Device and method in a filling machine

Information

  • Patent Grant
  • 10494125
  • Patent Number
    10,494,125
  • Date Filed
    Friday, May 16, 2014
    10 years ago
  • Date Issued
    Tuesday, December 3, 2019
    4 years ago
  • CPC
  • Field of Search
    • US
    • 053 551000
    • 053 433000
    • 053 434000
    • 053 511000
    • 053 512000
    • 053 451000
    • CPC
    • B65B31/045
    • B65B31/044
    • B65B31/06
    • B65B31/08
    • B65B31/01
    • B65B57/10
    • B65B57/14
    • B65B9/20-22
    • B67C3/06
    • B67C3/12
  • International Classifications
    • B65B31/04
    • Term Extension
      790
Abstract
The present invention relates to a device in a filling machine, said filling machine comprising a filling pipe for supplying liquid food to the tube of packaging material, a pipe for supplying pressurized sterile air to the tube of packaging material, and a gasket for sealing against the tube of packaging material and any pipes inside the tube, for creating an overpressure in the tube. The device further comprises a first pressure gauge for measuring a first pressure inside the pipe at a location upstream from the tube, a device for determining an air mass flow in the pipe, and a control unit for receiving the measured parameters, where the control unit is adapted to calculate the pressure in the tube based on the air mass flow and the first pressure, according to a first pre-established relationship. The invention also relates to a method being implemented by the device.
Description
FIELD OF THE INVENTION

The present invention relates to a device and a method for monitoring and controlling the pressure at a downstream part of a pipe, and in particular for controlling the pressure at a downstream part of a pipe in a filling machine.


BACKGROUND OF THE INVENTION

In filling machines for liquid food packages, such as sold by Tetra Pak® under the name Tetra Pak A1, a web of packaging material is sterilized, and is subsequently formed into a tube. This tube is filled with liquid food continually, and the tube of packaging material is transversally sealed and cut such that separate packages with liquid food are formed. The liquid food is generally filled inside the tube of packaging material up to a certain height, such that a certain pressure is created during the forming and sealing of the packages. Normally, the pillar of liquid food is enough for having good package forming, but in certain instances an additional over-pressure is required. This is normally provided by connecting a tube system of pressurised sterile air to the filling pipe, providing an over-pressure inside the tube of packaging material, acting on the pillar of liquid food and being maintained by a tube seal, arranged inside the tube of packaging material and sealing against the internal pipes. However, the pressure above the liquid pillar is difficult to measure, and may fluctuate during production, for various reasons.


It is hence an object of the present invention to mitigate this drawback. In a first aspect, the invention provides a system for accurately monitoring the pressure inside the tube of packaging material by utilizing a method according to claim 1.


All features described in connection with any aspect of the invention can be used with any other aspect of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be further described with reference to a preferred embodiment, as shown in the drawings in which:



FIG. 1 shows a schematic drawing of the system according to one embodiment of the invention,



FIG. 2 shows a schematic drawing of an alternative embodiment of the invention, and



FIGS. 3-4 show graphs used for calculating constants used in the method of the invention.





DETAILED DESCRIPTION

The present invention will now be described with references to the drawings. In FIG. 1, a schematic representation of the device 1 is shown for carrying out the method according to the invention. The device 1 comprises an inlet pipe 10, supplying the device with sterile, pressurized air from an undisclosed source, such as a tank or pump. A branch pipe 20 branches off from the main pipe, and is provided with a control valve 21. The branch pipe 20 is further provided with a first pressure gauge 22 and a second pressure gauge 23, being separated by a short distance along the branch pipe 20. The branch pipe 20 is then directed inside a tube 27 of packaging material. The branch pipe 20 is arranged either inside or outside the filling pipe (not shown) for the liquid food product. A tube seal 26 is provided outside the second pipe 20, for sealing against the supply pipes, i.e. second pipe 20 and filling pipe, and against the inside of the tube 27 of packaging material, which is already provided with a longitudinal sealing further upstream. The tube 27 of packaging material is sealed longitudinally and transversally by devices normally present in filling machines for liquid food packages, but those devices are not a part of the invention.


A precision-made restriction 24 is inserted between the first 22 and second 23 pressure gauges, having a diameter of 10 mm. The flow restriction from the first pressure gauge 22 to the tube 27 of packaging material is represented by a second restriction 25. The actual restriction is caused by the pipe itself, and its corners etc.


A control unit 30 is connected to the first pressure gauge 22 via a first connection 31 and to the second pressure gauge 23 via a second connection 32. The first 31 and second 32 connections send the pressure measurements to the control unit 30, for calculations. The control unit is connected to the control valve 21 via a control line 33.


In FIG. 2, an alternative embodiment is shown. Instead of the second pressure gauge 23, a mass flow meter 28 of a known type is inserted. This mass flow meter 28 may be a coriolis flow meter, a thermal mass flow meter, a pitot tube or similar. In this embodiment, the air mass flow meter 28 sends a signal relating to the air mass flow to the control unit 30 via a third connection 34.


The function of the device 1 will now be explained. The pressurized air from the inlet pipe 10 is directed through the second pipe 20 and through a control valve 21. The air mass flow through the second pipe 20 is denoted with mf, and it is constant throughout the pipe. The air flow through the second pipe 20 enters the tube of packaging material, and the air leaks through the tube seal 26.


The pressure inside the second pipe 20 is measured by the pressure gauges 22, 23. However, the pressure to be monitored is the pressure pt inside the packaging material tube 27, but it is difficult, if not impossible, to have a pressure gauge inside the tube 27 of packaging material, e.g. for hygienic reasons. Instead, the pressure is measured at an upstream location by a first pressure gauge 22 and the pressure inside the tube 27 is the pressure at the first pressure gauge 22 minus the pressure drop occurring in the pipe due to the flow resistance of the air mass flow inside the pipe 20, from the location of the first pressure gauge 22. The flow resistance varies with the air flow, so this has to be established with calibrations in advance. The control unit 30 receives the measurements for the pressures (for the second embodiment the direct air mass flow), and calculates the pressure inside the tube 27 of packaging material. For moderate air flows, when the compressibility of the air is small, the following applies:






{







p
t

=


p
2

-

(


p
2

-

p
t


)









(


p
2

-

p
t


)

=


k
t

·

m
f
2








p
t


=



p
2

-


k
t

·


m
f
2





(


p
1

-

p
2


)



=





k
R

·

m
f
2








(

R





3

)




p
t


=


p
2

-




k
t


k
R


·

(


p
1

-

p
2


)








(

R





2

)










The constants kt and kR are given by measurements performed in advance, see FIGS. 3 and 4, where the measured pressure difference Δp is plotted for different air mass flows mf. The constant kt is used to determine the pressure drop from the first pressure gauge 22 to the tube 27 of packaging material. During operation of the filling machine, the pressures p1 and p2 are measured, and the difference Δp is constantly monitored. The pressure pt inside the tube is then calculated, according to the above calculations, by the control unit 30. If the pressure pt deviates from pre-determined limits, the air mass flow is controlled, either increased or decreased, such that the correct pressure pt is achieved inside the tube. Should the air mass flow need to be increased or decreased too much, the machine might need to be stopped, for a more detailed control. This can e.g. happen when the tube seal 26 is worn out, and needs to be replaced. In the embodiment where there is only the first pressure gauge 22, and the air flow is measured directly with the mass flow meter 28, the pressure Pt at the tube 27 of packaging material is calculated according to

pt=p1−kt·mf2  (R1)

where the constant kt as before needs to be established through measurements performed in advance.


Whilst the invention has been described with reference to a preferred embodiment, it will be appreciated that various modifications are possible within the scope of the invention.


In this specification, unless expressly otherwise indicated, the word ‘or’ is used in the sense of an operator that returns a true value when either or both of the stated conditions is met, as opposed to the operator ‘exclusive or’ which requires that only one of the conditions is met. The word ‘comprising’ is used in the sense of ‘including’ rather than in to mean ‘consisting of’. All prior teachings acknowledged above are hereby incorporated by reference. No acknowledgement of any prior published document herein should be taken to be an admission or representation that the teaching thereof was common general knowledge in Australia or elsewhere at the date hereof.

Claims
  • 1. Device in a filling machine for supplying liquid food to a tube of packaging material, said filling machine comprising a pipe for supplying pressurized sterile air to the tube of packaging material, and a gasket for sealing against the tube of packaging material and any pipes inside the tube, for creating an overpressure in said tube, the device comprising: a first pressure gauge for measuring a first pressure inside the pipe at a location upstream from the tube, means for determining an air mass flow in said pipe, and a control unit for receiving the measured parameters, said control unit being adapted to calculate the pressure in said tube based on the air mass flow and the first pressure, according to a first pre-established relationship;wherein the means for determining an air mass flow further comprises a second pressure gauge for measuring a second pressure, and a restriction located between the first pressure gauge and the second pressure gauge for obtaining measurements of a pressure difference between said first and second pressure gauges.
  • 2. Device according to claim 1, where the pressure at the tube of packaging material is calculated by the control unit based on the pressure difference between the second pressure and the first pressure, and on the first pressure, according to a second pre-established relationship.
  • 3. Device according to claim 1, wherein a control valve, being controlled by the control unit, is arranged in the pipe for controlling the mass flow of sterile air such that the pressure inside said tube of packaging material is controlled.
  • 4. Method of controlling a pressure in a tube of packaging material in a filling machine for supplying liquid food to the tube of packaging material, a pipe for supplying pressurized sterile air to the tube of packaging material, and a gasket for sealing against the tube of packaging material and any pipes inside the tube, for creating an overpressure in said tube, said method comprising: a) measuring a first pressure in the pipe, located upstream of the tube of packaging material,b) measuring the air mass flow in said pipe,c) calculating the pressure drop from the location of said upstream pressure to the tube, using the pressure and the mass flow, andd) calculating the pressure at said tube of packaging material as the pressure at the location of the first pressure minus the pressure drop from that location to the tube of packaging material,wherein measuring the air mass flow in said pipe comprises measuring a second pressure at a location upstream from the location of said first pressure, and providing a restriction between the location of the first pressure in the pipe and the location of the second pressure upstream from the location of said first pressure for obtaining measurements of the pressure difference between said first and second pressures.
  • 5. Method according to claim 4, further comprising using said pressure drop from the location of the second pressure to the location of the first pressure for determining the air mass flow, according to a third pre-established relationship.
  • 6. Method according to claim 4, further comprising: controlling the air mass flow, by a control valve, for controlling the pressure inside the tube of packaging material.
Priority Claims (1)
Number Date Country Kind
1350680 Jun 2013 SE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2014/060044 5/16/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/195112 12/11/2014 WO A
US Referenced Citations (70)
Number Name Date Kind
2160367 Maxfield May 1939 A
2618814 Paton Nov 1952 A
2687740 Jarund Aug 1954 A
3269079 Schmied Aug 1966 A
3457968 Tuma Jul 1969 A
3470672 Tuma Oct 1969 A
3520321 Mojonnier Jul 1970 A
3545983 Woods Dec 1970 A
3664086 James May 1972 A
3665959 Castillon May 1972 A
3789888 James Feb 1974 A
3970426 Stark Jul 1976 A
4099914 Gustafsson Jul 1978 A
4127976 Jablonski Dec 1978 A
4235265 Feliks Nov 1980 A
4241563 Muller Dec 1980 A
4308710 Sandberg Jan 1982 A
4539903 Sugisawa Sep 1985 A
4606174 Berg Aug 1986 A
4617779 Nygren Oct 1986 A
4636391 Pike Jan 1987 A
4731980 Worden Mar 1988 A
4738287 Klinkel Apr 1988 A
4784697 Bordini Nov 1988 A
4821580 Jorritsma Apr 1989 A
4860804 Yamaguchi Aug 1989 A
4874021 Ringdahl Oct 1989 A
4887411 Rondeau Dec 1989 A
4958665 Iwano Sep 1990 A
4972180 Akai Nov 1990 A
5016684 Clusserath May 1991 A
5142846 Alameda Sep 1992 A
5361560 Sandolo Nov 1994 A
5454208 Kawano Oct 1995 A
5473867 Suga Dec 1995 A
5546733 Paltrinieri Aug 1996 A
5558135 Kronseder Sep 1996 A
5582217 Nish Dec 1996 A
5720326 Kaneko Feb 1998 A
5813197 Aguzzoli Sep 1998 A
5858040 Hansen Jan 1999 A
6018932 Eberhardt, Jr. Feb 2000 A
6035614 Gustafsson Mar 2000 A
6116001 Kammler Sep 2000 A
6220000 Kammler Apr 2001 B1
6450215 Willemstyn Sep 2002 B1
6568157 Futase May 2003 B1
6619018 Sasaki Sep 2003 B1
6645429 Raniwala Nov 2003 B1
6729108 Tsuruta May 2004 B2
6904737 Engesser Jun 2005 B2
7069964 Kakuda Jul 2006 B1
7958697 Rapparini Jun 2011 B2
20010005974 Kondo Jul 2001 A1
20050076612 Andersson Apr 2005 A1
20050126117 Benedetti Jun 2005 A1
20060162290 Kakita Jul 2006 A1
20060213153 Sanfilippo Sep 2006 A1
20080000204 Turvey Jan 2008 A1
20080110562 Mayer May 2008 A1
20100126624 Conforti May 2010 A1
20110099955 Konno May 2011 A1
20110154779 Baba Jun 2011 A1
20110185686 Konno Aug 2011 A1
20120138631 Lurcott Jun 2012 A1
20120210681 Hennissen Aug 2012 A1
20120266571 Persson Oct 2012 A1
20120269459 Howes Oct 2012 A1
20150284233 Meinzinger Oct 2015 A1
20170144784 Illi May 2017 A1
Non-Patent Literature Citations (1)
Entry
International Search Report (PCT/ISA/210) dated Dec. 21, 2014, by the European Patent Office as the International Searching Authority for International Application No. PCT/EP2014/060044.
Related Publications (1)
Number Date Country
20160122051 A1 May 2016 US