Device and method of ablative cutting with helical tip

Information

  • Patent Grant
  • 9283040
  • Patent Number
    9,283,040
  • Date Filed
    Wednesday, March 13, 2013
    11 years ago
  • Date Issued
    Tuesday, March 15, 2016
    8 years ago
Abstract
Catheter devices for ablation and removal of occlusions from blood vessels and methods of using the same are provided. Catheter devices are useful to ablate, cut, dislodge, and otherwise remove occlusions within a blood vessel that may limit or prevent proper circulation. Distal features of the catheter devices comprise arrangements of laser ablative or mechanical cutting features that generally provide enhanced surface areas and cutting functions. Spiral or helical arrangements are provided to aid in cutting operations.
Description
FIELD

The present disclosure relates generally to medical devices, and, in particular, to a system of improved irrigation and aspiration catheters used in the containment and removal of material resulting from therapeutic treatment of occlusions within blood vessels.


BACKGROUND

Human blood vessels often become occluded or blocked by plaque, thrombi, other deposits, or emboli which reduce the blood carrying capacity of the vessel. Should the blockage occur at a critical place in the circulatory system, serious and permanent injury, and even death, can occur. To prevent this, some form of medical intervention is usually performed when significant occlusion is detected.


Balloon angioplasty and other transluminal medical treatments are well-known and have been proven efficacious in the treatment of stenotic lesions in blood vessels. The application of such medical procedures to certain blood vessels, however, has been limited, due to the risks associated with creation of emboli during the procedure. For example, angioplasty is not the currently preferred treatment for lesions in the carotid artery because of the possibility of dislodging plaque from the lesion, which can enter the various arterial vessels of the brain and cause permanent brain damage. Instead, surgical procedures such as carotid endarterectomy are currently used, wherein the artery is split open and the blockage removed, but these procedures present substantial risks of their own.


Other types of intervention for blocked vessels include atherectomy, deployment of stents, introduction of specific medication by infusion, and bypass surgery. Each of these methods are not without the risk of embolism caused by the dislodgement of the blocking material which then moves downstream. In addition, the size of the vessel may limit access to it.


There is also a need to efficiently remove occlusions from a patient without excess undesired removal of native blood and tissue within the system. Constant flow suction or vacuum pressure is effective at removing freed or dislodged occlusions, but typically remove unnecessary amounts of blood in the process. Thus, there is a need for a system to effectively contain and remove such emboli without undesired consequences, such as excess removal of blood and tissue from the vessel.


Vessels as small as 3 mm in diameter are quite commonly found in the coronary arteries, and even certain saphenous vein graph bypass vessels can also be as small as 3 mm or 4 mm; although some can range as high as 7 mm. Certain of the carotid arteries also can be as small as 4 mm in diameter; although, again, others are larger. Nevertheless, a successful emboli removal system must be effective within extremely small working areas.


Another obstacle is the wide variety in emboli dimensions. Although definitive studies are not available, it is believed that emboli may have approximate diameters ranging anywhere from tens of micrometers to a few hundred micrometers. More specifically, emboli which are considered dangerous to the patient may have diameters as large as 200 to 300 micrometers or even larger. Thus, an effective emboli removal system must be able to accommodate relatively large embolic particles and, at the same time, fit within relatively small vessels.


Another difficulty that must be overcome is the limited amount of time available to perform the emboli removal procedure. That is, in order to contain the emboli produced as a result of intravascular therapy, the vessel must be occluded, meaning that no blood perfuses through the vessel to the end organs. Although certain perfusion systems may exist or may be developed which would occlude emboli while permitting the substantial flow of blood, at present, the emboli may be contained only with a complete occlusion as to both blood flow and emboli escapement. Thus, again depending upon the end organ, the complete procedure, including time for the therapeutic treatment as well as exchanges of angioplastic balloons, stents, and the like, must be completed within a short time. Thus, it may be difficult to include time for emboli removal as well. This is particularly true in the larger size vessels discussed above wherein a larger volume results in additional time required for emboli evacuation.


Additionally, there has been a long felt an unmet need to provide a catheter that is adept at removing harder material, such as calcium (e.g. harder than thrombus and plaque). Cutting and removal of such harder materials generally requires additional procedure time and increased risks.


Moreover, it is important that an emboli containment and removal system be easy to use by physicians, and compatible with present therapeutic devices and methods.


SUMMARY

These and other needs are addressed by the various aspects, embodiments, and configurations of the present disclosure.


In various embodiments, a laser cutting and aspiration atherectomy system is provided, the system comprising a catheter comprising a ring or distribution of fibers that provide a cutting function and an inner lumen through which aspirated material is removed from a patient. It is contemplated that material be removed from the lumen by, for example, a pulsed aspiration system and an in-line filter for material collection as described herein. Embodiments of laser cutting and aspiration atherectomy systems of the present disclosure provide for a wide array of benefits, including providing the ability to create visibly smoother lumens faster than conventional laser ablation methods and systems. Embodiments of the present disclosure ablate less native tissue, separate the lesion from the vasculature in pieces or plugs, and aspirate material through the catheter. With a deflection component, this design can be used to both create a pilot channel and subsequent larger channels, faster than conventional bulk ablation. Devices of the present disclosure create a pilot channel and larger lumens in a faster manner than convention bulk ablation methods and devices.


Embodiments of the present disclosure contemplate various mechanical cutting features provided in combination with a catheter, either in addition to or in lieu of laser ablation means. Such mechanical cutting features include, but are not limited to, various bladed or shearing devices provided at or proximal to a distal end of the catheter. Such mechanical cutting features are contemplated as being substantially fixed to a distal end of a catheter, such as the periphery of an annular distal end, or selectively retractable/extendable from the distal end such that the cutting features are only provided in a position of use when desired. An example of a device that include a mechanical sheath for extending a cutting blade from the distal end of the sheath are described and illustrated in U.S. Pat. No. 5,651,781 to Grace, which is hereby incorporated herein by reference in its entirety for all that it teaches and for all purposes.


In one embodiment, a laser cutting and aspiration atherectomy catheter is provided, the catheter comprising an outer jacket with a tapered outer band, an inner lumen or channel for passage of material, and at least one ring or circular array of cutting fibers. A narrowed orifice or inner band is provided at the distal tip of the catheter. In a preferred embodiment, the catheter comprises a flexible tip with deflection items such as pull wires or shaping wires. Such deflection items are provided in addition to or in lieu of a distal outer jacket. The outer jacket provides a rigid member for communication of various user-applied forces including, but not limited to, torque, compression, and tension forces. The inner lumen provides a reinforced, lubricious lumen for material aspiration. The lumen, in certain embodiments, comprises a coil reinforced polytetrafluoroethylene/polyimide composite. Cutting fibers provide or transmit laser energy for cutting plaque and other occlusive material. In preferred embodiments, the fibers comprise 100 μm fibers provided in concentric arrangements (with respect to one another and/or the catheter).


In various embodiments, one or more catheters of the present disclosure are provided to remove cores or plug-shaped features from an occluded vessel. Devices and methods of the present disclosure contemplate cutting and removing of discrete portions of an occlusions, such as substantially cylindrical portions generally corresponding to the shape/diameter of a catheter distal end and inner lumen. Accordingly, and in contrast with prior art systems and devices, the present disclosure comprises the ability to remove discrete plugs or sections of an occlusion and minimize particulate that may be translocated to different locations within a system and cause additional complications. Annular cutting features, such as ablative lasers and/or mechanical cutting features, inner lumen removal systems, and structural features of catheters that enable application of axial of compression force to the catheter, for example, provide means for extracting discrete plugs or clogs of material from an occlusion and restoration of blood flow through an occlusion.


A method for removing occlusions from a vessel is provided, the method comprising the steps of providing an aspiration catheter comprising: (i) a distal end of substantially annular construction, the substantially annular construction defining an inner lumen for conveyance of material; (ii) at least one cutting element provided coincident or distal with the inner lumen; and (iii) a vacuum pump in fluid communication with the inner lumen and operable to transmit material therethrough; inserting the distal end of the aspiration catheter into a blood vessel navigating the distal end to a site of stenosis, selectively activating appropriate cutting element parameters, activating the vacuum pump, manipulating the aspiration catheter to extract a stenotic material, the stenotic material comprising a cross-sectional substantially the same as a cross-section of the inner lumen, and conveying the stenotic material through the length of the catheter.


The narrowed orifice provides a limiting orifice for material transport and clog resistance and, in certain embodiments, comprises a thin wall, stainless steel hypotube. The outer band provides fiber reinforcement and radio-opacity and, in certain embodiments, comprises a platinum-iridium band.


In one embodiment, a catheter is provided comprising an outer jacket, the outer jacket providing protection for internally-disposed fibers and aiding in maintaining the integrity of the inner lumen(s). The outer jacket further provides enhancements in control of the device, including flexibility of the catheter, track-ability along a path, and enhanced ability to accommodate and/or transmit torque and compression. Preferably, a tricoil arrangement is provided. In alternative embodiments, braided Pebax®, braided polyimide, and Pebax® jackets are provided.


As used herein, a “tricoil” arrangement comprises a shaft comprising coiled wire in a plurality of layers. In certain embodiments, construction of a tricoil includes wrapping at least one round or flat wire in one direction, either clockwise or counter-clockwise around a core mandrel. The wires are wrapped side by side and secured when an appropriate length is achieved. A second layer of at least one round or flat wires is wound in the opposite direction on top of the first layer and secured. The final layer of at least one round or flat wire is wound in the opposite direction of the second layer (or the same direction as the first layer) and secured. The assembly is then welded together at the ends of the shaft to create the component. Wire dimensions and count can be varied in construction for various attributes.


Tricoils contemplated by the present disclosure include, but are not limited to 1-4-4 and 1-6-6 filar count by layer, with flat wires from 0.0014″×0.010″ to 0.002″×0.016″. Benefits of tricoils include extreme torquability (approaching 1:1 ratio of torque input to torque output, even in bends), kink resistance, inner lumen protection, and durability, to name a few.


Alternative catheter shaft constructions include, but are not limited to Pebax, Braided Pebax, Braided Polyimide, Bicoils, and various combinations thereof.


Inner lumens of catheters of the present disclosure provide a conduit or pathway for aspirating cut or ablated material out of the body. In various embodiments, a vacuum-sealed, lubricious inner surface is provided that does not substantially deform or kink, so as to facilitate consistent removal of material without clogging the device. In certain embodiments, the lumen comprises a coil-reinforced, polytetrafluoroethylene/polyimide composite that provides sufficient hoop strength while allowing for a lubricious inner surface. In additional embodiments, a braid-reinforced PTFE/polyimide composite is provided for the inner lumen. In yet additional embodiments, the inner lumen may have ridges formed in a rifle-like manner to further control the removal of the material.


In certain embodiments, a catheter is provided comprising an internal rifled feature. A catheter jacket is contemplated as comprising an internal feature of a spiral and/or spinning helix or screw configuration. The jacket, which may be a polymer extrusion, comprises a helical rib or rifle such that rotation of the catheter about a longitudinal axis aspirates and/or macerates material. Extension and/or rotation of the catheter induces rotation of the helix structure, thereby freeing material and enabling removal. Freed material may be conveyed from a vessel via a central lumen of the catheter, for example.


The design of the inner lumen is essential to the removal of material without clogging. Requirements for the inner lumen include ovaling/kink resistance, vacuum compression resistance, and inner surface lubricity. Inner lumens that we have tried have been mostly composed of some type of Polyimide construction. We have used pure Polyimide lumens, PTFE/Polyimide Composite lumens, Pure PTFE inner liner with a PTFE/Polyimide composite outer layer. Reinforcement to the inner lumens has consisted of stainless steel wire braids and coils embedded into the walls of the lumen. These reinforcements prevent kinking, ovaling, and vacuum compression. Inner lumen design could consist of any combinations of components listed in the shaft design section.


Fibers of the present disclosure are provided to deliver laser energy, including that produced by a Spectranetics® CVX-300 and related interface circuit, for example. It is contemplated that fibers of the present disclosure be protected from damage and oriented correctly at the distal tip of the catheter for laser ablation. In various embodiments, approximately fifty to one hundred fibers are provided in concentric annular rings. In a preferred embodiment, seventy four 100 μm fibers are provided in concentric circles. This particular embodiment provides for sufficient energy to ablate tissue, while leaving enough room for a sufficiently large inner lumen space. It will be recognized, however, that the present disclosure is not limited to a particular number or arrangement of fibers. Indeed, various alternative arrangements and quantities of cutting fibers are contemplated as within the scope and spirit of the present disclosure. In alternative embodiments, any combination of fiber size can be utilized, including but not limited to 61/100/130 μm fibers, either in substantially circular or ovoid cross-section.


In various embodiments, a narrowed orifice/inner band is provided that creates a limiting orifice at the distal tip of the catheter. The narrowed orifice helps ensure that if material can pass through it, it will fit down the remainder of the inner lumen. Additionally, the narrowed orifice provides a rigid inner member for fiber support and prevents inner lumen degradation and damage. In one embodiment, a short, thin wall stainless steel hypotube is provided for the narrowed orifice. The shortness of the orifice decreases the chances of clogging at the tip, while the thin wall design reduces the amount of dead space for laser ablation.


In various embodiments, an outer band is provided at the distal end of the catheter, the outer band providing a rigid structure for fiber support and protection as well as ease of manipulation of fiber placement within the distal end. The present disclosure contemplates one or more bands or rows of fibers. One, two, or three or more substantially concentric rows of fibers may be provided for ablating material.


In one embodiment, a Pt/Ir band of approximately 2.0 mm diameter is provided that tapers to approximately 2.3 mm in diameter. Although various embodiments contemplate Pt/Ir bands, any biocompatible material including, but not limited to, stainless steel, plastic, etc. may be used to confine fibers. Outer band embodiments of the present disclosure provide for grouping of at least the distal ends of the fibers proximate an inner band, thus focusing the laser energy and allowing for more of the laser energy to create smaller plugs of material. It is further noted that such embodiments provide for a manufacturing “stop” when the flared inner lumen fits into the preferably tapered portion of the band. Although various embodiments contemplate a tapered outer band, non-tapered bands are also contemplated by the present disclosure.


Catheters of the present disclosure comprise one or more polished surfaces that dictate the interaction of the tip with a surface encountered by the tip. Various embodiments comprise flat polished faces that engage tissue concentrically. Preferably, a flat polish is provided that allows not only the fiber faces to engage tissue at the same time, but also allows the inner lumen to form a vacuum seal on tissue that fills the distal face.


Deflection means are provided in various embodiments of the present disclosure for user-selective manipulation of a distal end of a catheter. In various embodiments, deflection means comprise features involved in offsetting or deflecting the catheter tip, such that a larger lumen may be created in an occlusion, as compared with non-deflective or offset manipulation of the catheter. It is contemplated that deflection means of the present disclosure provide for between approximately 2-5 mm offsets from an initial or aligned positioned, and preferably for between approximately 3-4 mm offsets, particularly for “above the knee” procedures.


In certain embodiments, one or more pullwires are provided as deflection means. Pullwires of the present disclosure comprise wires that run down the length of the catheter and are attached to the distal tip for manipulation thereof. When a tension force is applied to at least one deflection means of such embodiments, the wire(s) causes deflection of the flexible distal end of the catheter. In one embodiment, a wire component is provided in the catheter that is permanently fixed to the distal portion of the catheter. User manipulation of the wire, for example at a user-proximal portion of the catheter, is effective to shape the wire and catheter to a particular desired shape for larger lumen creation. In an additional embodiments, a balloon feature is provided comprising a non-compliant balloon fastened to the distal tip that, when inflated, causes deflection preferentially to one side of a corridor. Additionally, ramped features, such as those shown an described in U.S. Pat. No. 5,484,433 to Taylor et al., which is hereby incorporated by reference in its entirety may be included within catheters of the present disclosure.


Embodiments of the present disclosure also contemplate a flexible tip provided in combination with deflection means such as a shaping spine or pullwire. A flexible portion at the distal tip allows for bends and angled to be induced at the intended site, while the rest of the catheter can remain straight and rigid. In certain embodiments, laser cut hypotubes are provided having a thick enough wall for flexing without buckling and kerf widths (laser cut widths) large enough to allow for the bend angle required. Such tips are attached to the end of the catheter by laser welding (with a tricoil) or a fuse joint (plastics) and can be cut to preferentially bend a certain direction. Additionally, Pebax segments may be provided, such segments being fused to the end of a tricoil and able to deflect using a pullwire and/or shaping wire. Employing polymer tubing, a wire coil, or a combination thereof for the distal body, a guide wire may be used in peripheral or coronary angioplasty applications.


Various embodiments of the present disclosure also contemplate a spiraled ring ablation device with a mechanical cutting tip at the distal end of the catheter. A laser fiber ring is provided for cutting tissue while a blade or mechanical cutting edge assists in cutting and removal of harder calcium deposits, for example. The distal end may also be rotatable at various speeds to create various motions with the mechanical cutting edge. The edges of a spiral band may further be provided with mechanical cutting features. Thus, in various embodiments, a catheter is provided with a combination of laser and mechanical cutting or ablation features. Cutting efficiencies, particular with respect to calcium deposits, are thus improved.


Concurrent extension and rotation of at least a distal end of a catheter of the present disclosure is provided as a means for cutting and ablating an obstruction. In one embodiment, a method of removing material from a blood vessel is contemplated, the method comprising the step of concurrently extending a catheter along a length of a vessel and rotating at least the distal end of the catheter. Such methods provide various advantages, including the ability to core out or extract a substantially cylindrical mass of material and providing a fluid flow corridor through an obstruction, thus enabling fluid/blood flow through the corridor even when complete removal or ablation of the obstruction is not performed.


Various embodiments of the present disclosure contemplate a pulsed vacuum aspiration system to evacuate material removed during an atherectomy procedure and remove material as it is ablated and moved down the shaft of a vacuum device in a pulsed manner.


Although pulsed aspiration systems are contemplated with various features shown and described herein, the features, systems and methods described herein are not limited to use with pulsed aspiration systems and methods. Indeed, various removal means, devices and methods are contemplated for use with various features of the present disclosure. Such means, devices and methods include, but are not limited to, spinning helixes, rotating screws, Archimedes screws, continuous vacuum aspiration, and various combinations thereof. Additionally, aspiration systems other than a pulsed aspiration systems may be used. For example, an additional embodiment may include the use of a peristaltic pump for material aspiration in conjunction with laser cutting and coring. Use of the peristaltic pump may negate the use of a solenoid valve or pulse width modulator, due to the nature of peristaltic pump material movement. The peristaltic pump embodiment differs mainly from the vacuum pump embodiment in that it relies on a liquid filled system to aspirate or move material, while the vacuum pump system utilizes both air and liquid filled system, leading to potential variability within the system due to the compressibility nature of air. With reference to FIG. 4, if a peristaltic pump is used, then the vacuum pump 18 would be replaced with a peristaltic pump and the solenoid valve 22 and pulse width modulator 20 would be deleted.


Other disclosures include using mechanical or laser means to macerate/destroy material as it enters the inner lumen.


In various embodiments, one or more vacuum pumps are provided to generate the vacuum required to aspirate material down a central lumen of a catheter. Vacuum levels in the range of 10 to 30 in-Hg, and preferably approximately 20 in-Hg, are provided. Vacuum pumps of the present disclosure preferably comprise a disposable collection container.


Another aspect of the present disclosure comprises a clogging detection means which detects clogging in an aspiration tube or an aspiration catheter during an aspiration operation.


In certain embodiments, an aspirator includes clogging detection means for measuring a change in a flow rate of an aspirate at one more points in a system. Alternatively, clogging detection means comprise means for measuring a change in a weight of an aspirate sampling bottle and/or a change in an amount of aspiration dropping in an aspirate sampling bottle. In various embodiments, clogging alert means for informing a user that clogging in the aspiration tube or the aspiration catheter has occurred are provided.


Clogging alert means of the present disclosure include, but are not limited to warning sounds and/or visual indicators that immediately notify a user of a potential clog such that remedial action can be taken immediately.


In one embodiment, an aspirator is provided with clogging detection means, the clogging detection means comprising a load cell for measuring the weight of an aspirate collection feature, such as a sampling jar. When clogging in the aspiration catheter or the aspiration tube occurs, a rate of increase in the weight of the collection features decreases. Therefore, clogging in the aspiration catheter or the aspiration tube can be detected by measuring a change in weight of the aspirate collection feature with the load cell. Where clogging is detected, a warning indicia is provided to inform an operator that the clogging has potentially occurred.


In alternative embodiments, detection of clogging is performed by measuring a change in a flow rate of an aspirate at one or more points in the system, such as blood flow in the aspiration catheter and/or the aspiration tube. For example, flow rate in a part of an aspiration tube immediately before an aspirate collection device is continuously measured by a flowmeter, an ultrasonic wave flowmeter, or the like during an aspiration operation. When a flow rate falls to a set value or less, it can be judged that clogging has occurred.


In still further embodiments, clogging or blockage is detected based on monitoring pressure values at one or more points in a system. Since an aspiration pressure increases when the aspiration catheter or the aspiration tube is blocked, when the aspiration pressure rises to a set value or more, it can be judged that clogging has occurred. It is also possible to set a threshold value for an output to the pressure indicator and emit a warning when the output increases to the threshold value or more.


When clogging in the aspiration catheter or the aspiration tube has occurred, it is preferable that an operator is informed to that effect immediately, and prompt measures for restart of aspiration are taken. Examples of the clogging alert means emitting a warning indicia include, but are not limited to a buzzer, a bell, various electronic sounds, and artificial voices. The clogging alert means is not specifically limited. If the alert means using a warning sound is adopted, an operator can concentrate on manipulation sufficiently and safety of an operation or a patient is remarkably improved because it is unnecessary for the operator to look at the medical aspirator in order to monitor clogging during the manipulation. Clogging alert means are further contemplated as comprising visual indicia, including various lamps, LEDs, or the like.


Embodiments of the present disclosure contemplate a vacuum system with clog detection features. Such embodiments comprise means to detect a difference in vacuum pressure, such as when a clog or obstruction is provided in a vacuum line and means to alert a user or operator of the device. Alert means of the present disclosure include, but are not limited to, auditory and visual feedback features to identify to the user that a clog in the vacuum system is present or likely present.


In one embodiment, alert means comprise a mechanical switch or feature that is activated upon a pressure value in a vacuum system exceeding a predetermined value. For example, a weighted or pressurized element is provided in a manner wherein the element is substantially hidden from a user's view when the vacuum is operating under normal unobstructed conditions. However, upon the pressure value exceeding a predetermined value, such as that corresponding to a significant blockage in the vacuum system, the element is displaced to a position whereby it is visible to a user. Such an embodiment provides a “red flag” warning indicia to a user that the vacuum is not operating normally and an obstruction may be present.


In a further embodiment, alert means comprise audio and/or visual indicia prompted by a waveform output of vacuum pressure at a particular point in the system. For example, a vacuum system is provided with one or more electromechanical pressure sensing features, such features outputting a waveform corresponding to pressure values at one or more points over time. Where at least one of such pressure values exceeds (thus indicating an upstream blockage) or drops below (thus indicating a downstream blockage) a predetermined value, the detected value prompts an associated audio and/or visual alarm to indicate to a user the presence of one or more blockages.


A method of operating a vacuum assisted aspiration system is provided, the method comprising the steps of: prepping and priming a catheter for surgery, inserting the catheter into a patient via a sheath, navigating the catheter to a site of stenosis (e.g. via guidewire), selecting appropriate mechanical and/or laser cutting parameters, activating appropriate mechanical and/or laser cutting features, activating a pulsed aspiration system via a foot pedal or similar user-actuation means, manipulating the catheter to core out stenotic material, applying laser energy and/or mechanical means to core material, and transmitting material into a distal tip of the catheter and subsequently conveying the material through the length of the catheter. A user may subsequently repeat various aforementioned steps until a stenosis is adequately removed or remedied. In embodiments comprising clog detection means, wherein a lesion material becomes clogged within the system, vacuum pressure will increase at a point in the system. Wherein such a condition occurs, alert means indicate to a user the presence of a clog. The user may then take correction, such as removing the device from the patient, purging the catheter, and subsequently re-employing the device for subsequent operations.


In one embodiment, a custom vacuum pump is provided. Alternatively, known and/or commercially available pumps, such as personal patient pumps are provided. It will be recognized that the present disclosure is not limited to any specific pump size, power, displacement etc. Preferably, however, one or more pumps of small, lightweight design that can still create and maintain the required vacuum levels are provided.


Various vacuum systems of the present disclosure comprise one or more solenoid valves to open and close a line between the vacuum pump and the aspiration lumen of the catheter. Such valves are compatible with blood, are liquid sealed, and have a fast response time for opening and closing at high frequencies.


In various embodiments, a custom valve is provided that is small, fast responding and can be fully integrated with the pump and other circuitry. The valve(s) may be disposable with the rest of the system or reusable (e.g. with the proper filters).


One or more filters are provided to collect material being aspirated down the inner lumen of the catheter. Filters of the present disclosure are provided with, for example, Luer valve fittings for ease of use, removal, cleaning, and reattachment. One filter of the present disclosure comprises Luer valve sides of two syringes with a plastic grate inside. The pore size of the grate is large enough to let liquid move through unimpeded, but small enough to prevent material from going through the valve into the disposable collection jar.


Pulsed vacuum systems of the present disclosure comprise a pulse width modulator to provide various signals to a valve, causing the valve to react faster/slower and remain open/closed for longer amounts of time.


Pulsing characteristics can be programmed into the vacuum pump/valve, and/or controlled by a user-operable feature such as a manual device or foot-pedal. In certain embodiments, a delay is built into an interface circuit of the present disclosure, the delay provided to allow the vacuum pump to run for a set amount of time after cutting operations have ceased, thereby allowing the inner lumen and other aspiration corridors to clear of material, thus reducing risk of back-flow and providing the benefit of generally clearing or purging the system. The delay may be programmed to allow the vacuum to run various durations. It will be recognized, however, that a preferred duration is one that accounts for length of lumen/corridor and flow rate and thus provides sufficient clearing of the system.


Preferably, a preset/adjustable custom circuit is provided, the custom circuit designed for pulsed aspiration in combination with additional features. The circuit comprises a user interface for adjustment, or is alternatively completely preset. In one embodiment, an interface circuit is provided that interfaces with a laser excimer system foot pedal, such as that associated with the Spectranetics® CVX-300, allowing for activation of the pulsed aspiration system only when lasing is actively occurring, thus further reducing the amount of undesired or unnecessary fluid transferred from a patient. A delay is built into the circuit to allow the vacuum pump/valve to run for a set amount of time after lasing so that the inner lumen can clear material. Such a delay may be pre-programmed based on various system characteristics including, but not limited to, the length of the inner lumen.


The present disclosure can provide a number of advantages depending on the particular configuration. Advantages of embodiments of the present disclosure include, but are not limited to, the evacuation of particulate and occlusions from an atherectomy site as such particulate is generate, thus reducing the risk of mere translocation of the particulate to other areas of the circulatory system. Various embodiments of the present disclosure contemplate user-selected pulsation of a vacuum or removal system such that the system may be pulsed only as particulate generation is occurring, decreasing the volume of blood or fluid extracted from a patient.


Additionally, pulsation features of the present disclosure are capable of providing short duration peak vacuum pressures that enhance the device's ability to evacuate larger or higher friction particles. Pulsed action methods and devices create a stepped motion from the extraction site down a catheter shaft, for example. Pulse width and duty cycle of the vacuum pulse can be varied to optimize the particle aspiration process for highest efficiency and minimum blood and fluid removal.


In various embodiments, the device of the present disclosure may not only be used for dissecting, coring and aspirating plug-type portions of lesion material, but the device or embodiments of the device of the present disclosure may be used to perform bulk ablation. Bulk ablation generally encompasses the use of catheter having a full face of laser emitters at its distal end, and all of the lesion material contacted by the energy transmitted by the laser emitters is ablated, in comparison to ablating the lesion with a circular or helical arrangement of lasers and coring the tissue. Depending upon the size and type of lesion, the bulk ablation technique may potentially increase the efficiency of the system and removal of debris. Such a technique may be used by a user/physician based on the specific removal needs and may comprise, for example, inserting an additional laser catheter through a central lumen to provide a substantially flat laser ablation distal end of the catheter.


Various embodiments of the present disclosure contemplate mechanical material removal means, such as helixes and screws. In one embodiment, a method and system is provided comprising a stainless steel hypotube further comprising a helical structure, the helical structure is capable of rotation at, for example, at approximately 15,000 to approximately 100,000 RPM. Such helical structure(s) are capable of macerating and translating material along their length, and thus removing occlusions from a vessel. Helical structures of the present disclosure may be provided in combination with various vacuum systems, laser and mechanical ablation systems, and other features described herein to assist in removal of material.


In various embodiments, a system is provided with user-selected presets for pulsed vacuum aspiration modes. For example, in one embodiment, a plurality of settings are provided in connection with a pulse width modular such that a user/physician may select between general vacuum aspiration settings including “low,” “medium,” and “high” based on the user's first-hand knowledge of the amount of particulate being evacuated or desired to be evacuated.


In various embodiments, one or more filters are applied, such as catch filters that allow a physician to visualize and/or analyze material being removed from an aspiration site.


These and other advantages will be apparent from the disclosure of the aspects, embodiments, and configurations contained herein.


As used herein, “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together. When each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or class of elements, such as X1-Xn, Y1-Ym, and Z1-Zo, the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X1 and X2) as well as a combination of elements selected from two or more classes (e.g., Y1 and Zo).


It is to be noted that the term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.


The term “automatic” and variations thereof, as used herein, refers to any process or operation done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be “material”.


A “catheter” is a tube that can be inserted into a body cavity, duct, lumen, or vessel, such as the vasculature system. In most uses, a catheter is a relatively thin, flexible tube (“soft” catheter), though in some uses, it may be a larger, solid-less flexible—but possibly still flexible—catheter (“hard” catheter).


The term “computer-readable medium” as used herein refers to any storage and/or transmission medium that participate in providing instructions to a processor for execution. Such a medium is commonly tangible and non-transient and can take many forms, including but not limited to, non-volatile media, volatile media, and transmission media and includes without limitation random access memory (“RAM”), read only memory (“ROM”), and the like. Non-volatile media includes, for example, NVRAM, or magnetic or optical disks. Volatile media includes dynamic memory, such as main memory. Common forms of computer-readable media include, for example, a floppy disk (including without limitation a Bernoulli cartridge, ZIP drive, and JAZ drive), a flexible disk, hard disk, magnetic tape or cassettes, or any other magnetic medium, magneto-optical medium, a digital video disk (such as CD-ROM), any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, a solid state medium like a memory card, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read. A digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. When the computer-readable media is configured as a database, it is to be understood that the database may be any type of database, such as relational, hierarchical, object-oriented, and/or the like. Accordingly, the disclosure is considered to include a tangible storage medium or distribution medium and prior art-recognized equivalents and successor media, in which the software implementations of the present disclosure are stored. Computer-readable storage medium commonly excludes transient storage media, particularly electrical, magnetic, electromagnetic, optical, magneto-optical signals.


A “coupler” or “fiber optic coupler” refers to the optical fiber device with one or more input fibers and one or several output fibers. Fiber couplers are commonly special optical fiber devices with one or more input fibers for distributing optical signals into two or more output fibers. Optical energy is passively split into multiple output signals (fibers), each containing light with properties identical to the original except for reduced amplitude. Fiber couplers have input and output configurations defined as M×N. M is the number of input ports (one or more). N is the number of output ports and is always equal to or greater than M. Fibers can be thermally tapered and fused so that their cores come into intimate contact. This can also be done with polarization-maintaining fibers, leading to polarization-maintaining couplers (PM couplers) or splitters. Some couplers use side-polished fibers, providing access to the fiber core. Couplers can also be made from bulk optics, for example in the form of microlenses and beam splitters, which can be coupled to fibers (“fiber pig-tailed”).


The terms “determine”, “calculate” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.


A “laser emitter” refers to an end portion of a fiber or an optical component that emits laser light from a distal end of the catheter towards a desired target, which is typically tissue.


An optical fiber (or laser active fibre) is a flexible, transparent fiber made of an optically transmissive material, such as glass (silica) or plastic, that functions as a waveguide, or “light pipe”, to transmit light between the two ends of the fiber.


The term “means” as used herein shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the invention, brief description of the drawings, detailed description, abstract, and claims themselves.


It should be understood that every maximum numerical limitation given throughout this disclosure is deemed to include each and every lower numerical limitation as an alternative, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this disclosure is deemed to include each and every higher numerical limitation as an alternative, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this disclosure is deemed to include each and every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.


The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples. Further features and advantages will become apparent from the following, more detailed, description of the various aspects, embodiments, and configurations of the disclosure, as illustrated by the drawings referenced below.



FIG. 1 is a top perspective view of a distal end of a catheter according to one embodiment of the present disclosure;



FIG. 2 is an elevation view of a distal end of a catheter according to one embodiment of the present disclosure;



FIG. 3 is cross-sectional view of a distal end of a catheter according to one embodiment of the present disclosure;



FIG. 4 is a schematic of a pulsed vacuum system according to one embodiment of the present disclosure;



FIG. 5 is a perspective view of a distal end of a catheter according to one embodiment of the present disclosure;



FIG. 6 is an elevation view of a distal end of a catheter according to one embodiment of the present disclosure;



FIG. 7 is an elevation view of a distal end of a catheter according to one embodiment of the present disclosure;



FIG. 8 is a perspective view of a distal end of a catheter according to another embodiment of the present disclosure;



FIG. 9A, is a perspective view of a distal end of a catheter having a cutting blade at its distal tip in a retracted position according to one embodiment of the present disclosure;



FIG. 9B, is a perspective view of a distal end of a catheter having a cutting blade at its distal tip in an extended position according to one embodiment of the present disclosure;



FIG. 10A, is a perspective view of a distal end of a catheter having a cutting blade at its distal tip in a retracted position according to another embodiment of the present disclosure;



FIG. 10B, is a perspective view of a distal end of a catheter having a cutting blade at its distal tip in an extended position according to another embodiment of the present disclosure; and



FIG. 11A is a cross-sectional elevation view of a catheter according to one embodiment;



FIG. 11B is a phantom perspective view of a catheter according to one embodiment.





DETAILED DESCRIPTION

Although a large portion of this disclosure includes a discussion of laser catheters (or catheters having a combination of laser emitters and mechanical cutting tips at the distal end its distal end,) used in conjunction with an aspiration system, catheters having mechanical cutting tips may also be used. Laser catheters typically transmit laser energy through optical fibers housed in a relatively flexible tubular catheter inserted into a body lumen, such as a blood vessel, ureter, fallopian tube, cerebral artery and the like to remove obstructions in the lumen. Catheters used for laser angioplasty and other procedures may have a central passageway or tube which receives a guide wire inserted into the body lumen (e.g., vascular system) prior to catheter introduction. The guide wire facilitates the advancement and placement of the catheter to the selected portion(s) of the body lumen for laser ablation of tissue.


Examples of laser catheters or laser sheaths are sold by the Spectranetics Corporation under the tradenames ELCA™ and Turbo Elite™ (each of which is used for coronary intervention or catheterization such as recanalizing occluded arteries, changing lesion morphology, and facilitating stent placement) and SLSII™ and GlideLight™ (which is used for surgically implanted lead removal). The working (distal) end of a laser catheter typically has a plurality of laser emitters that emit energy and ablate the targeted tissue. The opposite (proximal) end of a laser catheter typically has a fiber optic coupler, which connects to a laser system or generator. One such example of a laser system is the CVX-300 Excimer Laser System, which is also sold by the Spectranetics Corporation.


Referring now to FIGS. 1-2, a distal end of a laser catheter 2 for atherectomy procedures in accordance with one embodiment of the present disclosure is shown. The laser catheter 2 may (as depicted in FIGS. 1 and 2) or may not include a lumen 14. If a lumen 14 is included in the laser catheter 2, a clinician may slide the laser catheter over a guidewire (not shown) through lumen 14. It may, however, be preferable for the catheter to have a separate guidewire lumen located between the inner band and outer jacket. Incorporation of such a guidewire lumen is generally known to one of ordinary skill in the art, and all such guidewire lumens are within the knowledge of one skilled in the art are considered within the scope of this disclosure.


As shown, the catheter 2 comprises an outer jacket 4 or sleeve. The outer jacket 4 comprises a flexible assembly with the ability to resist user-applied forces such as torque, tension, and compression. The proximal end (not shown) of the catheter 2 is attached to a fiber optic coupler (not shown) and includes an outer jacket, inner band and a plurality of optical fibers similar to the configuration and orientation of such components depicted in FIGS. 1 and 2. The distal end 6 of the catheter 2 comprises a tapered outer band 8, which is attached to the distal end of the outer jacket 4, a plurality of optical fibers 10 acting as laser emitters, inner band 12 creating an orifice that provides an entrance to an inner lumen 14 that is connected to an aspiration system discussed in more detail below. The energy emitted by the laser emitters 10 cuts, separates, and/or ablates the scar tissue, plaque build-up, calcium deposits and other types of undesirable lesion or bodily material within the subject's vascular system in a pattern substantially similar to that of the cross sectional configuration of the laser emitters 10.


The cutting means in this embodiment is a laser ablation means that includes laser emitters 10 embedded within a catheter 2 comprising a lumen 14. In this particular embodiment, approximately seventy-four laser emitters 10 are provided in a generally concentric configuration. Also provided substantially concentric with and interior to the laser emitters 10 (and optical fibers) is an inner lumen 14, which provides a potential conduit or passageway for translocation of materials cut or ablated by the laser emitters 10.


As the energy emitted by the laser emitters 10 contacts the undesirable bodily material within the subject's vascular system, it separates and cuts such material in a generally concentric configuration. In other words, one of ordinary skill in the art may refer to this technique as coring. And if the bodily material that is cut is substantially solid, it will appear as generally cylindrically looking core or plug. Although FIGS. 1-2 illustrate the laser emitters 10 in a generally concentric configuration, those skilled in the art will appreciate that there are numerous other ways and configurations in which to arrange a plurality of laser emitters. Additionally, although these two figures illustrate an outer jacket 4 and an inner band 12, those of skill in the art will appreciate that distinct components need not be used, and the optical fibers may be encapsulated within a single sleeve having a lumen. Accordingly, FIGS. 1-2, as well as FIG. 3 discussed below, are not intended to represent the only way that a laser catheter may be configured and constructed, and all such configurations and constructions are within the knowledge of one skilled in the art are considered within the scope of this disclosure.



FIG. 3 is a cross-sectional perspective view of a laser catheter according to one embodiment of the present disclosure. A flexible distal tip 2 is provided, the distal tip 2 comprising a central or inner lumen 14 provided substantially concentric with one or more annular arrays of optical fibers 10 and an outer jacket 4. An inner band 12 is provided at a far distal end of the tip 2. In the depicted embodiment, the inner band 12 has an orifice comprising an internal diameter that is smaller than a minimum internal diameter of the inner lumen 14. The smaller size of orifice of the inner band 12 (either alone or in conjunction with the location and configuration of the laser emitters 10), in comparison to the size of the lumen 14, ensures that the material will have a smaller cross section than that of the lumen 14, thereby reducing the likelihood that the bodily material will become trapped or clogged in the lumen 14 as it is aspirated therethrough. Although FIG. 3 depicts the orifice of the inner band 12 as being less than the minimal internal diameter of the inner lumen 14, the orifice of the inner band 12 may be equal to or greater than the minimal internal diameter of the inner lumen 14.


The inner band 12 comprises a proximal end, a distal end, an interior surface and an exterior surface. When placed within the catheter 2, the distal end of the inner band 12 is substantially aligned or flush with the far distal end of the tip 15. The inner band 12 may be attached to the catheter via numerous means known to one of ordinary skill in the art. For example, the dimension of the exterior diameter (or circumference) of the inner band 12 may be slightly greater than the diameter (or circumference) of the lumen at the distal tip of the catheter such that the inner band is press fit into the distal tip of the catheter 2. Additionally, the inner band 12 may be attached to the lumen by various known adhesives.


The interior surface of the inner band 12 may be straight or tapered. That is the interior diameters of the inner band may be the same or different (e.g., smaller or larger) in comparison to one another. For example, the interior surface of the inner band 12 may be tapered such that the interior diameter at its proximal end is greater than the interior diameter at its distal end.


Upon installation of the inner band 12 into the distal tip of the catheter, the interior surface of the proximal end of the inner band 12 may or may not be aligned or be flush with the surface of the lumen. Regardless of the alignment of the two surfaces, the lumen 14 may include a transition portion that is tapered from the point at which the proximal end of the inner band 12 contacts the lumen until a predetermined point located proximally thereof. The taper may either an increasing or decreasing taper as the lumen transitions proximally of the inner band 12. The tapered portion may also extend distally beyond the proximal end of the inner band 12 and be used to affix the inner band 12 within the catheter. For example, as depicted in FIG. 3, a portion of the inner lumen 14 may comprise a tapered portion 19 to receive and envelope a proximal portion of the inner band 12. The inner band 12 may also provide structural support to the distal end of the catheter, and particularly to the distal ends of the fibers 10, which are surrounded at an outer diameter by a tapered outer band 8.


Outer band 8 is tapered from its proximal end to its distal end 2, thereby facilitating the ease of movement of the catheter within a blood vessel. The outer band 8 abuts outer jacket 4, and in order to further facilitate movement of the catheter within the blood vessel, it may be preferable that the exteriors of the outer band 8 and outer jacket 4 be aligned.


The catheter comprises a flexible distal end 2, the flexible distal end 2 being operable by a user. The position of the distal end is controlled by one or more deflection means 16 which may include, but are not limited to, pullwires, shaping wires, and similar force-transmitting features controlled by a user at a user-proximal location of the device. Actuation of at least one deflection means 16 applies force to the distal tip 2, thus deflecting the distal tip 2 from a longitudinal axis of the remainder of the catheter device. The deflection means allows the clinician to both create a pilot channel and subsequent larger channels, faster than conventional bulk ablation. For example, the clinician initially cuts the bodily material within the vascular system without deflecting the distal end of the catheter. Then, the clinician deflects the distal end of the catheter using the deflection means and subsequently cuts additional bodily material at the same general location within the subject's vascular system, thereby creating a larger channel therethrough in comparison the channel created initially created.



FIG. 4 is a schematic depicting a pulsed aspiration system 17 according to one embodiment of the present disclosure that may be connected to the lumen of the catheter to evacuate the ablated or cored bodily material from a subject's vascular system using various embodiments of a catheter comprising a distal tip having laser cutting means and/or mechanical cutting means. As shown, a vacuum pump 18 is provided, the vacuum pump 18 being interconnected to a pulse width modulator 20 in operative communication with at least one solenoid valve 22, the actuation of which creates one or more pressure differentials to the aspiration system. Accordingly, rather than creating a constant suction pressure within the lumen of a catheter to evacuate cut and/or ablated bodily material from a subject's vascular system, the aspiration system of the present disclosure applies alternative pressure(s), thereby creating pulses of suction pressure within the lumen. Utilizing a series of constant and/or varying pressure pulses is potentially beneficial in aspirating bodily material, particularly when aspirating larger cylindrically looking core or plug like shapes of bodily material.


A filter 24 is provided upstream of the solenoid valve 22, the filter 24 provided for filtering debris and aspirated bodily material and also for providing visual feedback to a user related to the type, quantity, and flow rate of material being removed from a patient. Fluid and material is provided to the filter 24 via a catheter 26 interconnected to, for example, an excimer laser system 28 for the treatment of peripheral and coronary arterial disease such as the CVX-300 Excimer Laser System sold by the Spectranetics Corporation.


In various embodiments, a fluid collection jar 21 may also be provided in fluid communications with the vacuum pump 18. The fluid collection container 21, such as a jar, comprises one or more known devices for collecting and filtering fluid removed from a patient. The container 21 preferably comprises transparent sidewalls for providing visual feedback to a user regarding flow-rate, content, coloration, etc. Filter means are also provided for removing particulate from liquids. Those of skill in the art will appreciate that various types of fluid collection containers may be used. The fluid collection container 21 and/or filter 24 may also comprise one or more custom filter features with various mesh sizes, capacities, etc. based on the specific application.


Pulse width modulator(s) 20 of the present disclosure provides for automatic control and varied application of vacuum pressure to the remainder of the aspiration system, including features and devices of an excimer laser system 28 provided in communication with the aspiration system 17. It will be recognized that where an excimer laser system 28 is provided for cutting and ablating debris and particulate from a blood vessel of a patient, efficient removal of such debris is still required. The present disclosure provides an aspiration system 17 for use with an excimer laser cutting system 28 wherein blood and debris may be aspirated or removed in a pulsed fashion, thereby minimizing the amount of clean or healthy blood that is unnecessarily removed from a patient.


A pulse width modulator 20 is provided as a control means for controlling the opening and closing of at least one solenoid valve 22, the solenoid valve 22 provided for selective application and segregation of a vacuum pressure provided by the vacuum pump 18 from the remainder of a system. Controlling the frequency and duty cycle at which the solenoid valve 22 opens and closes influences the pulse pattern, such as the pulse frequency, the pulse width, the pulse pressure, the rate at which the pulse pressure increases and/or decreases, etc. The settings for the pulse width modulator 20 may be manually adjusted by a user to provide a desired pulse pattern or the settings may be automatically adjusted by parameters stored within computer-readable medium controlled by a CPU. For example, during portions of a procedure where relatively little particulate is being ablated or cut from a patient's vascular system, the pulse width modulator 20 may be manipulated such that applications of vacuum forces are relatively far apart, thus removing a minimal amount of blood and fluid from a patient when such removal is not necessary. Alternatively, where significant amounts of particulate are being ablated and removed from a patient, the pulse width modulator may be manipulated or programmed to provide frequent constant and/or varying vacuum pulses and remove greater amounts of fluid from the patient.


The filter 24 preferably comprises a transparent device such that a user is provided with some level of visual feedback as to how much plaque or particulate is being removed from a patient. Based on this feedback, for example, a user can selectively manipulate the settings of the pulse width modulator 20 to alter the overall flow rate of material from a patient. In various embodiments, the pulse width modulator 20 and/or solenoid valve 22 settings are controlled by a foot pedal, hand switch, or similar user-actuatable device.


The filter 24, vacuum pump 18, flow sensor(s) (not shown) and/or pressure sensor(s) (not shown) may output signals that are transmitted to the CPU controlling the pulse width modulator 20. The computer-readable medium may include an algorithm, which receives the output signals and instructs the CPU how to adjusts the parameters at which the solenoid valve opens and closes.


An interface circuit 31 may also be provided for communication with the pulse-width modulator 20. The interface circuit is provided to communicate with, for example, the excimer laser system 28. The computer readable medium and CPU discussed above may be located in the excimer laser system 28. In addition to controlling the solenoid valve, the excimer laser system may also provide for a clogged aspiration detection system and control for a conduit-clearing mode based on various additional system parameters, including laser cutting operations.



FIG. 5 is a perspective view of a distal tip 30 of a catheter according to one embodiment of the present disclosure. FIG. 6 is a side elevation view thereof. FIG. 7 is a front elevation view thereof. As shown, the distal tip 30 comprises a combination of a mechanical cutting means and a laser ablation means. Mechanical cutting means of FIGS. 5-7 includes a sharp cutting edge or blade 32 that may be parallel to the longitudinal axis of the catheter or it lumen. Laser ablation means of the depicted embodiments comprise an extending spiral or helix-type array of laser emitters provided in an approximate 360 degree pattern about the longitudinal axis of the catheter and its lumen. The helical array comprises a first terminus 38 at a proximal end of the cutting edge 32 and a second terminus 36 at a distal end of the cutting edge 32. Provided interior to the helical array is an inner lumen 40 through which material dislodged or ablated by the mechanical cutting feature and/or the laser emitters 34 is removed from a patient.


In various embodiments, the inner lumen 40 comprises a lumen of substantially circular cross-section with an internal diameter of between approximately 0.050 inches and 0.10 inches. In certain embodiments, the inner lumen comprises a lumen of substantially circular cross-section with an internal diameter of between approximately 0.060 inches and 0.090 inches. In a preferred embodiment, the inner lumen comprises a lumen of substantially circular cross-section with an internal diameter of approximately 0.072 inches. In various embodiments, the distal tip 30 comprises an outer diameter of between approximately 0.080 and 0.10 inches. In preferred embodiments, the distal tip comprises an external diameter of approximately 0.090 inches.


It will be recognized that distal tips 30 of the present disclosure may be provided with any number of laser emitters. However, in a particular embodiment, a distal tip is provided that comprises 50 optical fibers capable of transmitting light of approximately 130 μm wavelength.


The cutting edge or blade of the present disclosure may be constructed of, for example, stainless steels, abrasive materials, diamond tip, etc.


The present disclosure further contemplates that various features of FIGS. 5-7 may be inverted. Referring to FIG. 8, for example, there is depicted in one embodiment, the laser emitters 808 along surface 804 that may be substantially parallel to the longitudinal axis of the catheter. Also included in this embodiment of the distal portion of the catheter is a sharp cutting edge 812 or blade provided in a spiral or helical configuration as it extends from the proximal end 816 of the surface 804 to the distal end 820 of surface 804.


Various distal tip designs are contemplated by the present disclosure. Although particular embodiments are shown and described herein, the present disclosure is not so limited. Features of the present disclosure may be provided in combination with various catheter distal end designs. For example, the configuration of the laser emitters 34 of FIGS. 5-7 may arranged such that they extend spirally or helically but in a patter less than 360 degrees. Similarly, the sharp cutting edge or blade 32 in FIGS. 5-7 by be at an angle or offset from the longitudinal axis of the catheter or it lumen.


Catheter distal tips of the present disclosure include, but are not limited to, purely mechanical cutting devices provided in: circular, off-set, and semi-circular arrangements; various combinations of mechanical and laser-ablative cutting systems; and purely laser-ablative cutting systems. For example, FIGS. 5-8 include tips capable of applying laser energy and/or mechanical force (or pressure) to core through lesion material and create plug-type objects that can be aspirated through the catheter in their entirety. However, certain aspects of this disclosure may be beneficial to various mechanical and/or other types of macerating type devices and catheter tips. For example, FIGS. 9 and 10 illustrate mechanical tips that may be used to cut and/or macerate lesion-type tissue that may be capable of being aspirated in the manner discussed within this disclosure.


Referring to FIGS. 9A & 9B, there is depicted a catheter 900 having a tip 904 having a cutting blade with a plurality sharp vanes 908 of capable of cutting and/or macerating lesion tissue. FIG. 9A illustrates the cutting blade in a retracted position so that the catheter can navigate the subject's vasculature with minimal or no exposure of the vanes 908. FIG. 9B illustrates the cutting blade in the extended position. As the cutting blade extends, the vanes 908 extend and rotate, thereby cutting and/or macerating the tissue with which the vanes 908 contact. Additionally, as the vanes 908 are extending and retracting, the pulsed aspiration system (previously discussed) can aspirate the cut and macerated tissue through the openings 912 between the vanes 908, the lumen 916 within the center of the blades and/or both. Furthermore, depending upon the internal configuration of the catheter and the channels to the openings 912 and lumen 916, one or more aspiration systems may be used in conjunction with the catheter.


Depending upon its use, the catheter may have differently shaped cutting blades and vanes. For example, if it is desirable to use a catheter for lead extraction, it may be preferable that the size of the lumen be increased, such as illustrated in FIGS. 10A-10B, thereby altering the size and configuration of the blades. Similar to FIGS. 9A and 9B, FIGS. 10A and 10B depict a catheter 1000 having a tip 1004 having a cutting blade with a plurality sharp vanes 1008 capable of cutting and/or macerating lesion tissue. However, in comparison to FIGS. 9A and 9B, FIGS. 10A and 10B have a larger lumen 1016 and larger openings 1012 between the vanes 1008 because there are fewer vanes. Although these two figures illustrate two types of cutting blades that can be used in conjunction with the aspiration system(s) discussed in this disclosure, those of skill in the art will appreciate that other configurations and types of cutting blades may be used in cooperation therewith. Accordingly, FIGS. 9-10 are not intended to represent the only ways that a mechanical, cutting-type catheter may be configured and constructed, and all such configurations and constructions are within the knowledge of one skilled in the art are considered within the scope of this disclosure.



FIG. 11A is a cross-sectional elevation view of one embodiment of a catheter 50 comprising an outer surface 52 and an inner surface 54. The inner surface 54 of the catheter 50 may comprise a helical structure 56 extending from its distal to it proximal ends either continuously or for portions thereof. The helical structure 56 may comprise a polymer extrusion or metal insert extending radially inwardly from an inner diameter of the inner surface 54 and along a length of the catheter 50 in a helical or spiral manner. Alternatively, however, the helical structure 56 is provided as a recessed feature along the internal surface 54 of the catheter 50. As the lesion material, either in the form of a plug or in macerated form enters the lumen formed by the inner surface 54, the helical structure 56 facilitates the spinning of the material within the lumen as it is aspirated, thereby potentially reducing the potential for clogging. Additionally, the helical structure 56 may also macerate or further macerate the material, thereby potentially aiding and/or increasing the material's unimpeded travel from the distal to the proximal end.


A portion of a catheter 50 is depicted in FIGS. 11A-11B and no limitation with respect to which portion or specific length is provided or implied. FIGS. 11A-11B are provided to depict the feature of the helical structure 56 along an internal surface of the catheter 50. Such a structure 56 may be provided along any length of the catheter, including a distal end of the catheter. Additionally, although not depicted in FIGS. 11A-11B, various additional features as shown and described herein may be provided in combination with the features of FIGS. 11A-11B. For example, the catheter 50 may further comprise distal end cutting features such as laser ablative means and/or mechanical as shown and described herein. Additionally, vacuum pulsing and detections systems as shown and described may be provided in combination with the catheter 50. It will be recognized that the helical structure 56 depicted in FIGS. 11A-11B comprises a feature that may be integrated with or provided in combination with various features shown and described herein.


It will be recognized that the helical structure 56 of the catheter 50 generally comprises an internal threaded feature. The helical structure 56 may comprise various different thread characteristics, including overall length, pitch, diameter, etc. Preferably, however, the pitch and ramp angle of the helical structure 56 is shallow enough to effectively ablate occlusions within a blood vessel.


A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.


The present disclosure, in various aspects, embodiments, and configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the various aspects, aspects, embodiments, and configurations, after understanding the present disclosure. The present disclosure, in various aspects, embodiments, and configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.


The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more, aspects, embodiments, and configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and configurations of the disclosure may be combined in alternate aspects, embodiments, and configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspects, embodiments, and configurations. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.


Moreover, though the description of the disclosure has included description of one or more aspects, embodiments, or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.

Claims
  • 1. A catheter assembly comprising: a catheter defining an inner lumen therein;a plurality of optical fibers provided in a helical arrangement concentric with the inner lumen;a mechanical cutting feature including a portion proximate the plurality of optical fibers;the plurality of optical fibers having a distal fiber and a proximal fiber, wherein the distal fiber is axially offset from the proximal fiber by a predetermined distance and wherein the mechanical cutting feature extends along the predetermined distance;the plurality of optical fibers provided external to the inner lumen, the inner lumen providing a pathway for travel of material ablated by the optical fibers; andwherein the helical arrangement extends 360 degrees about a longitudinal axis of the catheter.
  • 2. The catheter assembly of claim 1, wherein the mechanical cutting feature is disposed parallel with the longitudinal axis of the catheter.
  • 3. The catheter assembly of claim 1, wherein each of the plurality of optical fibers are provided parallel with the longitudinal axis of the catheter.
  • 4. The catheter assembly of claim 1, wherein the catheter comprises at least one deflection means provided along a length of the catheter, the at least one deflection means operable to provide a deflection in a distal end of the catheter based on user manipulation at a proximal end of the catheter.
  • 5. The catheter assembly of claim 1, wherein the plurality of optical fibers comprises between thirty and sixty optical cutting fibers.
US Referenced Citations (695)
Number Name Date Kind
1663761 Johnson Mar 1928 A
3400708 Scheidt Sep 1968 A
3614953 Moss Oct 1971 A
4051596 Hofmann Oct 1977 A
4203444 Bonnell et al. May 1980 A
4246902 Martinez Jan 1981 A
4274414 Johnson et al. Jun 1981 A
4471777 McCorkle Sep 1984 A
4517977 Frost May 1985 A
4573965 Russo Mar 1986 A
4582056 McCorkle Apr 1986 A
4587972 Morantte et al. May 1986 A
4598710 Kleinberg et al. Jul 1986 A
4646738 Trott Mar 1987 A
4662869 Wright May 1987 A
4674502 Imonti Jun 1987 A
4729763 Henrie Mar 1988 A
4754755 Husted Jul 1988 A
4767403 Hodge Aug 1988 A
4784132 Fox et al. Nov 1988 A
4943289 Goode et al. Jul 1990 A
4950277 Farr Aug 1990 A
4988347 Goode et al. Jan 1991 A
5011482 Goode et al. Apr 1991 A
5013310 Goode et al. May 1991 A
5031634 Simon Jul 1991 A
5041084 DeVries et al. Aug 1991 A
5152744 Krause et al. Oct 1992 A
5201316 Pomeranz et al. Apr 1993 A
5207683 Goode et al. May 1993 A
5243679 Sharrow et al. Sep 1993 A
5261877 Fine et al. Nov 1993 A
5263928 Trauthen et al. Nov 1993 A
5275609 Pingleton et al. Jan 1994 A
5290275 Kittrell et al. Mar 1994 A
5290303 Pingleton et al. Mar 1994 A
5383199 Laudenslager et al. Jan 1995 A
5395328 Ockuly et al. Mar 1995 A
5423330 Lee Jun 1995 A
5423740 Sullivan et al. Jun 1995 A
5456680 Taylor et al. Oct 1995 A
5484433 Taylor et al. Jan 1996 A
5507751 Goode et al. Apr 1996 A
5536242 Willard et al. Jul 1996 A
5562694 Sauer et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575797 Neubauer et al. Nov 1996 A
5620451 Rosborough Apr 1997 A
5632749 Goode et al. May 1997 A
5651781 Grace Jul 1997 A
5651783 Reynard Jul 1997 A
5697936 Shipko et al. Dec 1997 A
5713860 Kaplan et al. Feb 1998 A
5718237 Haaga Feb 1998 A
5725523 Mueller Mar 1998 A
5766164 Mueller et al. Jun 1998 A
5782823 Mueller Jul 1998 A
5807399 Laske et al. Sep 1998 A
5814044 Hooven Sep 1998 A
5823971 Robinson et al. Oct 1998 A
5824026 Diaz Oct 1998 A
5830209 Savage et al. Nov 1998 A
5863294 Alden Jan 1999 A
5873886 Larsen et al. Feb 1999 A
5879365 Whitfield et al. Mar 1999 A
5893862 Pratt et al. Apr 1999 A
5899915 Saadat May 1999 A
5910150 Saadat Jun 1999 A
5916210 Winston Jun 1999 A
5931848 Saadat Aug 1999 A
5941893 Saadat Aug 1999 A
5951581 Saadat et al. Sep 1999 A
5972012 Ream et al. Oct 1999 A
5980515 Tu Nov 1999 A
5980545 Pacala et al. Nov 1999 A
6007512 Hooven Dec 1999 A
6010476 Saadat Jan 2000 A
6019756 Mueller et al. Feb 2000 A
6022336 Zadno-Azizi et al. Feb 2000 A
6027497 Daniel et al. Feb 2000 A
6033402 Tu et al. Mar 2000 A
6036685 Mueller Mar 2000 A
6051008 Saadat et al. Apr 2000 A
6066131 Mueller et al. May 2000 A
6080175 Hogendijk Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6096028 Bahmanyar et al. Aug 2000 A
6099537 Sugai et al. Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6117149 Sorensen et al. Sep 2000 A
6120520 Saadat et al. Sep 2000 A
6126654 Giba et al. Oct 2000 A
6136005 Goode et al. Oct 2000 A
6139543 Esch et al. Oct 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6152918 Padilla et al. Nov 2000 A
6156049 Lovato et al. Dec 2000 A
6159203 Sinofsky Dec 2000 A
6159225 Makower Dec 2000 A
6162214 Mueller et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6167315 Coe et al. Dec 2000 A
6174307 Daniel et al. Jan 2001 B1
6190352 Haarala et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6203537 Adrian Mar 2001 B1
6210400 Hebert et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6233474 Lemelson May 2001 B1
6235044 Root et al. May 2001 B1
6241692 Tu et al. Jun 2001 B1
6245011 Dudda et al. Jun 2001 B1
6251121 Saadat Jun 2001 B1
6258083 Daniel et al. Jul 2001 B1
6290668 Gregory et al. Sep 2001 B1
6315774 Daniel et al. Nov 2001 B1
6324434 Coe et al. Nov 2001 B2
6395002 Ellman et al. May 2002 B1
6398773 Bagaoisan et al. Jun 2002 B1
6402771 Palmer et al. Jun 2002 B1
6402781 Langberg et al. Jun 2002 B1
6419674 Bowser et al. Jul 2002 B1
6419684 Heisler et al. Jul 2002 B1
6423051 Kaplan et al. Jul 2002 B1
6428539 Baxter et al. Aug 2002 B1
6428556 Chin Aug 2002 B1
6432119 Saadat Aug 2002 B1
6436054 Viola et al. Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6440125 Rentrop Aug 2002 B1
6447525 Follmer et al. Sep 2002 B2
6454741 Muni et al. Sep 2002 B1
6454758 Thompson et al. Sep 2002 B1
6461349 Elbrecht et al. Oct 2002 B1
6478777 Honeck et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6500182 Foster Dec 2002 B2
6512959 Gomperz et al. Jan 2003 B1
6527752 Bosley, Jr. et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6540865 Miekka et al. Apr 2003 B1
6547779 Levine et al. Apr 2003 B2
6554779 Viola et al. Apr 2003 B2
6558382 Jahns et al. May 2003 B2
6565588 Clement et al. May 2003 B1
6569082 Chin May 2003 B1
6575997 Palmer et al. Jun 2003 B1
6592607 Palmer et al. Jul 2003 B1
6595982 Sekino et al. Jul 2003 B2
6599296 Gillick et al. Jul 2003 B1
6602241 Makower et al. Aug 2003 B2
6607547 Chin Aug 2003 B1
6610046 Usami et al. Aug 2003 B1
6610066 Dinger et al. Aug 2003 B2
6613013 Haarala et al. Sep 2003 B2
6620153 Mueller et al. Sep 2003 B2
6620160 Lewis et al. Sep 2003 B2
6620180 Bays et al. Sep 2003 B1
6641590 Palmer et al. Nov 2003 B1
6652480 Imran et al. Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663626 Truckai et al. Dec 2003 B2
6669685 Rizoiu et al. Dec 2003 B1
6673090 Root et al. Jan 2004 B2
6687548 Goode Feb 2004 B2
6702813 Baxter et al. Mar 2004 B1
6706018 Westlund et al. Mar 2004 B2
6706052 Chin Mar 2004 B1
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6712826 Lui Mar 2004 B2
6772014 Coe et al. Aug 2004 B2
6802838 Loeb et al. Oct 2004 B2
6805692 Muni et al. Oct 2004 B2
6810882 Langberg et al. Nov 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6860860 Viola Mar 2005 B2
6871085 Sommer Mar 2005 B2
6884240 Dykes Apr 2005 B1
6887238 Jahns et al. May 2005 B2
6893450 Foster May 2005 B2
6913612 Palmer et al. Jul 2005 B2
6962585 Poleo, Jr. Nov 2005 B2
6979290 Mourlas et al. Dec 2005 B2
6979319 Manning et al. Dec 2005 B2
6989028 Lashinski et al. Jan 2006 B2
6999809 Currier et al. Feb 2006 B2
7004956 Palmer et al. Feb 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7022133 Yee et al. Apr 2006 B2
7033335 Haarala et al. Apr 2006 B2
7033344 Imran Apr 2006 B2
7033357 Baxter et al. Apr 2006 B2
7060061 Altshuler et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7077856 Whitman Jul 2006 B2
7092765 Geske et al. Aug 2006 B2
7097120 Marino Aug 2006 B2
7097129 Matthies Aug 2006 B2
7104983 Grasso, III et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7117039 Manning et al. Oct 2006 B2
7149587 Wardle et al. Dec 2006 B2
7151965 Osypka Dec 2006 B2
7189207 Viola Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7192430 Truckai et al. Mar 2007 B2
7204824 Moulis Apr 2007 B2
7214180 Chin May 2007 B2
7226459 Cesarini et al. Jun 2007 B2
7238179 Brucker et al. Jul 2007 B2
7238180 Mester et al. Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7264587 Chin Sep 2007 B2
7273478 Appling et al. Sep 2007 B2
7276052 Kobayashi et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7306588 Loeb et al. Dec 2007 B2
7326226 Root et al. Feb 2008 B2
7328071 Stehr et al. Feb 2008 B1
7344546 Wulfman et al. Mar 2008 B2
7357794 Makower et al. Apr 2008 B2
7359756 Goode Apr 2008 B2
7369901 Morgan et al. May 2008 B1
7392095 Flynn et al. Jun 2008 B2
7396354 Rychnovsky et al. Jul 2008 B2
7398781 Chin Jul 2008 B1
7449010 Hayase et al. Nov 2008 B1
7462167 Kratz et al. Dec 2008 B2
7485127 Nistal Feb 2009 B2
7494484 Beck et al. Feb 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7509169 Eigler et al. Mar 2009 B2
7510576 Langberg et al. Mar 2009 B2
7513877 Viola Apr 2009 B2
7513892 Haarala et al. Apr 2009 B1
7526342 Chin et al. Apr 2009 B2
7537602 Whitman May 2009 B2
7540865 Griffin et al. Jun 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7559941 Zannis et al. Jul 2009 B2
D600792 Eubanks et al. Sep 2009 S
7591790 Pflueger Sep 2009 B2
7597698 Chin Oct 2009 B2
7606615 Makower et al. Oct 2009 B2
7611474 Hibner et al. Nov 2009 B2
7625337 Campbell et al. Dec 2009 B2
7637904 Wingler et al. Dec 2009 B2
7645286 Catanese et al. Jan 2010 B2
7648466 Stephens et al. Jan 2010 B2
7651503 Coe et al. Jan 2010 B1
7651504 Goode et al. Jan 2010 B2
D610259 Way et al. Feb 2010 S
D611146 Way et al. Mar 2010 S
7674272 Torrance et al. Mar 2010 B2
7695485 Whitman et al. Apr 2010 B2
7695512 Lashinski et al. Apr 2010 B2
7697996 Manning et al. Apr 2010 B2
7713231 Wulfman et al. May 2010 B2
7713235 Torrance et al. May 2010 B2
7713281 Leeflang et al. May 2010 B2
7722549 Nakao May 2010 B2
7740626 Takayama et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
D619252 Way et al. Jul 2010 S
D619253 Way et al. Jul 2010 S
7758594 Lamson et al. Jul 2010 B2
7758613 Whitman Jul 2010 B2
D621939 Way et al. Aug 2010 S
7766923 Catanese et al. Aug 2010 B2
7780682 Catanese et al. Aug 2010 B2
7780694 Palmer et al. Aug 2010 B2
7794411 Ritchart et al. Sep 2010 B2
7798813 Harrel Sep 2010 B1
7803151 Whitman Sep 2010 B2
7806835 Hibner et al. Oct 2010 B2
7811281 Rentrop Oct 2010 B1
7815655 Catanese et al. Oct 2010 B2
7842009 Torrance et al. Nov 2010 B2
7845538 Whitman Dec 2010 B2
7858038 Andreyko et al. Dec 2010 B2
7875018 Tockman et al. Jan 2011 B2
7875049 Eversull et al. Jan 2011 B2
7890186 Wardle et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7896879 Solsberg et al. Mar 2011 B2
7896891 Catanese et al. Mar 2011 B2
7905889 Catanese et al. Mar 2011 B2
7909836 McLean et al. Mar 2011 B2
7914464 Burdorff et al. Mar 2011 B2
7914542 Lamson et al. Mar 2011 B2
D635671 Way et al. Apr 2011 S
7918230 Whitman et al. Apr 2011 B2
7918803 Ritchart et al. Apr 2011 B2
7922654 Boutillette et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7935146 Langberg et al. May 2011 B2
7938786 Ritchie et al. May 2011 B2
7942830 Solsberg et al. May 2011 B2
7951071 Whitman et al. May 2011 B2
7951158 Catanese et al. May 2011 B2
7959608 Nash et al. Jun 2011 B2
7963040 Shan et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7971800 Combs et al. Jul 2011 B2
7974710 Seifert Jul 2011 B2
7981049 Ritchie et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981128 To et al. Jul 2011 B2
7988726 Langberg et al. Aug 2011 B2
7991258 Temelkuran et al. Aug 2011 B2
7992758 Whitman et al. Aug 2011 B2
7993350 Ventura et al. Aug 2011 B2
7993351 Worley et al. Aug 2011 B2
7993359 Atwell et al. Aug 2011 B1
8007469 Duffy Aug 2011 B2
8007488 Ravenscroft Aug 2011 B2
8007503 Catanese et al. Aug 2011 B2
8007506 To et al. Aug 2011 B2
8016748 Mourlas et al. Sep 2011 B2
8016844 Privitera et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8021373 Whitman et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8043309 Catanese et al. Oct 2011 B2
RE42959 Saadat et al. Nov 2011 E
8052616 Andrisek et al. Nov 2011 B2
8052659 Ravenscroft et al. Nov 2011 B2
8056786 Whitman et al. Nov 2011 B2
8056791 Whitman Nov 2011 B2
8070762 Escudero et al. Dec 2011 B2
8090430 Makower et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100920 Gambale et al. Jan 2012 B2
8118208 Whitman Feb 2012 B2
8126570 Manning et al. Feb 2012 B2
8128577 Viola Mar 2012 B2
8128636 Lui et al. Mar 2012 B2
8133214 Hayase et al. Mar 2012 B2
8137377 Palmer et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8142446 Shan Mar 2012 B2
RE43300 Saadat et al. Apr 2012 E
8157815 Catanese et al. Apr 2012 B2
8162878 Bonnette et al. Apr 2012 B2
8186559 Whitman May 2012 B1
8187204 Miller et al. May 2012 B2
8192430 Goode et al. Jun 2012 B2
8202229 Miller et al. Jun 2012 B2
8206409 Privitera et al. Jun 2012 B2
8211118 Catanese et al. Jul 2012 B2
8216254 McLean et al. Jul 2012 B2
8235916 Whiting et al. Aug 2012 B2
8236016 To et al. Aug 2012 B2
8239039 Zarembo et al. Aug 2012 B2
8241272 Arnold et al. Aug 2012 B2
8251916 Speeg et al. Aug 2012 B2
8252015 Leeflang et al. Aug 2012 B2
8257312 Duffy Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8273078 Muenker Sep 2012 B2
8295947 Lamson et al. Oct 2012 B2
8303511 Eigler et al. Nov 2012 B2
8323240 Wulfman et al. Dec 2012 B2
8323326 Dorn et al. Dec 2012 B2
8326437 Cully et al. Dec 2012 B2
8333740 Shippert Dec 2012 B2
8333776 Cheng et al. Dec 2012 B2
8337516 Escudero et al. Dec 2012 B2
8343167 Henson Jan 2013 B2
8343187 Lamson et al. Jan 2013 B2
8353899 Wells et al. Jan 2013 B1
8361094 To et al. Jan 2013 B2
8361097 Patel et al. Jan 2013 B2
8364280 Marnfeldt et al. Jan 2013 B2
8372098 Tran Feb 2013 B2
8394110 Catanese et al. Mar 2013 B2
8394113 Wei et al. Mar 2013 B2
8425535 McLean et al. Apr 2013 B2
8961551 Taylor Feb 2015 B2
20010005789 Root et al. Jun 2001 A1
20010016717 Haarala et al. Aug 2001 A1
20010025174 Daniel et al. Sep 2001 A1
20010031981 Evans et al. Oct 2001 A1
20010039427 Dinger et al. Nov 2001 A1
20010041899 Foster Nov 2001 A1
20010044568 Langberg et al. Nov 2001 A1
20020002372 Jahns et al. Jan 2002 A1
20020007204 Goode Jan 2002 A1
20020010475 Lui Jan 2002 A1
20020010487 Evans et al. Jan 2002 A1
20020016628 Langberg et al. Feb 2002 A1
20020045811 Kittrell et al. Apr 2002 A1
20020058956 Honeycutt et al. May 2002 A1
20020065543 Gomperz et al. May 2002 A1
20020068954 Foster Jun 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020103477 Grasso et al. Aug 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020103533 Langberg et al. Aug 2002 A1
20020123785 Zhang et al. Sep 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020183735 Edwards et al. Dec 2002 A1
20020188278 Tockman et al. Dec 2002 A1
20030009146 Muni et al. Jan 2003 A1
20030036788 Coe et al. Feb 2003 A1
20030050630 Mody et al. Mar 2003 A1
20030050631 Mody et al. Mar 2003 A1
20030055444 Evans et al. Mar 2003 A1
20030055445 Evans et al. Mar 2003 A1
20030069575 Chin et al. Apr 2003 A1
20030073985 Mueller et al. Apr 2003 A1
20030078562 Makower et al. Apr 2003 A1
20030105451 Westlund et al. Jun 2003 A1
20030125619 Manning et al. Jul 2003 A1
20030167056 Jahns et al. Sep 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20030199921 Palmer et al. Oct 2003 A1
20030204202 Palmer et al. Oct 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030229323 Haarala et al. Dec 2003 A1
20030229353 Cragg Dec 2003 A1
20040006358 Wulfman et al. Jan 2004 A1
20040010248 Appling et al. Jan 2004 A1
20040015193 Lamson et al. Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040049208 Hill et al. Mar 2004 A1
20040054368 Truckai et al. Mar 2004 A1
20040054388 Osypka Mar 2004 A1
20040059348 Geske et al. Mar 2004 A1
20040064024 Sommer Apr 2004 A1
20040068256 Rizoiu et al. Apr 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040093016 Root et al. May 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040102804 Chin May 2004 A1
20040102841 Langberg et al. May 2004 A1
20040111101 Chin Jun 2004 A1
20040116939 Goode Jun 2004 A1
20040116992 Wardle et al. Jun 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040138562 Makower et al. Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040143284 Chin Jul 2004 A1
20040147911 Sinofsky Jul 2004 A1
20040147912 Sinofsky Jul 2004 A1
20040147913 Sinofsky Jul 2004 A1
20040153096 Goode et al. Aug 2004 A1
20040153098 Chin et al. Aug 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040172116 Seifert et al. Sep 2004 A1
20040176840 Langberg et al. Sep 2004 A1
20040181249 Torrance et al. Sep 2004 A1
20040216748 Chin Nov 2004 A1
20040220519 Wulfman et al. Nov 2004 A1
20040230212 Wulfman Nov 2004 A1
20040230213 Wulfman et al. Nov 2004 A1
20040235611 Nistal Nov 2004 A1
20040236312 Nistal et al. Nov 2004 A1
20040236397 Coe et al. Nov 2004 A1
20040243123 Grasso et al. Dec 2004 A1
20040243162 Wulfman et al. Dec 2004 A1
20040254534 Bjorkman et al. Dec 2004 A1
20040260322 Rudko et al. Dec 2004 A1
20040267276 Camino et al. Dec 2004 A1
20040267304 Zannis et al. Dec 2004 A1
20050004644 Kelsch et al. Jan 2005 A1
20050025798 Moulis Feb 2005 A1
20050027337 Rudko et al. Feb 2005 A1
20050038419 Arnold et al. Feb 2005 A9
20050060030 Lashinski et al. Mar 2005 A1
20050065561 Manning et al. Mar 2005 A1
20050090748 Makower et al. Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050131399 Loeb et al. Jun 2005 A1
20050149104 Leeflang et al. Jul 2005 A1
20050149105 Leeflang et al. Jul 2005 A1
20050197623 Leeflang et al. Sep 2005 A1
20050222607 Palmer et al. Oct 2005 A1
20050228402 Hofmann Oct 2005 A1
20050228452 Mourlas et al. Oct 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050259942 Temelkuran et al. Nov 2005 A1
20050267557 Flynn et al. Dec 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050283143 Rizoiu Dec 2005 A1
20050288596 Eigler et al. Dec 2005 A1
20050288604 Eigler et al. Dec 2005 A1
20050288654 Nieman et al. Dec 2005 A1
20050288722 Eigler et al. Dec 2005 A1
20060041250 Poleo Feb 2006 A1
20060052660 Chin Mar 2006 A1
20060084839 Mourlas et al. Apr 2006 A1
20060100663 Palmer et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060149171 Vogel et al. Jul 2006 A1
20060167417 Kratz et al. Jul 2006 A1
20060173440 Lamson et al. Aug 2006 A1
20060217755 Eversull et al. Sep 2006 A1
20060229490 Chin Oct 2006 A1
20060235431 Goode et al. Oct 2006 A1
20060247751 Seifert Nov 2006 A1
20060253179 Goode et al. Nov 2006 A1
20060264905 Eskridge et al. Nov 2006 A1
20060265042 Catanese et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20060287574 Chin Dec 2006 A1
20070005084 Clague et al. Jan 2007 A1
20070015964 Eversull et al. Jan 2007 A1
20070016130 Leeflang et al. Jan 2007 A1
20070021812 Manning et al. Jan 2007 A1
20070049929 Catanese et al. Mar 2007 A1
20070050003 Zarembo et al. Mar 2007 A1
20070083217 Eversull et al. Apr 2007 A1
20070100410 Lamson et al. May 2007 A1
20070106328 Wardle et al. May 2007 A1
20070129710 Rudko et al. Jun 2007 A1
20070142846 Catanese et al. Jun 2007 A1
20070197861 Reiley et al. Aug 2007 A1
20070198020 Reiley et al. Aug 2007 A1
20070232981 Ravenscroft et al. Oct 2007 A1
20070276412 Catanese et al. Nov 2007 A1
20070293853 Truckai et al. Dec 2007 A1
20080004643 To et al. Jan 2008 A1
20080004644 To et al. Jan 2008 A1
20080004645 To et al. Jan 2008 A1
20080004646 To et al. Jan 2008 A1
20080004647 To et al. Jan 2008 A1
20080015625 Ventura et al. Jan 2008 A1
20080021484 Catanese et al. Jan 2008 A1
20080021485 Catanese et al. Jan 2008 A1
20080033232 Catanese et al. Feb 2008 A1
20080033456 Catanese et al. Feb 2008 A1
20080033458 McLean et al. Feb 2008 A1
20080033488 Catanese et al. Feb 2008 A1
20080039833 Catanese et al. Feb 2008 A1
20080039872 Catanese et al. Feb 2008 A1
20080039874 Catanese et al. Feb 2008 A1
20080039875 Catanese et al. Feb 2008 A1
20080039876 Catanese et al. Feb 2008 A1
20080039889 Lamson et al. Feb 2008 A1
20080039893 McLean et al. Feb 2008 A1
20080039894 Catanese et al. Feb 2008 A1
20080045986 To et al. Feb 2008 A1
20080051756 Makower et al. Feb 2008 A1
20080058759 Makower et al. Mar 2008 A1
20080071341 Goode et al. Mar 2008 A1
20080071342 Goode et al. Mar 2008 A1
20080097426 Root et al. Apr 2008 A1
20080103439 Torrance et al. May 2008 A1
20080103446 Torrance et al. May 2008 A1
20080103516 Wulfman et al. May 2008 A1
20080125748 Patel May 2008 A1
20080147061 Goode et al. Jun 2008 A1
20080154293 Taylor Jun 2008 A1
20080154296 Taylor et al. Jun 2008 A1
20080183163 Lampropoulos et al. Jul 2008 A1
20080208105 Zelickson et al. Aug 2008 A1
20080221560 Arai et al. Sep 2008 A1
20080228208 Wulfman et al. Sep 2008 A1
20080249516 Muenker Oct 2008 A1
20080262516 Gambale et al. Oct 2008 A1
20080275497 Palmer et al. Nov 2008 A1
20080275498 Palmer et al. Nov 2008 A1
20080281308 Neuberger et al. Nov 2008 A1
20080287888 Ravenscroft Nov 2008 A1
20080306333 Chin Dec 2008 A1
20090012510 Bertolero et al. Jan 2009 A1
20090018523 Lamson et al. Jan 2009 A1
20090018553 McLean et al. Jan 2009 A1
20090034927 Temelkuran et al. Feb 2009 A1
20090036871 Hayase et al. Feb 2009 A1
20090054918 Henson Feb 2009 A1
20090060977 Lamson et al. Mar 2009 A1
20090069761 Vogel Mar 2009 A1
20090071012 Shan et al. Mar 2009 A1
20090076522 Shan Mar 2009 A1
20090131907 Chin et al. May 2009 A1
20090157045 Haarala et al. Jun 2009 A1
20090192439 Lamson et al. Jul 2009 A1
20090204128 Lamson et al. Aug 2009 A1
20090221994 Neuberger et al. Sep 2009 A1
20090222025 Catanese et al. Sep 2009 A1
20090227992 Nir et al. Sep 2009 A1
20090227999 Willis et al. Sep 2009 A1
20090234378 Escudero et al. Sep 2009 A1
20090270862 Arcenio Oct 2009 A1
20100004606 Hansen et al. Jan 2010 A1
20100016836 Makower et al. Jan 2010 A1
20100030154 Duffy Feb 2010 A1
20100030161 Duffy Feb 2010 A1
20100030262 McLean et al. Feb 2010 A1
20100030263 Cheng et al. Feb 2010 A1
20100049225 To et al. Feb 2010 A1
20100063488 Fischer Mar 2010 A1
20100125253 Olson et al. May 2010 A1
20100137873 Grady et al. Jun 2010 A1
20100160952 Leeflang et al. Jun 2010 A1
20100191165 Appling et al. Jul 2010 A1
20100198194 Manning et al. Aug 2010 A1
20100198229 Olomutzki et al. Aug 2010 A1
20100217081 Deppmeier et al. Aug 2010 A1
20100217277 Truong Aug 2010 A1
20100222737 Arnold et al. Sep 2010 A1
20100222787 Goode et al. Sep 2010 A1
20100240951 Catanese et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100280496 Shippert Nov 2010 A1
20100324472 Wulfman Dec 2010 A1
20100331793 Tulleken Dec 2010 A1
20110004238 Palmer et al. Jan 2011 A1
20110009942 Gregorich et al. Jan 2011 A1
20110009957 Langberg et al. Jan 2011 A1
20110022057 Eigler et al. Jan 2011 A1
20110028959 Chasan Feb 2011 A1
20110034790 Mourlas et al. Feb 2011 A1
20110040238 Wulfman et al. Feb 2011 A1
20110040312 Lamson et al. Feb 2011 A1
20110040315 To et al. Feb 2011 A1
20110040326 Wei et al. Feb 2011 A1
20110046648 Johnston et al. Feb 2011 A1
20110054493 McLean et al. Mar 2011 A1
20110060349 Cheng et al. Mar 2011 A1
20110071440 Torrance et al. Mar 2011 A1
20110105947 Fritscher-Ravens et al. May 2011 A1
20110106004 Eubanks et al. May 2011 A1
20110106099 Duffy et al. May 2011 A1
20110112548 Fifer et al. May 2011 A1
20110112562 Torrance May 2011 A1
20110112563 To et al. May 2011 A1
20110112564 Wolf May 2011 A1
20110118660 Torrance May 2011 A1
20110144423 Tong et al. Jun 2011 A1
20110144425 Catanese et al. Jun 2011 A1
20110151463 Wulfman Jun 2011 A1
20110152607 Catanese et al. Jun 2011 A1
20110152906 Escudero et al. Jun 2011 A1
20110152907 Escudero et al. Jun 2011 A1
20110160747 McLean et al. Jun 2011 A1
20110160748 Catanese et al. Jun 2011 A1
20110166564 Merrick et al. Jul 2011 A1
20110178543 Chin et al. Jul 2011 A1
20110190758 Lamson et al. Aug 2011 A1
20110196298 Anderson et al. Aug 2011 A1
20110196355 Mitchell et al. Aug 2011 A1
20110208207 Bowe et al. Aug 2011 A1
20110213398 Chin et al. Sep 2011 A1
20110218528 Ogata et al. Sep 2011 A1
20110238078 Goode et al. Sep 2011 A1
20110238102 Gutfinger et al. Sep 2011 A1
20110245751 Hofmann Oct 2011 A1
20110257592 Ventura et al. Oct 2011 A1
20110270169 Gardeski et al. Nov 2011 A1
20110270170 Gardeski et al. Nov 2011 A1
20110270289 To et al. Nov 2011 A1
20110300010 Jarnagin et al. Dec 2011 A1
20110301417 Mourlas et al. Dec 2011 A1
20110301626 To et al. Dec 2011 A1
20120029278 Sato et al. Feb 2012 A1
20120035590 Whiting et al. Feb 2012 A1
20120041422 Whiting et al. Feb 2012 A1
20120053564 Ravenscroft Mar 2012 A1
20120065659 To Mar 2012 A1
20120083810 Escudero et al. Apr 2012 A1
20120083826 Chao et al. Apr 2012 A1
20120095447 Fojtik Apr 2012 A1
20120095479 Bowe et al. Apr 2012 A1
20120097174 Spotnitz et al. Apr 2012 A1
20120123411 Ibrahim et al. May 2012 A1
20120136341 Appling et al. May 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120165861 Palmer et al. Jun 2012 A1
20120191015 Zannis et al. Jul 2012 A1
20120209173 Hayase et al. Aug 2012 A1
20120215305 Le et al. Aug 2012 A1
20120239008 Fojtik Sep 2012 A1
20120245600 McLean et al. Sep 2012 A1
20120253229 Cage Oct 2012 A1
20120265183 Tulleken et al. Oct 2012 A1
20120323252 Booker Dec 2012 A1
20120323253 Garai et al. Dec 2012 A1
20120330292 Shadduck et al. Dec 2012 A1
20130006228 Johnson et al. Jan 2013 A1
20130035676 Mitchell et al. Feb 2013 A1
20130096582 Cheng et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20140276682 Hendrick et al. Sep 2014 A1
20140276683 Hendrick et al. Sep 2014 A1
20140276920 Hendrick et al. Sep 2014 A1
Foreign Referenced Citations (30)
Number Date Country
H05-506382 Sep 1993 JP
2004-516073 Jun 2004 JP
WO 9117711 Nov 1991 WO
WO 9533513 Dec 1995 WO
WO 9907295 Feb 1999 WO
WO 9949937 Oct 1999 WO
WO9958066 Nov 1999 WO
WO 0176680 Oct 2001 WO
WO 0249690 Jun 2002 WO
WO2004049956 Jun 2004 WO
WO2004080345 Sep 2004 WO
WO2004080507 Sep 2004 WO
WO 2006007410 Jan 2006 WO
WO2008005888 Jan 2008 WO
WO2008005891 Jan 2008 WO
WO2008042987 Apr 2008 WO
WO2009005779 Jan 2009 WO
WO2009054968 Apr 2009 WO
WO2009065082 May 2009 WO
WO2009126309 Oct 2009 WO
WO2011003113 Jan 2011 WO
WO2011084863 Jul 2011 WO
WO2011133941 Oct 2011 WO
WO2011162595 Dec 2011 WO
WO2012009697 Jan 2012 WO
WO2012098335 Jul 2012 WO
WO2012114333 Aug 2012 WO
WO2012177117 Dec 2012 WO
WO2013036588 Mar 2013 WO
2014151814 Sep 2014 WO
Non-Patent Literature Citations (57)
Entry
U.S. Appl. No. 13/800,651, filed Mar. 13, 2013, Hendrick et al.
U.S. Appl. No. 13/800,675, filed Mar. 13, 2013, Hendrick et al.
U.S. Appl. No. 13/800,728, filed Mar. 13, 2013, Hendrick et al.
U.S. Appl. No. 13/828,231, filed Mar. 14, 2013, Bowe et al.
U.S. Appl. No. 13/828,310, filed Mar. 14, 2013, Bowe et al.
U.S. Appl. No. 13/828,383, filed Mar. 14, 2013, Bowe et al.
U.S. Appl. No. 13/828,441, filed Mar. 14, 2013, Bowe et al.
U.S. Appl. No. 13/828,536, filed Mar. 14, 2013, Hendrick et al.
U.S. Appl. No. 13/828,638, filed Mar. 14, 2013, Fiser.
U.S. Appl. No. 13/834,405, filed Mar. 15, 2013, Grace et al.
“Horizon Scanning Technology Prioritising Summary: Laser lead extraction systems,” Australia and New Zealand Horizon Scanning Network, Aug. 2010, 15 pages.
Extended European Search Report for European Patent Application No. 07255019.7, dated Oct. 21, 2009, 8 pages.
Official Action for European Patent Application No. 07255019.7, dated Jul. 21, 2010, 4 pages.
Official Action with English translation for Japan Patent Application No. 2007-333173, mailed Aug. 13, 2012 7 pages.
Official Action with English translation for Japan Patent Application No. 2007-333173, mailed Apr. 30, 2013 5 pages.
Extended European Search Report for European Application No. 07255018.9, dated Nov. 12, 2010, 8 pages.
Official Action for European Patent Application No. 07255018.9, dated Jul. 19, 2011, 3 pages.
Notice of Allowance for European Patent Application No. 07255018.9, dated Jul. 26, 2012 47 pages.
Intent to Grant for European Patent Application No. 07255018.9, dated Nov. 29, 2012, 7 pages.
Decision to Grant for European Patent Application No. 07255018.9, dated Aug. 8, 2013 2 pages.
Official Action with English translation for Japan Patent Application No. 2007-333273, mailed Jul. 30, 3012 7 pages.
Official Action with English translation for Japan Patent Application No. 2007-333273, mailed Jun. 6, 2013 10 pages.
Notice of Allowance for Japan Patent Application No. 2007-333273, mailed Jan. 16, 2014 3 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/059434, dated Dec. 13, 2013, 14 pages.
Official Action for U.S. Appl. No. 11/615,006, mailed Apr. 24, 2009, 11 pages.
Final Action for U.S. Appl. No. 11/615,006, mailed Oct. 26, 2009, 9 pages.
Official Action for U.S. Appl. No. 11/615,006, mailed Feb. 17, 2010, 8 pages.
Final Action for U.S. Appl. No. 11/615,006, mailed Jul. 20, 2010, 9 pages.
Official Action for U.S. Appl. No. 11/615,006, mailed Mar. 14, 2013, 16 pages.
Final Action for U.S. Appl. No. 11/615,006, mailed Nov. 22, 2013, 16 pages.
Official Action for U.S. Appl. No. 11/615,005, mailed Apr. 16, 2009, 13 pages.
Final Action for U.S. Appl. No. 11/615,005, mailed Nov. 9, 2009, 10 pages.
Official Action for U.S. Appl. No. 11/615,005, mailed Jul. 21, 2010, 10 pages.
Official Action for U.S. Appl. No. 11/615,005, mailed Feb. 11, 2011, 12 pages.
Official Action for U.S. Appl. No. 11/615,005, mailed Mar. 14, 2013, 16 pages.
Final Action for U.S. Appl. No. 11/615,005, mailed Nov. 21, 2013, 20 pages.
Official Action for U.S. Appl. No. 13/800,728, mailed Jan. 16, 2014, 14 pages.
U.S. Appl. No. 14/725,766 entitled System and Method of Ablative Cutting and Vacuum Aspiration Through Primary Orifice and Auxiliary Side Port filed May 29, 2015.
Decision to Grant for European Patent Application No. 07255018.9, dated Aug. 8, 2013, 2 pages.
International Search Report and Written Opinion issued in PCT/US2014/019258, mailed Aug. 8, 2014, 21 pages.
International Search Report and Written Opinion issued in PCT/US2014/021167 mailed Jun. 26, 2014, 19 pages.
International Search Report and Written Opinion issued in PCT/US2014/026496 mailed Jul. 30, 2014, 16 pages.
International Search Report and Written Opinion issued in PCT/US2015/016899, mailed May 1, 2015, 14 pages.
PCT Application No. PCT/US2015/016899 entitled Medical Device for Removing an Implanted Object filed Feb. 20, 2015.
PCT Application No. PCT/US2015/018305 entitled Multiple Configuration Surgical Cutting Device filed Mar. 2, 2015.
U.S. Appl. No. 13/800,651 entitled System and Method of Ablative Cutting and Pulsed Vacuum Aspiration, filed Mar. 13, 2013.
U.S. Appl. No. 14/577,976 entitled Surgical Instrument Including an Inwardly Deflecting Cutting Tip for Removing an Implanted Object filed Dec. 19, 2014.
U.S. Appl. No. 14/589,688 entitled Retractable Separating Systems and Methods filed Jan. 5, 2015.
U.S. Appl. No. 14/627,851 entitled Medical Device for Removing an Implanted Object filed Feb. 20, 2015.
U.S. Appl. No. 14/627,950 entitled Medical Device for Removing an Implanted Object filed Feb. 20, 2015.
U.S. Appl. No. 14/635,742 entitled Multiple Configuration Surgical Cutting Device filed Mar. 2, 2015.
U.S. Appl. No. 61/793,597 entitled Surgical Instrument for Removing an Implanted Object filed Mar. 15, 2013.
U.S. Appl. No. 61/987,993 entitled Dual Mode Mechanical Catheter Cutting System filed May 2, 2014.
U.S. Appl. No. 62/005,315 entitled Surgical Instrument for Removing an Implanted Object filed May 30, 2014.
U.S. Appl. No. 62/058,790 entitled Medical Device for Removing an Implanted Object filed Oct. 2, 2014.
U.S. Appl. No. 62/094,808 entitled Multiple Configuration Surgical Cutting Device filed Dec. 19, 2014.
U.S. Appl. No. 62/113,865 entitled Medical Device for Removing an Implanted Object filed Feb. 9, 2015.
Related Publications (1)
Number Date Country
20140276694 A1 Sep 2014 US