The present invention relates to equipment for floor maintenance, in particular to a wet floor cleaning device and to a method for cleaning a floor.
Many wet floor cleaning apparatuses or devices comprise a rotatable brush which is continually wetted as it scrubs the surface of a floor to be cleaned. The brush is typically wetted with a cleaning solution that enhances the cleaning process. Unfortunately, the use of a wetted brush may leave behind cleaning solution residue in the form of a trail or a series of small puddles of cleaning solution. This even applies to cleaning devices that are capable of evenly and sparingly wetting the brush. A floor cleaning device comprising a brush that is rotatable around an axis of rotation, and a cover having a cover surface that faces the axis of rotation is known from U.S. Pat. No. 5,086,539. U.S. Pat. No. 5,086,539 discloses a carpet cleaning machine including a pair of spaced, long-bristles, counter-revolving brushes for stroking solvent-moistened cleaning granules into and across carpet fibers. A shroud is disposed above the brushes and has a bottom surface spaced from the brushes.
The trail and the small puddles have their origin in the rotational motion of the brush, which may cause the liquid in and on the brush to be swung outward, off its surface. To prevent droplets shaken out of the brush from being scattered all over the floor, the rotating brush is typically shielded from its surroundings by a cover or splashguard which partly surrounds it. Droplets of cleaning solution caught by the cover will adhere to its surface and aggregate into somewhat larger drops. Once the drops have reached a sufficient weight, they may run downward along the surface of the cover under the influence of gravity, and drip down onto the floor from a lower edge thereof. These relatively small drops in themselves are not a major issue, as they are typically distributed across a larger surface (the floor cleaning devices moves during use), and are small enough to dry up quickly. The actual problem is caused by the fact that non-level operation of the cleaning device, which may result directly from use on non-level floors, creates a lowest point on the cover. Liquid drops from all over the cover will collectively-flow to this lowest point. From there they will subsequently break loose from the cover surface in a seeping fashion, or possibly as a genuine torrent when the cleaning device is suddenly inclined. This may leave behind a concentrated trail or puddle of cleaning solution on the floor being cleaned. Such liquid trails/puddles may locally make a floor unexpectedly slippery, posing a hazard to people, and may eventually dry up while leaving spots on the floor.
It is an object of the present invention to mitigate or overcome the problem of liquid trails and puddles particularly due to non-level use of a floor cleaning device. According to one aspect of the invention, this problem is solved in that the cover has a cover surface which is provided with a plurality of ridges, said ridges forming liquid channels between them for transporting liquid to outfalls provided at lower ends of the liquid channels.
The cover surface faces the rotational axis of the brush. Consequently, when the brush is moistened and rotated during use, it will be bombarded with tiny droplets. These droplets will aggregate into drops and run downward along the cover surface under the action of gravity, thereby snowballing with other droplets to form (tiny) liquid streams. The ridges provided on the cover surface may be considered as levees that channel these liquid streams between them but do not allow the streams to merge. By keeping the streams separate, excessive accumulation of liquid at a single point is prevented, even when the cover is not in its level orientation. Instead, the channels between the ridges guide the liquid in relatively small quantities towards a lowest point or outfall associated with each channel, from where the liquid may trickle down onto the floor. The separate liquid channels constituted by the ridges thus allow a fine discharge distribution (satisfactory spread) of liquid collected by the cover surface, averting the creation of noticeable trails of liquid behind the cleaning device.
According to another aspect of the invention, a method of cleaning a floor is provided. The method comprises the steps of providing a brush, bringing the brush into contact with the floor, moistening the brush with a fluid, for example, a cleaning solution, and rotating the brush. The method further comprises the steps of collecting droplets of fluid, released from the brush due to a centrifugal force associated with its rotational motion, in a plurality of liquid channels provided on a cover, and guiding the collected fluid through the liquid channels towards outfalls provided at lower ends of the liquid channels.
These and other features and advantages of the invention will be more fully understood from the following detailed description of embodiments of the invention, described with reference to the accompanying drawings, which are illustrative and do not limit the invention.
In the drawings, identical reference numerals denote the same or similar elements or acts. Shapes, sizes, angles and relative positions of elements in the drawings may not be drawn to scale and may be arbitrarily enlarged and positioned to improve drawing legibility. In addition, the examples of the floor cleaning device and its components are shown in a natural working orientation, i.e. a level or somewhat inclined orientation with respect to the horizontal. Consequently, where relevant, gravity points downward in the drawings.
The handle 102 allows a user to grip the cleaning device 100 and steer it around. The bar-like handle 102 shown in
A connection rod 104 transfers the motion imparted to the handle 102 by the user to the housing 106. The connection rod 104 may also serve as a duct for electric wiring extending from the handle 102 to the electromotor so as to supply the latter with power, and as a support element for, for example, the cleaning solution reservoir 110.
The housing 106 accommodates two brushes 112, 114. In the case of a forward motion of the cleaning device 100, brush 112 may be termed the leading brush, while brush 114 may be termed the trailing brush. Both brushes 112, 114 are substantially cylindrical, though other brush shapes, e.g. prismatic, may be used as well. The longitudinal axes of the brushes 112, 114 coincide with their respective axes of rotation, and, when in use, are oriented substantially parallel to a floor being cleaned. Each brush 112, 114 may comprise a substantially cylindrical jacket or prism jacket-shaped core. An exterior of the core may be furnished with brush material, e.g. soft microfiber fabric or tufts of synthetic filaments. The brush material may be provided on a liquid-permeable backing by means of which it is attached, e.g. glued, to the outside surface of the core. The liquid-permeable backing may be a part of a fluid supply system which transports cleaning solution to the brush material. The fluid supply system may further include small (radially extending) core perforations. These perforations may allow cleaning solution, supplied from the cleaning solution reservoir 110 into an inner volume of the core when it rotates, to be transported outward, out of the core, into the brush material via the permeable backing. Due to a centrifugal force associated with the rotational motion of the core, the cleaning solution may be squeezed out of the core, through the perforations, but this is not the only possibility. For example, gravity and capillary action are other mechanisms by means of which the cleaning solution may be distributed from the core volume into the brush material. Moreover, an altogether different fluid supply system for wetting the brush material may of course be used, for example, a system based on moistening the brush material by spraying it with a cleaning solution or by exposing the material to a vapor thereof.
In use, the brushes preferably rotate in opposite directions. In the view of
A cover 200 comprising cover parts 202, 204 and 206 roofs over the two brushes 112, 114, from the floor up. The cover part 202 roofs over leading brush 112 and serves mainly as a splashguard. Trailing brush 114 is partly roofed by the two cover parts 204, 206, which is a result of the fact that the cover 200 in the embodiment shown in
In the embodiment shown in
The surface structures of the cover parts 202, 204, 206 may be identical, and can best be illustrated with reference to
The ridges 210 stretch along the curved surface 207 of cover part 206 and can be said to extend in a direction having a component parallel to the direction of gravity at virtually any point. (The only point where a ridge 210 provided on the approximately semi-cylindrical cover part 206 does not extend in the direction of gravity to some degree is the apex of the curve described by the ridge, which apex has a horizontal tangent and is not shown in
The ridges 212 extend substantially parallel to each other, allowing efficient use of cover part surface 207 by the provision of many parallel channels 212, which corresponds to a high liquid channel density and, in turn, to a fine outfall distribution (i.e. spread of discharged liquid).
The interspacing between the ridges 210, corresponding to the width WL of the liquid channels 212, is preferably such that the liquid channels do not collect liquid through capillary action. Capillary behavior, which may manifest itself in liquid channels 212 that are too narrow, may inhibit the transport of liquid through the channels towards the outfalls 214. It is noted that the critical width WL at which a liquid channel 212 may exhibit capillary behavior is dependent on the characteristics of the liquid which is to be guided through the channel.
The interspacing WL between the ridges 210 may reflect the moistening profile of the brush 114. For example, axial regions of the brush 114 that are heavily moistened may correspond to a cover part surface 207 section having a relatively large number of liquid channels 212 per unit of axial length (i.e. small interspacing WL), whereas moderately moistened axial brush regions may correspond to cover part surface sections having a relatively small number of liquid channels per unit of axial length (i.e. large interspacing WL). After all, brush regions that are moistened to a greater extent will cast off more liquid, increasing the need for fine channeling. In the case of an axially uniformly moistened brush 114, the interspacing WL between the ridges 210 is preferably the same for any two adjacent ridges, as shown in
Liquid channels 212 are preferably provided on the cover part surface 207 over the full (axial or longitudinal) length of the brush 114 being shielded, so as to be present wherever liquid is launched off the brush due to its rotational motion. This implies that the width WR of the ridges 210—i.e. the spacing between the liquid channels 212—may be relatively small.
Generally, the ridges 210 that define the liquid channels 212 do not need to protrude very far from the cover part surface 207. That is, their height H is preferably sufficient to halt the axial flow of liquid that may result from an inclined orientation of the floor cleaning device 100, so as to keep collected liquid inside a liquid channel, but no greater than that. Typically, a maximum ridge height of 5 mm suffices.
The side surfaces 216 of the ridges 210 may be preferably oriented perpendicularly with respect to the inner surface 207 from which the ridges protrude. An acute angle between a side surface 216 and the inner surface 207 corresponds to a ridge 210 essentially shielding a liquid channel 212 from incoming droplets, which is at variance with the very function of the liquid channel, whereas an obtuse angle may allow liquid from within the liquid channel to easily overflow the ridge and leave the confines of the channel.
Although the liquid channels 212 serve to collect and transport liquid, they will inevitably collect dirt particles as well. The dirt particles may stick to the cover 200, aggregate, and eventually even clog one or more liquid channels. To allow easy cleaning of the inside cover part surface 207, in particular of the liquid channels 212, the cross-sectional profiles of the liquid channels are preferably defined by a smooth curve. Accordingly, sharp, hardly accessible corners in which dirt may accumulate are prevented. In
In the configuration of
In the embodiment shown in
While the invention has been illustrated and described in detail in the drawings and the foregoing description, such illustrations and the description arc to be considered illustrative or as examples and are not limiting; the invention is not limited to the disclosed embodiments. Variations of the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, use of the verb ‘comprise’ and its conjugations does not exclude other elements or steps, and the indefinite article ‘a’ or ‘an’ does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Any reference signs in the claims should not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
08166753.7 | Oct 2008 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/054407 | 10/8/2009 | WO | 00 | 4/12/2011 |