The invention refers to a process for influencing the steering behavior of a motor vehicle that has at least one differential lock and a steering system in which the driver controlled driver steering angle is superposable by a supplemental steering angle, according to the preamble of the patent claim 1.
Steering overrides are known from DE-A 40 31 316 or DE-C 43 26 355, for example. They point out a planetary gear with two input waves and one output wave whereby a driver-desired driver steering angle is entered over the first input wave and a supplemental steering angle, for example, is entered by means of an electric motor over the second input wave so that the supplemental steering angle overrides the driver steering angle. The steering angle is then transmitted to the front wheels over the output wave of the active front steering. That makes it possible to achieve a variable steering reduction ratio, which is also known under the designation of an “active steering”, e.g., from a prospectus of the ZF Steering Systems GmbH Co.
A process for operating a steering system of a motor vehicle with an override control (AFS=Active Front Steering) is known from DE-A 102 18 579 which has a main entry for a driver steering angle and a side entry for a supplemental steering angle. With this type of steering intervention, the driving dynamic of the motor vehicle can be influenced. It is advantageous in case of active front steering that a mechanical linkage is located between the steering wheel and the steerable front wheels, which increases the safety of the vehicle.
Also known are the so called steer-by-wire systems wherein the mechanical linkage between the steering wheel and the steering mechanism can be fully replaced by electromechanical components. Here also, the supplemental steering angle can override the driver setting of the driver steering angle.
It is also known that in the case of an unexpectedly occurring yawing moment by the motor vehicle, a steering intervention is to be undertaken, e.g., in the case of a so called μ-split situation, i.e., in the case of different friction values on the left and on the right side of the roadway. Described in DE-A 40 38 079 is a vehicle with an anti-blocking system (ABS) wherein, in case of μ-split braking, a compensation steering angle is overridden in order to balance out the yawing moment caused by the μ-split situation. Herein, the compensation steering angle is dependent on the dominant application of the brake or, as the case may be, the calculated brake pressure difference between the right and the left wheel. The locking of the wheels generated by the compensation steering angle compensates for the yawing moment.
The invention is based on a driving situation as it occurs in vehicles with a differential lock. Such differential locks are known and are used preferably for utility and all-terrain vehicles in order to prevent the spinning of a wheel under propulsion. If the vehicle with a differential lock enters a μ-split roadway and the spinning wheel is stopped by the means of the differential lock, an unwanted yawing moment is produced to the vehicle driver. Herein, the vehicle attempts to return to the track on the side of the lower friction value. The differential locks can also, for example, be represented by a differential transmission with a multiple disk clutch or an electronic control of the vehicle brakes.
It is the task of the instant invention to provide relief for the driver of a vehicle with a differential lock from a yawing moment occurring through the effects of the differential lock, i.e., to compensate extensively for the yawing moment.
This task will be solved through a procedure with the characteristics of patent claim 1, as well as through a device with the characteristics of claims 7 or 8, as well as through the use of a process or a device with the characteristics of claim 9. In a vehicle with a differential lock and a steering system according to the invention, a supplemental steering angle can override the driver steering angle, assuming that a first-occurring yawing moment can be compensated by a second yawing moment. The supplemental steering angle, calculated and entered at the occurrence of the first yawing moment, leads to locking of the wheel which counteracts the first yawing moment, for example, caused by the entry of the vehicle onto a μ-split roadway. The vehicle's supplemental steering angle then generates a second yawing moment, which does not correspond rate wise to the first yawing moment but counteracts and thus compensates for it. The person steering the vehicle is thus provided relief, that is to say, he does not have to counter steer, or just a very little, in order to maintain the vehicle on a straight course.
In an advantageous design of the invention, the size of the supplemental steering angle can be calculated by a computer depending on the various parameters that can be measured by the vehicle. Among these parameters are: the wheel revolutions or, as the case may be, the differential numbers derived from it on the differential lock or, as the case may be, its lock clutch, further the recorded friction values, the transferred clutch moments, and the engine moment, the frequency of brake actuation, the vehicle speed, the driver steering angle and the vehicle yawing rate, that is to say, angle speed about the vehicle vertical axis. The supplemental angle can be calculated from these values through which the override of the yawing moment can be largely compensated.
After further alternative improvements of the invention, the supplemental angle can also be calculated directly from the effect of the differential lock on the occurring yawing moment, for example, based on the wheel revolutions, the vehicle speed, the friction values, the actuation of the clutch, the wheel steering angle, on the driver steering angle, as well as the yawing rate of the vehicle. The yawing moment can thus be calculated or estimated and entered into the override. The steering intervention resulting from it, that is to say, the locking of the front wheels also leads to a yawing moment compensation.
The invention design examples are represented in the drawing and will be described in greater detail in the following. It shows:
From these parameters, a suitable supplemental angle δZL is calculated, which causes a second yawing moment over the wheel lock and through the steering system 2, which counteracts the first yawing moment MG from the differential lock. Thus, the driver is relieved and freed from counter steering the vehicle. When the μ-split situation no longer exists, a yawing moment compensation is no longer required and the supplemental angle δZL will be brought back, within a preset time period, to a zero value. It is not followed by any further steering wheel interventions.
The parameters entered in the computer 3 signify:
A μ-split situation can be recognized in at least one of the x1 to x9 or y1 to y9 parameters.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 029 783.5 | Jun 2004 | DE | national |