the bottom lid 442 from the tip of the air spray nozzle 424, so that fine aggregate is blown off by the airflow even if it is adhering to the upper surface of the bottom lid 442 at discharging the submergence aggregate. Thereby, there is no possibility of inclusions of fine aggregate between the body of the container 104 and the bottom lid 442 when the bottom lid 442 is closed for the subsequent measurement.


[0952] Therefore, it becomes possible to prevent an occurrence of an error in measurement that may be caused by water leakage from a clearance gap generated by inclusions of fine aggregate and to prevent seal members provided on the body of the container 104 or on the bottom lid 442 from being damaged.


[0953] While the discharge mechanism of the measurement container according to the invention is applied to the measuring apparatus 401 as an example in this embodiment, the discharge mechanism of the measurement container according to the invention is characterized in that the bottom lid is moved in the translation direction or rotated in the level surface to open or close the bottom lid and in that a gas spraying mechanism is provided in the vicinity of the bottom lid so as to blow a gas flow against an upper surface of the bottom lid from the gas spraying mechanism in the condition where the bottom lid is opened. Therefore, the discharge mechanism is applicable to all kinds of measuring apparatuses as well as the measuring apparatuses mentioned above if only the apparatus is capable of containing submergence aggregate in a measurement container or a container having a bottom lid attached so as to be free to open or close at a bottom opening of a body of the container.


[0954] Furthermore, while fine aggregate is used as aggregate in this embodiment, naturally the invention is applicable to coarse aggregate.


[0955] [20th Embodiment]


[0956] Referring to FIG. 66, there is shown a general view of a measuring apparatus 501 according to a 20th embodiment. As apparent from FIG. 66, a measuring apparatus 501 according to a 20th embodiment comprises a water storage hopper 102 for storing water, a fine aggregate storage hopper 103 for storing fine aggregate as aggregate, three measurement containers 111a, 111b, and 111c for containing water and fine aggregate supplied from the water storage hopper 102 and the fine aggregate storage hopper 103 as submergence aggregate, respectively, load cells 108 as submergence aggregate mass measurement means for measuring a mass of submergence aggregate in the measurement containers, an electrode-type displacement sensor 512 as water level measurement means for measuring water levels in the measurement containers 111a, 111b, and 111c, and a suction unit 517 as water level regulation means for regulating water levels of the submergence aggregates. The water storage hopper 102 forms means for supplying water in conjunction with a water feed pipe 105 connected to the water storage hopper 102 at a bottom thereof and whose discharge opening is located above the measurement containers 111a, 111b, and 111c and a closing valve 106 arranged in a predetermined position of the water feed pipe 105. The fine aggregate storage hopper 103 forms means for feeding aggregate in conjunction with a fine aggregate feed pipe 107 whose discharge opening is located above the measurement containers 111a, 111b, and 111c. In FIG. 66, there is shown only the measurement container 111a of the measurement containers for convenience. Other measurement containers 111b and 111c are shown with the measurement container 111a in FIG. 67.


[0957] As apparent from a cross section shown in FIG. 68, the measurement container 111a comprises a body of the container 104a and a bottom lid 109a attachable so as to be free to open or close at a bottom opening 115a of the body of the container. It is configured so as to contain fine aggregate as submergence aggregate with water when the bottom lid 109a is closed to measure the submergence aggregate and causes the submergence aggregate to be discharged downward by opening the bottom lid 109a when the measurement is finished. In the same manner as for the measurement container 111a, each of the measurement containers 111b and 111c comprises a body of the container 104b or 104c and a bottom lid 109b or 109c attachable so as to be free to open or close at a bottom opening of the body of the container. Each of the measurement containers is configured so as to contain fine aggregate as submergence aggregate with water when the bottom lid 109b or 109c is closed to measure the submergence aggregate and causes the submergence aggregate to be discharged downward by opening the bottom lid 109b or 109c when the measurement is finished.


[0958] Each of the body of the container 104a, 104b, and 104c is formed in a shape of a hollow truncated cone so that a bore of the container gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the body of the container can be achieved only by opening the bottom lid 109a, 109b, or 109c without a blockage of submergence aggregate in the body of the container even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer, which is not shown, together with cement and coarse aggregate measured separately.


[0959] Each of the bottom lid 109a, 109b, and 109c is made of a circular plate having an outside diameter substantially equivalent to or slightly larger than an outside diameter of the bottom opening of the body of the container 104a, 104b, or 104c. Furthermore, a long hole 114a, 114b, or 114c is formed at a tip of an L-shaped mounting arm 113a, 113b, or 113c provided as an extension from a rim of the circular plate and a pin 110 fixed to a stand not shown is passed through the long hole 114a, 114b, or 114c, by which it becomes possible to rotate the bottom lid 109a, 109b, or 109c around the pin 110 so as to open or close the bottom opening of the body of the container 104a, 104b, or 104c. Furthermore, in the condition where the bottom lid 109a, 109b, or 109c is closed, the long hole 114a, 114b, or 114c is oriented vertically, thereby preventing a reaction force from being generated at the pin 110 by a load of the measurement container 111a, 111b, or 111c. In fixing the bottom lid 109a to the bottom opening 115a of the body of the container 104a, an appropriate method can be selected out of known methods such as fastening with a bolt or a clamp. The same is equally true of the bottom lids 109b and 109c.


[0960] The electrode-type displacement sensor 512 is capable of measuring a water level of submergence aggregate by monitoring a change in the energized condition when a lower end of a detection electrode contacts the water surface of the submergence aggregate in the measurement container 111a, 111b, or 111c by moving the detection electrode up and down.


[0961] The water storage hopper 102, the fine aggregate storage hopper 103, and the load cells 108 are attached to a stand, which is not shown, and collar circular rings 116a, 116b, and 116c of the measurement containers 111a, 111b, and 111c are put on the load cells 108 to hold the measurement containers 111a, 111b, and 111c in a suspended condition. Thereby, the mass of each measurement container can be measured with the load cells 108. The load cells 108 are preferably placed, for example, in three places at 120° intervals in the same level surface so that the measurement containers 111a, 111b, and 111c can be held stably in a suspended condition during measurement.


[0962] As apparent from FIG. 67, volumes of the measurement containers 111a, 111b, and 111c differ from each other at the same depth h1 that is a normal water level. More specifically, the measurement container 111a is configured so that the volume at the normal water level mentioned above matches a volume (hereinafter, referred to as normal volume) of submergence aggregate necessary for mixing concrete materials of a given amount determined in a specification of a kneading mixer, which is not shown. The measurement container 111b is configured so that the volume at the normal water level matches a volume corresponding to two-thirds of the normal volume. Similarly, the measurement container 111c is configured so that the volume at the normal water level matches a volume corresponding to one-half of the normal volume.


[0963] It should be noted that the water level at the same depth h1 is previously input as a control value into a control unit (not shown) for driving and controlling the electrode-type displacement sensor 512.


[0964] The suction unit 517 can be used to suck and remove water in the measurement containers 111a, 111b, and 111c via a rubber hose 518. In addition, it is configured to suck and remove water so that there is always no difference between the measurement water level of submergence aggregate transmitted from the control unit of the electrode-type displacement sensor 512 and the normal water level.


[0965] The measurement of submergence aggregate with the measuring apparatus 501 of concrete materials according to this embodiment will be described below, by giving an example of a case of measuring three kinds of aggregate; submergence aggregate (fine aggregate A+water A) necessary for mixing concrete materials corresponding to a given amount of the kneading mixer, submergence aggregate (fine aggregate B+water B) necessary for mixing concrete materials corresponding to two-thirds of the given amount of the kneading mixer, and submergence aggregate (fine aggregate C+water C) necessary for mixing concrete materials corresponding to one-half of the given amount of the kneading mixer.


[0966] First, to measure the fine aggregate A and the water A, the bottom opening 115a of the body of the container 104a is closed by the bottom lid 109a to put the inside of the measurement container 111a in the watertightness condition. The closing valve 106 is opened in the above condition. The water A is then thrown from the water storage hopper 102 to the measurement container 111a and the fine aggregate A stored in the fine aggregate storage hopper 103 is thrown into the measurement container 111a so that it is put in the submergence condition to fill the measurement container 111a with submergence aggregate 531 as shown in FIG. 69.


[0967] When throwing the fine aggregate A and the water A into the measurement container 111a, preferably the water A is thrown earlier and the fine aggregate A is thrown later to prevent the submergence aggregate 531 from being mixed with air bubbles. In addition, if the fine aggregate A is not directly thrown into the measurement container 111a from the fine aggregate storage hopper 103, but it is conveyed from just under the fine aggregate storage hopper 103 to an upper opening of the measurement container 111a by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[0968] Subsequently, a water level of the submergence aggregate 531 is measured with the electrode-type displacement sensor 512 to calculate total volume Vf of the submergence aggregate 531 by using the water level. When the total volume Vf is calculated, the suction unit 517 is operated as needed so that there is always no difference between the measurement water level of the submergence aggregate 531 transmitted from the control unit of the electrode-type displacement sensor 512 and the normal water level to suck and remove excess water via the rubber hose 518.


[0969] With this, the water level used for calculating the total volume Vf of the submergence aggregate 531 is always kept at the normal water level.


[0970] On the other hand, total mass Mf of the submergence aggregate 531 is measured with the load cells 108. The total mass Mf of the submergence aggregate is obtained by subtracting a mass of the empty measurement container 111a with the submergence aggregate 531 not contained therein from a value measured by the load cells 108.


[0971] In the following, an appropriate measuring method is selected out of the measuring methods mentioned above and then the measuring method is used to measure the fine aggregate A and the water A corresponding to the normal volume.


[0972] After measuring the fine aggregate A and the water A, they are thrown into the kneading mixer with cement and other concrete materials for mixing the given amount of materials.


[0973] Subsequently, the measurement container 111a is detached once to measure the fine aggregate B and the water B and the measurement container 111b is mounted on the load cells 108 instead. In the same manner as for the measuring method of the fine aggregate A and the water A, measurement is then made on the fine aggregate B and the water B corresponding to two-thirds of the normal volume. Thereafter, they are thrown into the kneading mixer with cement and other concrete materials for mixing two-thirds of the given amount of materials.


[0974] Subsequently, the measurement container 111b is detached once to measure the fine aggregate C and the water C and the measurement container 111c is mounted on the load cells 108 instead. In the same manner as for the measuring method of the fine aggregate A and the water A, measurement is then made on the fine aggregate C and the water C corresponding to one-half of the normal volume. Thereafter, they are thrown into the kneading mixer with cement and other concrete materials for mixing one-half of the given amount of materials.


[0975] As set forth hereinabove, according to the measuring apparatus 501 of concrete materials of this embodiment, the normal water level at which the depth is identical is equal to the measured water level even if any of the measurement containers 111a, 111b, and 111c is used for the measurement. Therefore, an accuracy of the water measurement is identical in any of the measurement containers 111a, 111b, and 111c. In other words, a different depth in the water level measurement varies the accuracy thereof. More specifically, on the assumption that the water level is measured with an error of ±1 mm, for example, the accuracy is {fraction (1/1000)} if the depth is 1 m, while the accuracy is {fraction (1/500)} if the depth is 50 cm.


[0976] On the other hand, according to the measuring apparatus 501 of concrete materials of this embodiment, a measured water level always matches the normal water level at an identical depth even if any of the measurement containers 111a, 111b, and 111c is used for the measurement. Therefore, the accuracy of the measured water level thus the accuracy of the total volume of submergence aggregate calculated from the measured water level can be identical. Thereby, even if required aggregate amounts are different from each other, it becomes possible to find the common accuracy of the total volume thus of the aggregate measurement.


[0977] Furthermore, according to the measuring apparatus 501 of concrete materials of this embodiment, surface water of fine aggregate can be indirectly calculated as a part of mass Mw of water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate can be calculated as mass Ma of the fine aggregate in the saturated surface-dried condition. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete as shown by the specified mix.


[0978] While the present invention is applied to measurement of fine aggregate in this embodiment, it is applicable to measurement of coarse aggregate instead. If a plurality of aggregates are mixed as concrete materials, measurement values of the aggregates often differ from each other. The measuring apparatus according to the present invention is also applicable to this case.


[0979] Furthermore in this embodiment, for convenience of description, the volumes of the measurement containers are assumed to be the given amount, the given amount multiplied by two-thirds, and the given amount multiplied by one-half of the kneading mixer, respectively, when the volumes are at the normal water level where they have the same depth. It is apparent, however, that the volumes are not limited to the above.


[0980] Still further, while three measurement containers are used as the plurality of measurement containers in this embodiment, it is apparent that the number of measurement containers is not limited to the above.


[0981] [21st Embodiment]


[0982] Referring to FIG. 70, there is shown a general view of a measuring apparatus 541 according to a 21st embodiment. As apparent from FIG. 70, the measuring apparatus 541 according to this embodiment generally comprises a water storage hopper 102 for storing water, a fine aggregate storage hopper 103 for storing fine aggregate as aggregate, three measurement containers 544a, 544b, and 544c for containing water and fine aggregate supplied from the water storage hopper 102 and the fine aggregate storage hopper 103 as submergence aggregate, respectively, and load cells 108 as submergence aggregate mass measurement means for measuring a mass of submergence aggregate in the measurement containers. The water storage hopper 102 forms means for supplying water in conjunction with a water feed pipe 105 connected to the water storage hopper 102 at a bottom thereof and whose discharge opening is located above the measurement containers 544a, 544b, and 544c and a closing valve 106 arranged in a predetermined position of the water feed pipe 105. The fine aggregate storage hopper 103 forms means for feeding aggregate in conjunction with a fine aggregate feed pipe 107 whose discharge opening is located above the measurement containers 544a, 544b, and 544c. In FIG. 70, there is shown only the measurement container 544a of the measurement containers for convenience. Other measurement containers 544b and 544c are shown with the measurement container 544a in FIG. 71.


[0983] As apparent from a cross section shown in FIG. 72, the measurement container 544a comprises a body of the container 552a and a bottom lid 109a attachable so as to be free to open or close at a bottom opening 115a of the body of the container. It is configured so as to contain fine aggregate as submergence aggregate with water in the watertightness condition when the bottom lid 109a is closed to measure the submergence aggregate and causes the submergence aggregate to be discharged downward by opening the bottom lid 109a when the measurement is finished. In the same manner as for the measurement container 544a, each of the measurement containers 544b and 544c comprises a body of the container 552b or 552c and a bottom lid 109b or 109c attachable so as to be free to open or close at a bottom opening of the body of the container. Each of the measurement containers is configured so as to contain fine aggregate as submergence aggregate with water when the bottom lid 109b or 109c is closed to measure the submergence aggregate and causes the submergence aggregate to be discharged downward by opening the bottom lid 109b or 109c when the measurement is finished.


[0984] Each of the body of the container 552a, 552b, and 552c is formed in a shape of a hollow truncated cone so that a bore of the container gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the body of the container can be achieved only by opening the bottom lid 109a, 109b, or 109c without a blockage of submergence aggregate in the body of the container even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer, which is not shown, together with cement and coarse aggregate measured separately. The bottom lids 109a, 109b, and 109c are the same as those of the above embodiment. Therefore, their description is omitted here.


[0985] The water storage hopper 102, the fine aggregate storage hopper 103, and the load cells 108 are attached to a stand, which is not shown, and collar circular rings 116a, 116b, and 116c of the measurement containers 544a, 544b, and 544c are put on the load cells 108 to hold the measurement containers 544a, 544b, and 544c in a suspended condition. Thereby, the mass of each measurement container can be measured with the load cells 108. The load cells 108 are preferably placed, for example, in three places at 120° intervals in the same level surface so that the measurement containers 544a, 544b, and 544c can be held stably in a suspended condition during measurement.


[0986] At this point, as apparent from FIGS. 70 to 72, a rectangular opening for overflow 551 is formed on a wall of each body of the containers 552a, 552b, and 552c so that water of the submergence aggregate in the measurement containers overflows outside. In addition, a grooved guide 557 is provided in a horizontally protruding condition along a lower edge of the opening for overflow 551. Overflow water flows on the guide and falls from the tip thereof, thereby enabling water to overflow smoothly from the opening for overflow 551 without a flow on a circumferential surface of the measurement containers 544a, 544b, and 544c.


[0987] The openings for overflow 551 are provided so that their lower edges match the normal water level at the same depth h2 of the measurement containers. Therefore, the openings for overflow function as water level maintaining means for maintaining water levels of the submergence aggregates in the measurement containers 544a, 544b, and 544c at the normal water level.


[0988] At this point, volumes of the measurement containers 544a, 544b, and 544c differ from each other when the depths are at the normal water level. More specifically, the measurement container 544a is configured so that the volume at the normal water level in the above matches a volume (hereinafter, referred to as normal volume) of submergence aggregate necessary for mixing concrete materials of a given amount determined in a specification of a kneading mixer, which is not shown. The measurement container 544b is configured so that the volume at the normal water level matches a volume corresponding to two-thirds of the normal volume. Similarly, the measurement container 544c is configured so that the volume at the normal water level matches a volume corresponding to one-half of the normal volume.


[0989] The measurement of submergence aggregate with the measuring apparatus 541 of concrete materials according to this embodiment will be described below, by giving an example of a case of measuring three kinds of aggregate; submergence aggregate (fine aggregate A+water A) necessary for mixing concrete materials corresponding to a given amount of the kneading mixer, submergence aggregate (fine aggregate B+water B) necessary for mixing concrete materials corresponding to two-thirds of the given amount of the kneading mixer, and submergence aggregate (fine aggregate C+water C) necessary for mixing concrete materials corresponding to one-half of the given amount of the kneading mixer.


[0990] First, to measure the fine aggregate A and the water A, the bottom opening 115a of the body of the container 552a is closed by the bottom lid 109a to put the inside of the measurement container 544a in the watertightness condition. The closing valve 106 is opened in the above condition. The water A is then thrown from the water storage hopper 102 to the measurement container 544a and the fine aggregate A stored in the fine aggregate storage hopper 103 is thrown into the measurement container 544a so that it is put in the submergence condition to fill the measurement container 544a with submergence aggregate 561 as shown in FIG. 73.


[0991] When throwing the fine aggregate A and the water A into the measurement container 544a, preferably the water A is thrown earlier and the fine aggregate A is thrown later to prevent the submergence aggregate 561 from being mixed with air bubbles. In addition, if the fine aggregate A is not directly thrown into the measurement container 544a from the fine aggregate storage hopper 103, but it is conveyed from just under the fine aggregate storage hopper 103 to an upper opening of the measurement container 544a by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[0992] At this point, apparent from FIG. 73, the measurement container 544a is filled with the submergence aggregate 561 by throwing the water A and the fine aggregate A so that the fine aggregate is submerged in the water and that the water overflows from the opening for overflow 551.


[0993] With this, the water level at which the water 562 overflows from the opening for overflow 551 is kept to the normal water level. Therefore, if the measurement container is filled with the submergence aggregate 561 as mentioned above, the water level used for calculating total volume Vf of the submergence aggregate 561 is always equal to the normal water level. If the total volume Vf is measured once at calibration in the initial stage, subsequent measurements of the total volume can be omitted and the value can be treated as a known value.


[0994] On the other hand, total mass Mf of the submergence aggregate 561 is measured with the load cells 108. The total mass Mf of the submergence aggregate 561 is obtained by subtracting a mass of empty measurement container 544a with the submergence aggregate 561 not contained therein from a value measured with the load cells 108.


[0995] In the following, an appropriate measuring method is selected out of the measuring methods mentioned above and then the measuring method is used to measure the fine aggregate A and the water A corresponding to the normal volume.


[0996] After measuring the fine aggregate A and the water A, they are thrown into the kneading mixer with cement and other concrete materials for mixing the given amount of materials.


[0997] Subsequently, the measurement container 544a is detached once to measure the fine aggregate B and the water B and the measurement container 544b is mounted on the load cells 108 instead. In the same manner as for the measuring method of the fine aggregate A and the water A, measurement is then made on the fine aggregate B and the water B corresponding to two-thirds of the normal volume. Thereafter, they are thrown into the kneading mixer with cement and other concrete materials for mixing two-thirds of the given amount of materials.


[0998] Subsequently, the measurement container 544b is detached once to measure the fine aggregate C and the water C and the measurement container 544c is mounted on the load cells 108 instead. In the same manner as for the measuring method of the fine aggregate A and the water A, measurement is then made on the fine aggregate C and the water C corresponding to one-half of the normal volume. Thereafter, they are thrown into the kneading mixer with cement and other concrete materials for mixing one-half of the given amount of materials.


[0999] As set forth hereinabove, according to the measuring apparatus 541 of concrete materials of this embodiment, water overflows from the opening for overflow 551 at the normal water level at which the depth is identical even if any of the measurement containers 544a, 544b, and 544c is used for measurement. Thereby, the accuracy of the water level is identical in any of the measurement containers 544a, 544b, and 544c.


[1000] Therefore, the accuracy of the water level thus the accuracy of the total volume of submergence aggregate calculated from the water level can be identical. Thereby, even if required aggregate amounts are different from each other, it becomes possible to find the common accuracy of the total volume thus of the aggregate measurement.


[1001] Furthermore, according to the measuring apparatus 541 of concrete materials of this embodiment, surface water of fine aggregate can be indirectly calculated as a part of mass Mw of water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate can be calculated as mass Ma of the fine aggregate in the saturated surface-dried condition. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete as shown by the specified mix.


[1002] While the present invention is applied to measurement of fine aggregate in this embodiment, it is applicable to measurement of coarse aggregate instead. If a plurality of aggregates are mixed as concrete materials, measurement values of the aggregates often differ from each other. The measuring apparatus according to the present invention is also applicable to this case.


[1003] Furthermore in this embodiment, for convenience of description, the volumes of the measurement containers are assumed to be the given amount, the given amount multiplied by two-thirds, and the given amount multiplied by one-half of the kneading mixer, respectively, when the volumes are at the normal water level where they have the same depth. It is apparent, however, that the volumes are not limited to the above.


[1004] Still further, while three measurement containers are used as the plurality of measurement containers in this embodiment, it is apparent that the number of measurement containers is not limited to the above.


[1005] [22nd Embodiment]


[1006] Referring to FIG. 74, there is shown a general view of a measuring apparatus 571 according to a 22nd embodiment. As apparent from FIG. 74, the measuring apparatus 571 according to this embodiment generally comprises a water storage hopper 102 for storing water, a fine aggregate measurement container 577 as an aggregate measurement container for storing fine aggregate to be measured, three measurement containers 544a, 544b, and 544c for containing water and fine aggregate supplied from the water storage hopper 102 and the fine aggregate measurement container 577 as submergence aggregate, respectively, and load cells 578 as aggregate mass measurement means for measuring a mass of fine aggregate in the fine aggregate measurement container 577. The water storage hopper 102 forms means for supplying water in conjunction with a water feed pipe 105 connected to the water storage hopper 102 at a bottom thereof and whose discharge opening is located above the measurement containers 544a, 544b, and 544c, a closing valve 106 arranged in a predetermined position of the water feed pipe 105, and a flowmeter 573 as means for measuring an amount of supplied or discharged water.


[1007] The fine aggregate measurement container 577 is configured so as to be provided as needed with fine aggregate from a stock bin, which is not shown, and is connected at its bottom to a fine aggregate feed pipe 107 whose discharge opening is located above the measurement containers 544a, 544b, and 544c.


[1008] In FIG. 74, there is shown only the measurement container 544a of the measurement containers for convenience. Other measurement containers 544b and 544c are shown with the measurement container 544a in FIG. 75.


[1009] At this point, the water storage hopper 102, the measurement containers 544a, 544b, and 544c, and the load cells 578 are attached to a stand, which is not shown, and a collar circular portion 572 that is attached to an upper-end opening edge of the fine aggregate measurement container 577 is put on the load cells 578 to hold the measurement container 577 in a suspended condition. Thereby, the mass of fine aggregate stored in the fine aggregate measurement container can be measured with the load cells 578. The load cells 578 are preferably placed, for example, in three places at 120° intervals in the same level surface so that the fine aggregate measurement container 577 can be held stably in a suspended condition during measurement.


[1010] As apparent from a cross section shown in FIG. 76, the measurement container 544a comprises a body of the container 552a and a bottom lid 109a attachable so as to be free to open or close at a bottom opening 115a of the body of the container. It is configured so as to contain fine aggregate as submergence aggregate with water in the watertightness condition when the bottom lid 109a is closed to measure the submergence aggregate and causes the submergence aggregate to be discharged downward by opening the bottom lid 109a when the measurement is finished. In the same manner as for the measurement container 544a, each of the measurement containers 544b and 544c comprises a body of the container 552b or 552c and a bottom lid 109b or 109c attachable so as to be free to open or close at a bottom opening of the body of the container. Each of the measurement containers is configured so as to contain fine aggregate as submergence aggregate with water when the bottom lid 109b or 109c is closed to measure the submergence aggregate and causes the submergence aggregate to be discharged downward by opening the bottom lid 109b or 109c when the measurement is finished.


[1011] Each of the body of the container 552a, 552b, and 552c is formed in a shape of a hollow truncated cone so that a bore of the container gets larger as it goes below. With this, when the measurement is finished, a free fall of the submergence aggregate in the body of the container can be achieved only by opening the bottom lid 109a, 109b, or 109c without a blockage of submergence aggregate in the body of the container even if no vibrating instrument such as a vibrator is used. Thereafter, the submergence aggregate can be thrown into a kneading mixer, which is not shown, together with cement and coarse aggregate measured separately. The bottom lids 109a, 109b, and 109c are the same as those of the above embodiment. Therefore, their description is omitted here.


[1012] At this point, as apparent from FIGS. 74 to 77, a rectangular opening for overflow 551 is formed on a wall of each body of the containers 552a, 552b, and 552c so that water of the submergence aggregate in the measurement containers overflows outside. In addition, a grooved guide 557 is provided in a horizontally protruding condition along a lower edge of the opening for overflow 551. Overflow water flows on the guide and falls from the tip thereof, thereby enabling water to overflow smoothly from the opening for overflow 551 without a flow on a circumferential surface of the measurement containers 544a, 544b, and 544c.


[1013] The openings for overflow 551 are provided so that their lower edges match the normal water level at the same depth h3 Of the measurement containers. Therefore, the openings for overflow function as water level maintaining means for maintaining water levels of the submergence aggregates in the measurement containers 544a, 544b, and 544c at the normal water level.


[1014] At this point, volumes of the measurement containers 544a, 544b, and 544c differ from each other when the depths are at the normal water level. More specifically, the measurement container 544a is configured so that the volume at the normal water level in the above matches a volume (hereinafter, referred to as normal volume) of submergence aggregate necessary for mixing concrete materials of a given amount determined in a specification of a kneading mixer, which is not shown. The measurement container 544b is configured so that the volume at the normal water level matches a volume corresponding to two-thirds of the normal volume. Similarly, the measurement container 544c is configured so that the volume at the normal water level matches a volume corresponding to one-half of the normal volume.


[1015] On the other hand, as apparent from the cross section shown in FIG. 76, the measuring apparatus 571 of concrete materials according to this embodiment further comprises a storage container 574 for storing overflow water overflowing from the opening for overflow 551 and running down from a tip of the guide 557 and a massmeter 575 for measuring a mass of overflow water stored in the storage container. The flowmeter 573 mentioned above can be used to measure amounts of water thrown into the measurement containers 544a, 544b, and 544c and the massmeter 575 can be used to measure amounts of overflow water from the measurement containers 544a, 544b, and 544c.


[1016] The measurement of submergence aggregate with the measuring apparatus 571 of concrete materials according to this embodiment will be described below, by giving an example of a case of measuring three kinds of aggregate; submergence aggregate (fine aggregate A+water A) necessary for mixing concrete materials corresponding to a given amount of the kneading mixer, submergence aggregate (fine aggregate B+water B) necessary for mixing concrete materials corresponding to two-thirds of the given amount of the kneading mixer, and submergence aggregate (fine aggregate C+water C) necessary for mixing concrete materials corresponding to one-half of the given amount of the kneading mixer.


[1017] To measure the fine aggregate A and the water A, mass Maw of the fine aggregate in wet condition stored in the fine aggregate measurement container 577 is measured with the load cells 578, first.


[1018] The mass Maw of the fine aggregate in wet condition in the fine aggregate measurement container 577 is obtained by subtracting a mass of an empty fine aggregate measurement container 577 containing no fine aggregate from the value measured by the load cells 578.


[1019] Subsequently, the bottom opening 115a of the body of the container 552a is closed by the bottom lid 109a to put the inside of the measurement container 544a in the watertightness condition. The closing valve 106 is opened in the above condition. The water A is then thrown from the water storage hopper 102 to the measurement container 544a and the fine aggregate A stored in the fine aggregate measurement container 577 is thrown into the measurement container 544a so that it is put in the submergence condition to fill the measurement container 544a with submergence aggregate 581 as shown in FIG. 77. In addition, mass MI of water supplied from the water storage hopper 102 is measured as an accumulation value with the flowmeter 573. On the other hand, water overflowing from the opening for overflow 551 is stored once in the storage container 574 and then mass MO of overflow water therefrom is measured as an accumulation value with the massmeter 575.


[1020] When throwing the fine aggregate A and the water A into the measurement container 544a, preferably the water A is thrown earlier and the fine aggregate A is thrown later to prevent the submergence aggregate 581 from being mixed with air bubbles. In addition, if the fine aggregate A is not directly thrown into the measurement container 544a from the fine aggregate measurement container 577, but it is conveyed from just under the fine aggregate measurement container 577 to an upper opening of the measurement container 544a by using a vibrating feeder having an electromagnetic vibrator, for example, it becomes possible to prevent granulation of the fine aggregate thus air bubble mixing.


[1021] At this point, apparent from FIG. 77, the measurement container 544a is filled with the submergence aggregate 581 by throwing the water A and the fine aggregate A so that the fine aggregate is submerged in the water and that the water overflows from the opening for overflow 551.


[1022] With this, the water level at which the water 582 overflows from the opening for overflow 551 is kept to the normal water level. Therefore, if the measurement container is filled with the submergence aggregate 581 as mentioned above, the water level used for calculating total volume Vf of the submergence aggregate 581 is always equal to the normal water level. If the total volume Vf is measured once at calibration in the initial stage, subsequent measurements of the total volume can be omitted and the value can be treated as a known value.


[1023] In the following, an appropriate measuring method is selected out of the measuring methods mentioned above and then the measuring method is used to measure the fine aggregate A and the water A corresponding to the normal volume.


[1024] After measuring the fine aggregate A and the water A, they are thrown into the kneading mixer with cement and other concrete materials for mixing the given amount of materials.


[1025] Subsequently, the measurement container 544a is detached once to measure the fine aggregate B and the water B and the measurement container 544b is mounted on the stand instead. In the same manner as for the measuring method of the fine aggregate A and the water A, measurement is then made on the fine aggregate B and the water B corresponding to two-thirds of the normal volume. Thereafter, they are thrown into the kneading mixer with cement and other concrete materials for mixing two-thirds of the given amount of materials.


[1026] Subsequently, the measurement container 544b is detached once to measure the fine aggregate C and the water C and the measurement container 544c is mounted on the stand instead. In the same manner as for the measuring method of the fine aggregate A and the water A, measurement is then made on the fine aggregate C and the water C corresponding to one-half of the normal volume. Thereafter, they are thrown into the kneading mixer with cement and other concrete materials for mixing one-half of the given amount of materials.


[1027] As set forth hereinabove, according to the measuring apparatus 571 of concrete materials of this embodiment, water overflows from the opening for overflow 551 at the normal water level at which the depth is identical even if any of the measurement containers 544a, 544b, and 544c is used for measurement. Thereby, the accuracy of the water level is identical in any of the measurement containers 544a, 544b, and 544c.


[1028] Therefore, the accuracy of the water level thus the accuracy of the total volume of submergence aggregate calculated from the water level can be identical. Thereby, even if required aggregate amounts are different from each other, it becomes possible to find the common accuracy of the total volume thus of the aggregate measurement.


[1029] Furthermore, according to the measuring apparatus 571 of concrete materials of this embodiment, surface water of fine aggregate can be indirectly calculated as a part of mass Mw of water, even if the fine aggregate whose moisture state is not uniform is used, and the mass of the fine aggregate can be calculated as mass Ma of the fine aggregate in the saturated surface-dried condition. In other words, since the mass of the fine aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete as shown by the specified mix.


[1030] While the present invention is applied to measurement of fine aggregate in this embodiment, it is applicable to measurement of coarse aggregate instead. If a plurality of aggregates are mixed as concrete materials, measurement values of the aggregates often differ from each other. The measuring apparatus according to the present invention is also applicable to this case.


[1031] Furthermore in this embodiment, for convenience of description, the volumes of the measurement containers are assumed to be the given amount, the given amount multiplied by two-thirds, and the given amount multiplied by one-half of the kneading mixer, respectively, when the volumes are at the normal water level where they have the same depth. It is apparent, however, that the volumes are not limited to the above.


[1032] Still further, while three measurement containers are used as the plurality of measurement containers in this embodiment, it is apparent that the number of measurement containers is not limited to the above.


[1033] Furthermore, the masses MI of water thrown into the measurement containers 544a, 544b, and 544c are measured as an accumulation value with the flowmeter 573. Instead of it, however, if water is thrown earlier into the measurement containers 544a, 544b, and 544c so that the water overflows the measurement containers, the water level at which the water overflows from the opening for overflow is previously determined to be the normal water level as mentioned above, by which the mass MI of supplied water is a known value without a need for measurement. Therefore, in this constitution, there is no need to have means for supplying water comprising the flowmeter 573, the water storage hopper 102, the water feed pipe 105, and the closing valve 106.


[1034] In this case, water may overflow due to throwing aggregate in the subsequent step, but the water level will never decrease. Therefore, the accumulation value of the mass MI of supplied water is fixed during measurement.



INDUSTRIAL APPLICABILITY

[1035] The surface water of aggregate is indirectly calculated as a part of mass Mw of water, even if the aggregate whose moisture state is not uniform is used, and the mass of the aggregate is calculated as mass Ma of the aggregate in the saturated surface-dried condition. In other words, since the mass of the aggregate and the mass of the water are calculated on the conditions equivalent to the specified mix, even if the humidity grade of the fine aggregate is not fixed at every measurement, it becomes possible to make concrete as shown by the specified mix.


[1036] Practically both fine aggregate and coarse aggregate are needed as materials of construction of concrete. Furthermore, there is assumed a case of using a plurality of fine or coarse aggregates that differ from each other in the density, the grading, or the like. It is often important to make new aggregate having desired grading particularly by mixing the plurality of aggregates different from each other in grading at appropriate percentages.


[1037] The measuring method of concrete materials according to the present invention is a very effective measuring method for measuring a plurality of aggregates different from each other in at least one of the density and grading as mentioned above.


Claims
  • 1. A measuring apparatus of concrete materials, comprising: an aggregate feed hopper for supplying aggregate; a measurement tank for containing the aggregate discharged from the aggregate feed hopper together with water as submergence aggregate; water level measuring means for measuring a water level of the submergence aggregate contained in said measurement tank; mass measuring means for measuring a mass of the submergence aggregate contained in said measurement tank.
  • 2. The measuring apparatus of concrete materials according to claim 1, wherein said aggregate is fine aggregate, said aggregate feed hopper is a fine aggregate feed hopper, and said submergence aggregate is submergence fine aggregate.
  • 3. The measuring apparatus of concrete materials according to claim 2, further comprising a vibrating feeder placed under a discharge opening of said fine aggregate feed hopper and conveying fine aggregate discharged from the discharge opening with giving a predetermined vibration to the fine aggregate and a screen device placed in the vicinity of an exit of the vibrating feeder and above said measurement tank.
  • 4. The measuring apparatus of concrete materials according to claim 2, wherein said measurement tank is formed in a shape of a truncated cone so that a bore of the measurement tank gets larger as it goes below.
  • 5. A measuring method of concrete materials, comprising the steps of: throwing aggregate and water into a predetermined measurement tank so that the aggregate is submerged in the water as submergence aggregate; and calculating mass Ma of the aggregate in a saturated surface-dried condition and mass Mw of the water by solving the following two formulas: Ma+Mw=Mf  (1) Ma/ρa+Mw/ρw=Vf  (2) where Mf=a total mass of the submergence aggregate; Vf=a total volume of the submergence aggregate; ρa=a density of the aggregate in the saturated surface-dried condition; and ρw=a density of the water.
  • 6. The measuring method of concrete materials according to claim 5, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 7. A measuring apparatus of concrete materials, comprising: aggregate supply means for supplying aggregate; water supply means; a measurement tank for containing aggregate supplied from said aggregate supply means together with water supplied from said water supply means as submergence aggregate; and submergence aggregate mass measuring means for measuring a mass of the submergence aggregate in said measurement tank, wherein a bottom lid capable of maintaining watertightness inside the measurement tank is attached at a bottom opening of said measurement tank in such a way that the bottom lid is free to open or close; and wherein a predetermined opening for overflow is formed on a wall of said measurement tank at a predetermined height thereof so that water in said measurement tank overflows outside.
  • 8. The measuring apparatus of concrete materials according to claim 7, wherein said opening for overflow is provided at a plurality of locations at different heights.
  • 9. The measuring apparatus of concrete materials according to claim 7, wherein said opening for overflow is provided at a variable overflow height.
  • 10. The measuring apparatus of concrete materials according to claim 7, wherein said measurement tank is formed in a shape of a hollow truncated cone.
  • 11. The measuring apparatus of concrete materials according to claim 7, wherein a predetermined vibrator is installed above said measurement tank so that the vibrator is free to move up and down and so that it may be buried in said submergence aggregate in the downward location.
  • 12. The measuring apparatus of concrete materials according to claim 7, further comprising aggregate mass measuring means for measuring a mass of aggregate in said aggregate supply means.
  • 13. The measuring apparatus of concrete materials according to claim 7, wherein supplied water measuring means for measuring a mass of supplied water is provided on said water supply means and wherein there is provided overflow water measuring means for measuring a mass of water overflowing from said opening for overflow.
  • 14. A measuring method of concrete materials, comprising the steps of: throwing water and aggregate into a measurement tank having an opening for overflow formed thereon so that the aggregate is submerged in the water as submergence aggregate and so that the water overflows from the opening for overflow; measuring total mass Mf of the submergence aggregate; and calculating mass Ma of the aggregate in a saturated surface-dried condition and mass Mw of the water from the fact that an internal volume at overflow from said measurement tank is equal to total volume Vf of the submergence aggregate by solving the following two formulas: Ma+Mw=Mf  (1) Ma/ρa+Mw/ρw=Vf  (2) where ρa is a density of the aggregate in the saturated surface-dried condition and ρw is a density of the water.
  • 15. The measuring method of concrete materials according to claim 14, further comprising the steps of: measuring mass Maw of the aggregate in wet condition; and calculating a percentage of surface moisture of the aggregate by solving the following formula: (Maw−Ma)/Ma  (3)
  • 16. The measuring method of concrete materials according to claim 14, further comprising the steps of: measuring mass MI of the supplied water and mass MO of the overflow water; calculating Maw by solving the following formula: Maw=Mf−(MI−MO)  (4); and calculating a percentage of surface moisture of the aggregate by substituting the Maw for the following formula: (Maw−Ma)/Ma  (3)
  • 17. The measuring method of concrete materials according to one of claims 14 to 16, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 18. A measuring apparatus of concrete materials, comprising: an aggregate measurement container for storing aggregate to be measured; aggregate mass measuring means for measuring a mass of the aggregate in said aggregate measurement container; and a submergence aggregate container for storing the aggregate in said aggregate measurement container together with water as submergence aggregate, wherein a bottom lid capable of maintaining watertightness inside the submergence aggregate container is attached at a bottom opening of said submergence aggregate container in such a way that the bottom lid is free to open or close; wherein a predetermined opening for overflow is formed on a wall of said submergence aggregate container at a predetermined height thereof so that water in said submergence aggregate container overflows outside; and wherein there is provided overflow water measuring means for measuring a mass of the water overflowing from the opening for overflow.
  • 19. The measuring apparatus of concrete materials according to claim 18, wherein said opening for overflow is provided at a plurality of locations at different heights.
  • 20. The measuring apparatus of concrete materials according to claim 18, wherein said opening for overflow is provided at a variable overflow height.
  • 21. The measuring apparatus of concrete materials according to claim 18, wherein said submergence aggregate container is formed in a shape of a hollow truncated cone.
  • 22. The measuring apparatus of concrete materials according to claim 18, wherein a predetermined vibrator is installed above said submergence aggregate so that the vibrator is free to move up and down and so that it may be buried in said submergence aggregate in the downward location.
  • 23. The measuring apparatus of concrete materials according to claim 18, further comprising supplied water means provided with supplied water measuring means.
  • 24. A measuring method of concrete materials, comprising the steps of: measuring mass Maw of aggregate; throwing aggregate and water into a submergence aggregate container having an opening for overflow formed thereon so that the aggregate is submerged in the water as submergence aggregate and so that the water overflows from the opening for overflow; measuring mass MI of the supplied water and mass MO of the overflow water as accumulation values; calculating mass Ma of the aggregate in a saturated surface-dried condition and mass Mw of the water in the submergence aggregate from the fact that an internal volume at overflow from said submergence aggregate container is equal to total volume Vf of the submergence aggregate by solving the following two formulas: Ma+Mw=Maw+(MI−MO)  (5) Ma/ρa+Mw/ρw=Vf  (2) where ρa is a density of the aggregate in the saturated surface-dried condition and ρw is a density of the water; and calculating a percentage of surface moisture of the aggregate by solving the following formula: (Maw−Ma)/Ma  (3)
  • 25. The measuring method of concrete materials according to claim 24, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 26. A measuring method of concrete materials, comprising the steps of: throwing aggregate of a first kind and water into a predetermined measurement tank so that the aggregate is submerged in the water as submergence aggregate; measuring total mass Mf1 of the submergence aggregate; calculating mass Ma1 of the aggregate of the first kind in a saturated surface-dried condition by solving the following two formulas: Ma1+Mw=Mf1  (7) Ma1/ρa1+Mw/ρw=Vf1  (8) where Vf1 is a total volume of the submergence aggregate, ρa1 is a density of the aggregate of the first kind in the saturated surface-dried condition, and ρw is a density of the water; throwing aggregate of a second kind and required water into said measurement tank so that the aggregate of the second kind is submerged in the water as submergence aggregate; measuring total mass Mf2 of the submergence aggregate; calculating mass Ma2 of the aggregate of the second kind in a saturated surface-dried condition by solving the following two formulas: Ma1+Ma2+Mw=Mf2  (9) Ma1/ρa1+Ma2/ρa2+Mw/ρw=Vf2  (10) where Vf2 is a total volume of the submergence aggregate and ρa2 is a density of the aggregate of the second kind in the saturated surface-dried condition; hereinafter, repeating the above procedure for sequential calculation up to mass Ma(N−1) of aggregate of an (N−1)th kind in a saturated surface-dried condition; finally throwing aggregate of an Nth kind and required water into said measurement tank so that the aggregate of the Nth kind is submerged in the water as submergence aggregate; measuring total mass MfN of the submergence aggregate; and calculating mass MaN of aggregate of the Nth kind in a saturated surface-dried condition and mass Mw of the water by solving the following two formulas: ΣMai (i=1 to (N−1))+MaN+Mw=MfN  (11) ΣMai/ρai (i=1 to (N−1))+MaN/ρaN+Mw/ρw=VfN  (12) where VfN is a total volume of the submergence aggregate and ρaN is a density of the aggregate of the Nth kind in the saturated surface-dried condition.
  • 27. The measuring method of concrete materials according to claim 26, wherein the total volume Vfi (i=1 to N) of the submergence aggregate is maintained at a steady value Vf when the water and the aggregate of the i-th kind (i=1 to N) are thrown into said measurement tank.
  • 28. The measuring method of concrete materials according to claim 26 or 27, further comprising the steps of: measuring the mass Mawi of the aggregate of the i-th kind (i=1 to N) in wet condition; and calculating a percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) by solving the following formula: (Mawi−Mai)/Mai  (13)
  • 29. The measuring method of concrete materials according to claim 26 or 27, further comprising the steps of: measuring mass MI of the water supplied to said measurement tank and mass MO of the water discharged from said measurement tank as accumulation values; calculating ΣMawj (j=1 to i) by solving the following formula: ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14); calculating Mawi by solving the following formula: ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15); and calculating a percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) by substituting the Mawi for the following formula: (Mawi−Mai)/Mai  (13)
  • 30. A measuring method of concrete materials, comprising the steps of: measuring mass Mawi of aggregate of an i-th kind (i=1 to N) in wet condition; throwing water and aggregate of a first kind into a predetermined submergence aggregate container so that the first aggregate is submerged in the water as submergence aggregate and so that a total volume of the submergence aggregate is maintained at a steady value Vf; measuring mass MI of water supplied to said submergence aggregate container and mass MO of water discharged from said submergence aggregate container as accumulation values; calculating mass Ma1 of the aggregate of the first kind in a saturated surface-dried condition by solving the following two formulas: Ma1+Mw=Maw1+(MI−MO)  (16) Ma1/ρa1+Mw/ρw=Vf  (17) where ρa1 is a density of the aggregate of the first kind in the saturated surface-dried condition and ρw is a density of the water; calculating a percentage of surface moisture of the aggregate of the first kind by solving the following formula: (Maw1−Ma1)/Ma1  (18) throwing aggregate of a second kind and required water into said submergence aggregate container so that the aggregate of the second kind is submerged in the water as submergence aggregate and so that the total volume of the submergence aggregate is maintained at the steady value Vf; measuring mass MI of the supplied water and mass MO of the discharged water as accumulation values; calculating mass Ma2 of the aggregate of the second kind in a saturated surface-dried condition by solving the following two formulas: Ma1+Ma2+Mw=Maw1+Maw2+(MI−MO)  (19) Ma1/ρa1+Ma2/ρa2+Mw/ρw=Vf  (20) where ρa2 is a density of the aggregate of the second kind in the saturated surface-dried condition; calculating a percentage of surface moisture of the aggregate of the second kind by solving the following formula: (Maw2−Ma2)/Ma2  (21) hereinafter, repeating the above procedure for sequential calculation up to mass Ma(N−1) of aggregate of an (N−1)th kind in a saturated surface-dried condition; finally throwing aggregate of an Nth kind and required water into said submergence aggregate container so that the aggregate of the Nth kind is submerged in the water as submergence aggregate and so that the total volume of the submergence aggregate is maintained at the steady value Vf; measuring mass MI of the supplied water and mass MO of the discharged water as accumulation values; calculating mass MaN of the aggregate of the Nth kind in a saturated surface-dried condition and mass Mw of the water by solving the following two formulas: ΣMai (i=1 to (N−1))+MaN+Mw=Σ(Mawi (i=1 to (N−1))+MawN+(MI−MO)  (22) Σ(Mai/ρai) (i=1 to (N−1))+MaN/ρaN+Mw/ρw=Vf  (23) where ρaN is a density of the aggregate of the Nth kind in the saturated surface-dried condition; and calculating a percentage of surface moisture of the aggregate of the Nth kind by solving the following formula: (MawN−MaN)/MaN  (24)
  • 31. The measuring method of concrete materials according to one of claims 26, 27, and 30, wherein an air content of the submergence aggregate is a (%) and Vfi (i=1 to N)∘(1−a/100) or Vf∘(1−a/100) is used instead of said Vfi (i=1 to N) or Vf.
  • 32. The measuring method of concrete materials according to claim 28, wherein an air content of the submergence aggregate is a (%) and Vfi (i=1 to N)∘(1−a/100) or Vf∘(1−a/100) is used instead of said Vfi (i=1 to N) or Vf.
  • 33. The measuring method of concrete materials according to claim 29, wherein an air content of the submergence aggregate is a (%) and Vfi (i=1 to N)∘(1−a/100) or Vf∘(1−a/100) is used instead of said Vfi (i=1 to N) or Vf.
  • 34. A measuring method of concrete materials, comprising the steps of: calculating a mean-density ρave of whole aggregate from a mass ratio of aggregate of an i-th kind (i=1 to N) and density ρai (i=1 to N) of the aggregate of the i-th kind (i=1 to N) in a saturated surface-dried condition; throwing the aggregate of the i-th kind (i=1 to N) and water into a predetermined measurement tank so that the aggregate of the i-th kind (i=1 to N) is submerged in the water as submergence aggregate; measuring total mass Mf of the submergence aggregate; and calculating summation ΣMai (i=1 to N), that is, total mass of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition and mass Mw of the water by solving the following two formulas: ΣMai (i=1 to N)+Mw=Mf  (25) ΣMai (i=1 to N)/ρave+Mw/ρw=Vf  (26) where Vf is a total volume of the submergence aggregate and ρw is a density of the water.
  • 35. The measuring method of concrete materials according to claim 34, wherein the total volume Vf of the submergence aggregate is maintained at a steady value when the water and the aggregate of the i-th kind (i=1 to N) are thrown as submergence aggregate into said measurement tank.
  • 36. The measuring method of concrete materials according to claim 34 or 35, further comprising the steps of: measuring summation ΣMawi (i=1 to N), that is, total mass of the aggregate of the i-th kind (i=1 to N) in wet condition; and calculating an average percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) by solving the following formula: (ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (27)
  • 37. The measuring method of concrete materials according to claim 34 or 35, further comprising the steps of: measuring mass MI of the water supplied to said measurement tank and mass MO of the water discharged from said measurement tank; calculating ΣMawi (i=1 to N) by solving the following formula: ΣMawi (i=1 to N)=Mf−(MI−MO)  (28); and calculating an average percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) by substituting the ΣMawi value for the following formula: (ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (27)
  • 38. A measuring method of concrete materials comprising the steps of: measuring summation ΣMawi (i=1 to N), that is, total mass of the aggregate of the i-th kind (i=1 to N) in wet condition; calculating a mean-density ρave of whole aggregate from a mass ratio of the aggregate of the i-th kind (i=1 to N) and density ρai (i=1 to N) of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition; throwing the aggregate of the i-th kind (i=1 to N) and water into a predetermined submergence aggregate container so that the aggregate of the i-th kind (i=1 to N) is submerged in the water as submergence aggregate and so that a total volume of the submergence aggregate is maintained at a steady value Vf; measuring mass MI of water supplied to said submergence aggregate container and mass MO of water discharged from said submergence aggregate container as accumulation values; calculating summation ΣMai (i=1 to N), that is, total mass of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition and mass Mw of the water in said submergence aggregate by solving the following two formulas: ΣMai (i=1 to N)+Mw=ΣMawi (i=1 to N)+(MI−MO)  (29) ΣMai (i=1 to N)/ρave+Mw/ρw=Vf  (30) where ρw is a density of the water; and calculating an average percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) by solving the following formula: (ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (31)
  • 39. The measuring method of concrete materials according to one of claims 34, 35, and 38, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 40. The measuring method of concrete materials according to claim 36, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 41. The measuring method of concrete materials according to claim 37, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 42. A measuring method of concrete materials, comprising the steps of: throwing aggregate and water into a predetermined measurement tank so that the aggregate is submerged in the water as submergence aggregate; measuring total mass Mf of the submergence aggregate; and calculating mass Ma of the aggregate in a saturated surface-dried condition and mass Mw of the water by solving the following two formulas: Ma+Mw=Mf  (1) Ma/ρa+Mw/ρw=Vf  (2) where Vf is a total volume of the submergence aggregate, ρa is a density of the aggregate in the saturated surface-dried condition, and ρw is a density of the water, wherein the aggregate is thrown into the measurement tank at a predetermined speed and continuously or intermittently while measuring the total mass Mf of the submergence aggregate in real time or at predetermined time intervals and throwing the aggregate is terminated when the mass Ma of the aggregate in the saturated surface-dried condition reaches a scheduled input.
  • 43. The measuring method of concrete materials according to claim 42, wherein the total volume of the submergence aggregate Vf is maintained at a steady value when the water and the aggregate are thrown as submergence aggregate into said measurement tank.
  • 44. The measuring method of concrete materials according to claim 42 or 43, further comprising the steps of: measuring mass MI of the water supplied to said measurement tank and mass MO of the water discharged from said measurement tank as accumulation values; calculating Maw by solving the following formula: Maw=Mf−(MI−MO)  (4); and calculating a percentage of surface moisture of the aggregate by substituting the Maw for the following formula: (Maw−Ma)/Ma  (3)
  • 45. A measuring method of concrete materials, comprising the steps of: throwing aggregate of a first kind and water into a predetermined measurement tank so that the aggregate is submerged in the water as submergence aggregate; measuring total mass Mf1 of the submergence aggregate; calculating mass Ma1 of the aggregate of the first kind in a saturated surface-dried condition by solving the following two formulas: Ma1+Mw=Mf1  (7) Ma1/ρa1+Mw/ρw=Vf1  (8) where Vf1 is a total volume of the submergence aggregate, ρa1 is a density of the aggregate of the first kind in the saturated surface-dried condition, and ρw is a density of the water; throwing aggregate of a second kind and required water into said measurement tank so that the aggregate of the second kind is submerged in the water as submergence aggregate; measuring total mass Mf2 of the submergence aggregate; calculating mass Ma2 of the aggregate of the second kind in a saturated surface-dried condition by solving the following two formulas: Ma1+Ma2+Mw=Mf2  (9) Ma1/ρa1+Ma2/ρa2+Mw/ρw=Vf2  (10) where Vf2 is a total volume of the submergence aggregate and ρa2 is a density of the aggregate of the second kind in the saturated surface-dried condition; hereinafter, repeating the above procedure for sequential calculation up to mass Ma(N−1) of aggregate of an (N−1)th kind in a saturated surface-dried condition; finally throwing aggregate of an Nth kind and required water into said measurement tank so that the aggregate of the Nth kind is submerged in the water as submergence aggregate; measuring total mass MfN of the submergence aggregate; and calculating mass MaN of the aggregate of the Nth kind in a saturated surface-dried condition and mass Mw of the water by solving the following two formulas: ΣMai (i=1 to (N−1))+MaN+Mw=MfN  (11) ΣMai/ρai (i=1 to (N−1))+MaN/ρaN+Mw/ρw=VfN  (12) where VfN is a total volume of the submergence aggregate and ρaN is a density of the aggregate of the Nth kind in the saturated surface-dried condition, wherein the aggregate of the i-th kind (i=1 to N) is thrown into the measurement tank at a predetermined speed and continuously or intermittently while measuring the total mass Mfi (i=1 to N) of the submergence aggregate in real time or at predetermined time intervals and throwing the aggregate of the i-th kind (i=1 to N) is terminated when the mass Mai (I=1 to N) of the aggregate in the saturated surface-dried condition reaches a scheduled input.
  • 46. The measuring method of concrete materials according to claim 45, wherein the total volume Vfi (i=1 to N) of the submergence aggregate is maintained at a steady value Vf when the water and the aggregate of the i-th kind (i=1 to N) are thrown as submergence aggregate into said measurement tank.
  • 47. The measuring method of concrete materials according to claim 45 or 46, further comprising the steps of: measuring mass MI of the water supplied to said measurement tank and mass MO of the water discharged from said measurement tank as accumulation values; calculating ΣMawj (j=1 to i) by solving the following formula: ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14); calculating Mawi by solving the following formula: ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15) and calculating a percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) by substituting the Mawi for the following formula: (Mawi−Mai)/Mai  (13)
  • 48. A measuring method of concrete materials, comprising the steps of: calculating a mean-density ρave of whole aggregate from a mass ratio of aggregate of an i-th kind (i=1 to N) and density ρai (i=1 to N) of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition; throwing the aggregate of the i-th kind (i=1 to N) and water into a predetermined measurement tank so that the aggregate of the i-th kind (i=1 to N) is submerged in the water as submergence aggregate; measuring total mass Mf of the submergence aggregate; and calculating summation ΣMai (i=1 to N), that is, total mass of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition and mass Mw of the water by solving the following two formulas: ΣMai (i=1 to N)+Mw=Mf  (25) ΣMai (i=1 to N)/ρave+Mw/ρw=Vf  (26) where Vf is a total volume of the submergence aggregate and ρw is a density of the water, wherein the aggregate of the i-th kind (i=1 to N) is thrown into the measurement tank at a predetermined speed and continuously or intermittently while measuring the total mass Mf of the submergence aggregate in real time or at predetermined time intervals and throwing the aggregate of the i-th kind (i=1 to N) is terminated when the summation ΣMai (i=1 to N) of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition reaches a scheduled input.
  • 49. The measuring method of concrete materials according to claim 48, wherein the total volume Vf of the submergence aggregate is maintained at a steady value when the water and the aggregate of the i-th kind (i=1 to N) are thrown as submergence aggregate into said measurement tank.
  • 50. The measuring method of concrete materials according to claim 48 or 49, further comprising the steps of: measuring mass MI of the water supplied to said measurement tank and mass MO of the water discharged from said measurement tank; calculating ΣMawi (i=1 to N) by solving the following formula: ΣMawi (i=1 to N)=Mf−(MI−MO)  (28); and calculating an average percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) by substituting the ΣMawi value for the following formula: (ΣMawi (i=1 to N)−ΣMai (i=1 to N))/ΣMai (i=1 to N)  (27)
  • 51. The measuring method of concrete materials according to one of claims 42, 43, 45, 46, 48, and 49, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 52. The measuring method of concrete materials according to claim 44, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 53. The measuring method of concrete materials according to claim 47, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 54. The measuring method of concrete materials according to claim 50, wherein an air content of the submergence aggregate is a (%) and Vf∘(1−a/100) is used instead of said Vf.
  • 55. A measuring method of concrete materials, comprising the steps of: setting target mass Mdi (i=1 to N) of submergence aggregate at an end of throwing aggregate of an i-th kind (i=1 to N); throwing aggregate of a first kind and water into a predetermined measurement tank so that the aggregate of the first kind is submerged in the water as submergence aggregate; measuring total mass Mf1 of the submergence aggregate; measuring total volume Vf1 of the submergence aggregate; calculating mass Mai of the aggregate of the first kind in a saturated surface-dried condition by substituting the total mass Mf1 and the total volume Vf1 of the submergence aggregate for the following formula: Mai=ρa1(Mf1−ρwVf1)/(ρa1−ρw)  (32) where ρa1 is a density of the aggregate of the first kind in the saturated surface-dried condition and ρw is a density of the water; throwing aggregate of a second kind into said measurement tank so that the aggregate of the second kind is submerged in the water as submergence aggregate; measuring total mass Mf2 of the submergence aggregate; measuring total volume Vf2 of the submergence aggregate; calculating mass Ma2 of the aggregate of the second kind in a saturated surface-dried condition by substituting the total mass Ma2 and the total volume Va2 of the submergence aggregate for the following formula: Ma2=ρa2((Mf2−Ma1)−ρw(Vf2−Ma1/ρa1))/(ρa2−ρw)  (33) where ρa1 is a density of the aggregate of the first kind in the saturated surface-dried condition, ρa2 is a density of the aggregate of the second kind in the saturated surface-dried condition, and ρw is a density of the water; hereinafter, repeating the above procedure for sequential calculation up to mass Ma(N−1) of aggregate of an (N−1)th kind in a saturated surface-dried condition; finally throwing aggregate of an Nth kind into said measurement tank so that the aggregate of the Nth kind is submerged in the water as submergence aggregate; measuring total mass MfN of the submergence aggregate; and calculating mass MaN of the aggregate of the Nth kind in a saturated surface-dried condition and mass Mw of the water by substituting the total mass MfN and the total volume VfN of the submergence aggregate for the following formulas: MaN=ΣaN((MfN−ΣMai (i=1 to (N−1)))−ρw(VfN−Σ(Mai/ρai) (i=1 to (N−1))))/(ρaN−ρw)  (34) Mw=ρw(ρaN(VfN−Σ(Mai/ρai) (i=1 to (N−1)))−(MfN−ΣMai (i=1 to (N−1))))/(ρaN−ρw)  (35) where ρa1 (i=1 to N) is a density of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition and ρw is a density of the water; wherein the aggregate of the i-th kind (i=1 to N) is thrown into the measurement tank at a predetermined speed and continuously or intermittently while measuring the total mass Mfi (i=1 to N) of the submergence aggregate in real time or at predetermined time intervals and throwing aggregate of a jth kind is terminated when total mass Mfj of the submergence aggregate in the aggregate of the i-th kind (i=1 to N) reaches the target mass Mdj of the submergence aggregate at the end of throwing the aggregate of the jth kind during throwing the aggregate of the jth kind.
  • 56. A measuring method of concrete materials, comprising the steps of: setting target mass Mdi (i=1 to N) of submergence aggregate at an end of throwing aggregate of an i-th kind (i=1 to N); throwing aggregate of a first kind and water into a predetermined measurement tank so that the aggregate of the first kind is submerged in the water as submergence aggregate; measuring total mass Mf1 of the submergence aggregate; calculating mass Ma1 of the aggregate of the first kind in a saturated surface-dried condition by substituting the total mass Mf1 of the submergence aggregate and total volume Vf1 of the submergence aggregate corresponding to a preset first water level for the following formula: Ma1=ρa1(Mf1−ρwVf1)/(ρa1−ρw)  (32) where ρa1 is a density of the aggregate of the first kind in the saturated surface-dried condition and ρw is a density of the water; throwing aggregate of a second kind into said measurement tank so that the aggregate of the second kind is submerged in the water as submergence aggregate; measuring total mass Mf2 of the submergence aggregate; calculating mass Ma2 of the aggregate of the second kind in a saturated surface-dried condition by substituting the total mass Ma2 of the submergence aggregate and the total volume Va2 of the submergence aggregate corresponding to a preset second water level for the following formula: Ma2=ρa2((Mf2−Ma1)−ρw(Vf2−Ma1/ρa1))/(ρa2−ρw)  (33) where ρa1 is a density of the aggregate of the first kind in the saturated surface-dried condition, ρa2 is a density of the aggregate of the second kind in the saturated surface-dried condition, and ρw is a density of the water; hereinafter, repeating the above procedure for sequential calculation up to mass Ma(N−1) of aggregate of an (N−1)th kind in a saturated surface-dried condition; finally throwing aggregate of an Nth kind into said measurement tank so that the aggregate of the Nth kind is submerged in the water as submergence aggregate; measuring total mass MfN of the submergence aggregate; and calculating mass MaN of the aggregate of the Nth kind in a saturated surface-dried condition and mass Mw of the water by substituting the total mass MfN of the submergence aggregate and the total volume VfN of the submergence aggregate corresponding to a preset Nth water level for the following formulas: MaN=ρaN((MfN−ΣMai (i=1 to (N−1)))−ρw(VfN−Σ(Mai/Σai) (i=1 to (N−1))))/(ρaN−ρw)  (34) Mw=ρw(ρaN(VfN−Σ(Mai/Σai) (i=1 to (N−1)))−(MfN−ΣMai (i=1 to (N−1))))/(ρaN−ρw)  (35) where ρai (i=1 to N) is a density of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition and ρw is a density of the water; wherein the aggregate of the i-th kind (i=1 to N) is thrown into the measurement tank at a predetermined speed and continuously or intermittently while measuring the total mass Mfi (i=1 to N) of the submergence aggregate in real time or at predetermined time intervals and throwing aggregate of a jth kind is terminated when total mass Mfj of the submergence aggregate in the aggregate of the i-th kind (i=1 to N) reaches the target mass Mdj of the submergence aggregate during throwing the aggregate of the jth kind while excess water is discharged so that the water level of the submergence aggregate does not exceed a preset jth water level and wherein, unless the water level of the submergence aggregate at that time reaches the preset jth water level, water is added so that it reaches the jth water level for re-measuring the total mass Mfj of the submergence aggregate and re-calculating the mass Maj of the aggregate of the jth kind in the saturated surface-dried condition and the mass Mw of the water.
  • 57. The measuring method of concrete materials according to claim 55 or 56, further comprising the steps of: measuring mass MI of the water supplied to said measurement tank and mass MO of the water discharged from said measurement tank as accumulation values; calculating ΣMawj (j=1 to i) by substituting the mass MI of the water to said measurement tank, the mass MO of the water from said measurement tank, and the total mass Mfi (i=1 to N) for the following formula: ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14); calculating Mawi by solving the following formula: ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15); and calculating a percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) by substituting the Mawi for the following formula: (Mawi−Mai)/Mai  (13)
  • 58. The measuring method of concrete materials according to claim 55 or 56, wherein an air content of the submergence aggregate is a (%) and Vfi (i=1 to N)∘(1−a/100) is used instead of said Vfi (i=1 to N).
  • 59. The measuring method of concrete materials according to claim 57, wherein an air content of the submergence aggregate is a (%) and Vfi (i=1 to N)∘(1−a/100) is used instead of said Vfi (i=1 to N).
  • 60. A program for an execution of measuring and calculating concrete materials, wherein said program is used to perform the steps of: performing an input operation via predetermined input means with entering density ρai (i=1 to N) of aggregate of an i-th kind (i=1 to N) in a saturated surface-dried condition, density ρw of water, and target mass Mdi (i=1 to N) of submergence aggregate at an end of throwing the aggregate of the i-th kind (i=1 to N) and storing them into storage means; throwing aggregate of a first kind and water into a predetermined measurement tank so that the aggregate of the first kind is submerged in the water as submergence aggregate; measuring total mass Mf1 of the submergence aggregate; measuring total volume Vf1 of the submergence aggregate; reading the density ρa1 of the aggregate of the first kind in the saturated surface-dried condition and the density ρw of the water previously stored in said storage means therefrom; calculating mass Ma1 of the aggregate of the first kind in the saturated surface-dried condition with calculation means by substituting the total mass Mf1 and the total volume Vf1 of the submergence aggregate for the following formula: Ma1=ρa1(Mf1−ρwVf1)/(ρa1−ρw)  (32) where ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition and ρw is the density of the water, which have been read; storing a result of the calculation in said storage means; throwing aggregate of a second kind into said measurement tank so that the aggregate of the second kind is submerged in the water as submergence aggregate; measuring total mass Mf2 of the submergence aggregate; measuring total volume Vf2 of the submergence aggregate; reading density ρa1 of the aggregate of the first kind in the saturated surface-dried condition, density ρa2 of the aggregate of the second kind in the saturated surface-dried condition, and density ρw of the water previously stored in said storage means therefrom; calculating mass Ma2 of the aggregate of the second kind in the saturated surface-dried condition with the calculation means by substituting the total mass Mf2 and the total volume Vf2 of the submergence aggregate for the following formula: Ma2=ρa2((Mf2−Ma1)−ρw(Vf2−Ma1/ρa1))/(ρa2−ρw)  (33) where ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition, ρa2 is the density of the aggregate of the second kind in the saturated surface-dried condition, and ρw is the density of the water, which have been read; storing a result of the calculation in said storage means; repeating the above procedure with said calculation means hereinafter for sequential calculation up to mass Ma(N−1) of aggregate of an (N−1) th kind in a saturated surface-dried condition; storing a result of the calculation in said storage means; throwing finally aggregate of an Nth kind into said measurement tank so that the aggregate of the Nth kind is submerged in the water as submergence aggregate; measuring total mass MfN of the submergence aggregate; measuring total volume VfN of the submergence aggregate; and calculating mass MaN of the aggregate of the Nth kind in the saturated surface-dried condition and mass Mw of the water with said calculation means by substituting the total mass MfN and the total volume VfN of the submergence aggregate for the following formulas: MaN=ρaN((MfN−ΣMai (i=1 to (N−1)))−ρw(VfN−Σ(Mai/ρai) (i=1 to (N−1))))/(ρaN−ρw)  (34) Mw=ρw(ρaN(VfN−Σ(Mai/ρai) (i=1 to (N−1)))−(MfN−ΣMai (i=1 to (N−1))))/(ρaN−ρw)  (35) where ρai (i=1 to N) is the density of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition and ρw is the density of the water, which have been read; wherein the aggregate of the i-th kind (i=1 to N) is thrown into said measurement tank at a predetermined speed and continuously or intermittently while measuring the total mass Mfi (i=1 to N) of the submergence aggregate in real time or at predetermined time intervals and throwing aggregate of a jth kind is terminated when total mass Mfj of the submergence aggregate in the aggregate of the i-th kind (i=1 to N) reaches the target mass Mdj of the submergence aggregate during throwing the aggregate of the j th kind.
  • 61. A program for an execution of measuring and calculating concrete materials, wherein said program is used to perform the steps of: performing an input operation via predetermined input means with entering density ρai (i=1 to N) of aggregate of an i-th kind (i=1 to N) in a saturated surface-dried condition, density ρw of water, and target mass Mdi (i=1 to N) of submergence aggregate at an end of throwing the aggregate of the i-th kind (i=1 to N) and storing them into storage means; throwing aggregate of a first kind and water into a predetermined measurement tank so that the aggregate of the first kind is submerged in the water as submergence aggregate; measuring total mass Mf1 of the submergence aggregate; reading the density ρa1 of the aggregate of the first kind in the saturated surface-dried condition and the density ρw of the water previously stored in said storage means therefrom; calculating mass Ma1 of the aggregate of the first kind in the saturated surface-dried condition with calculation means by substituting the total mass Mf1 of the submergence aggregate and the total volume Vf1 of the submergence aggregate corresponding to a preset first water level for the following formula: Ma1=ρa1(Mf1−ρwVf1)/(ρa1−ρw)  (32) where ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition and ρw is the density of the water, which have been read; storing a result of the calculation in said storage means; throwing aggregate of a second kind into said measurement tank so that the aggregate of the second kind is submerged in the water as submergence aggregate; measuring total mass Mf2 of the submergence aggregate; reading density ρa1 of the aggregate of the first kind in the saturated surface-dried condition, density ρa2 of the aggregate of the second kind in the saturated surface-dried condition, and density ρw of the water previously stored in said storage means therefrom; calculating mass Ma2 of the aggregate of the second kind in the saturated surface-dried condition with the calculation means by substituting the total mass Mf2 of the submergence aggregate and the total volume Vf2 of the submergence aggregate corresponding to a preset second water level for the following formula: Ma2=ρa2((Mf2−Ma1)−ρw(Vf2−Ma1/ρa1))/(ρa2−ρw)  (33) where ρa1 is the density of the aggregate of the first kind in the saturated surface-dried condition, ρa2 is the density of the aggregate of the second kind in the saturated surface-dried condition, and ρw is the density of the water, which have been read; storing a result of the calculation in said storage means; repeating the above procedure with said calculation means hereinafter for sequential calculation up to mass Ma(N−1) of aggregate of an (N−1) th kind in a saturated surface-dried condition; storing a result of the calculation in said storage means; throwing finally aggregate of an Nth kind into said measurement tank so that the aggregate of the Nth kind is submerged in the water as submergence aggregate; measuring total mass MfN of the submergence aggregate; reading density ρai (i=1 to N) of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition and density ρw of the water; and calculating mass MaN of the aggregate of the Nth kind in the saturated surface-dried condition and mass Mw of the water with said calculation means by substituting the total mass MfN of the submergence aggregate and the total volume VfN of the submergence aggregate corresponding to a preset Nth water level for the following formulas: MaN=ρaN((MfN−ΣMai (i=1 to (N−1)))−ρw(VfN−Σ(Mai/ρai) (i=1 to (N−1))))/(ρaN−ρw)  (34) Mw=ρw(ρaN(VfN−Σ(Mai/ρai) (i=1 to (N−1)))−(MfN−ΣMai (i=1 to (N−1))))/(ρaN−ρw)  (35) where ρai (i=1 to N) is the density of the aggregate of the i-th kind (i=1 to N) in the saturated surface-dried condition and ρw is the density of the water, which have been read; wherein the aggregate of the i-th kind (i=1 to N) is thrown into said measurement tank at a predetermined speed and continuously or intermittently while measuring the total mass Mfi (i=1 to N) of the submergence aggregate in real time or at predetermined time intervals and throwing aggregate of a jth kind is terminated when total mass Mfj of the submergence aggregate in the aggregate of the i-th kind (i=1 to N) reaches the target mass Mdj of the submergence aggregate during throwing the aggregate of the jth kind while excess water is discharged so that the water level of the submergence aggregate at that time does not exceed the preset jth water level and wherein, unless the water level of the submergence aggregate at that time reaches the preset jth water level, water is added so that it reaches the jth water level for re-measuring the total mass Mfj of the submergence aggregate and re-calculating the mass Maj of the aggregate of the jth kind in the saturated surface-dried condition and the mass Mw of the water.
  • 62. The program for an execution of measuring and calculating concrete materials according to claim 60 or 61, wherein the program is used to perform the steps of: measuring mass MI of the water supplied to said measurement tank and mass MO of the water discharged from said measurement tank as accumulation values; storing a result of the measurement into said storage means; reading the mass MI of the water supplied to said measurement tank, the mass MO of the water discharged from said measurement tank, and the total mass Mfi (i 1 to N) from said storage means; calculating ΣMawj (j=1 to i) with said calculation means by substituting the mass MI of the water to said measurement tank, the mass MO of the water from said measurement tank, and the total mass Mfi (i=1 to N) for the following formula: ΣMawj (j=1 to i)=Mfi−(MI−MO)  (14); storing a result of the calculation into said storage means; calculating Mawi with said calculation means by solving the following formula: ΣMawj (j=1 to i)−ΣMawj (j=1 to (i−1))  (15); and calculating a percentage of surface moisture of the aggregate of the i-th kind (i=1 to N) with said calculation means by substituting said Mawi for the following formula: (Mawi−Mai)/Mai  (13)
  • 63. The program for an execution of measuring and calculating concrete materials according to claim 60 or 61, wherein an air content of the submergence aggregate is a (%) and Vfi (i=1 to N)∘(1−a/100) is used instead of said Vfi (i=1 to N).
  • 64. The program for an execution of measuring and calculating concrete materials according to claim 62, wherein an air content of the submergence aggregate is a (%) and Vfi (i=1 to N)∘(1−a/100) is used instead of said Vfi (i=1 to N).
  • 65. A computer-readable recording medium having a record of a program for an execution of measuring and calculating concrete materials according to claim 60 or 61.
  • 66. A computer-readable recording medium having a record of a program for an execution of measuring and calculating concrete materials according to claim 62.
  • 67. A computer-readable recording medium having a record of a program for an execution of measuring and calculating concrete materials according to claim 63.
  • 68. A computer-readable recording medium having a record of a program for an execution of measuring and calculating concrete materials according to claim 64.
  • 69. A discharge mechanism of a measurement container, having a constitution in which aggregate is contained with water as submergence aggregate in the measurement container when the bottom lid is closed for measuring the submergence aggregate and the submergence aggregate is discharged downward by opening the bottom lid after the measurement is finished, wherein a gas spraying mechanism is provided in the vicinity of said bottom lid and the top face of the bottom lid is sprayed with a gas flow by means of the gas spraying mechanism when the bottom lid is opened.
  • 70. A discharge mechanism of a measurement container, having a constitution in which aggregate is contained with water as submergence aggregate in the measurement container when the bottom lid is closed for measuring the submergence aggregate and the submergence aggregate is discharged downward by opening the bottom lid after the measurement is finished, wherein said bottom lid is opened or closed by moving it in a translation direction or rotating it within a level surface and wherein a gas spraying mechanism is provided in the vicinity of said bottom lid and the top face of the bottom lid is sprayed with a gas flow by means of the gas spraying mechanism when the bottom lid is opened.
  • 71. The discharge mechanism of the measurement container according to claim 69 or 70, wherein said gas spraying mechanism is an air spray nozzle connected in communication with an air compressor.
  • 72. A discharge mechanism of a measurement container, having a constitution in which aggregate is contained with water as submergence aggregate in the measurement container when the bottom lid is closed for measuring the submergence aggregate and the submergence aggregate is discharged downward by opening the bottom lid after the measurement is finished, wherein said bottom lid is opened or closed by moving it in a translation direction or rotating it within a level surface.
  • 73. A measuring apparatus of concrete materials, comprising: aggregate supply means for supplying aggregate; water supply means; a plurality of measurement containers for containing aggregate supplied from said aggregate supply means together with water supplied from said water supply means as submergence aggregate; submergence aggregate mass measuring means for measuring a mass of the submergence aggregate in said plurality of measurement containers; water level measuring means for measuring a water level of the submergence aggregate in said plurality of measurement containers; and water level regulation means for regulating the water level of said submergence aggregate by discharging water from said plurality of measurement containers, wherein a bottom lid capable of maintaining watertightness inside each of said plurality of measurement containers is attached at a bottom opening of each of said plurality of measurement containers in such a way that the bottom lid is free to open or close and volumes of said plurality of measurement containers differ from each other at a normal water level where they have the same depth; and wherein a measurement container is selected for measurement out of said plurality of measurement containers according to a required mass of aggregate and said water level regulation means is driven and controlled so that the water level of the submergence aggregate in the measurement container is maintained at said normal water level while measuring and monitoring the water level with said water level measuring means.
  • 74. A measuring apparatus of concrete materials, comprising: aggregate supply means for supplying aggregate; water supply means; a plurality of measurement containers for containing aggregate supplied from said aggregate supply means together with water supplied from said water supply means as submergence aggregate; submergence aggregate mass measuring means for measuring a mass of the submergence aggregate in said plurality of measurement containers; and water level maintaining means for maintaining a water level of the submergence aggregate in said plurality of measurement containers at a normal water level where the depth is identical, wherein a bottom lid capable of maintaining watertightness inside each of said plurality of measurement containers is attached at a bottom opening of each of said plurality of measurement containers in such a way that the bottom lid is free to open or close and volumes of said plurality of measurement containers differ from each other at said normal water level; and wherein a measurement container is selected for measurement out of said plurality of measurement containers according to a required mass of aggregate.
  • 75. A measuring apparatus of concrete materials, comprising: an aggregate measurement container for storing aggregate to be measured; aggregate mass measuring means for measuring amass of the aggregate in said aggregate measurement container; a plurality of measurement containers for containing aggregate in said aggregate measurement container together with water as submergence aggregate; water level maintaining means for maintaining a water level of the submergence aggregate in said plurality of measurement containers at a normal water level where the depth is identical; and supplied or discharged water mass measuring means for measuring mass of water supplied to or discharged from said plurality of measurement containers as accumulation values, wherein a bottom lid capable of maintaining watertightness inside each of said plurality of measurement containers is attached at a bottom opening of each of said plurality of measurement containers in such a way that the bottom lid is free to open or close and volumes of said plurality of measurement containers differ from each other; and wherein a measurement container is selected for measurement out of said plurality of measurement containers according to a required mass of aggregate.
  • 76. The measuring apparatus of concrete materials according to claim 74 or 75, wherein said water level maintaining means is formed in an opening for overflow formed on a body of each of the measurement containers at a predetermined height thereof so that water in said measurement containers overflow outside.
Priority Claims (9)
Number Date Country Kind
2001-024968 Jan 2001 JP
2001-026143 Feb 2001 JP
2001-036770 Feb 2001 JP
2001-036902 Feb 2001 JP
2001-049751 Feb 2001 JP
2001-062698 Mar 2001 JP
2001-062611 Mar 2001 JP
2001-062622 Mar 2001 JP
2001-109466 Apr 2001 JP
PCT Information
Filing Document Filing Date Country Kind
PCT/JP02/00447 1/23/2002 WO