Within the last 25 years, the dairy industry has experienced a dramatic increase in hoof related disease and morbidity, particularly in dairy cows. One reason for this is likely due to the fact that more and more dairy cows are being maintained on hard surfaces such as concrete during their milking and non-milking times. Another possible reason is that larger dairy herds transmit contagious disease more easily from one cow to the next. A third reason is possibly that cows are sold and transferred from farm to farm more frequently and thereby spread disease. Hoof disease can cause a dairy cow considerable pain and thereby reduces the amount of milk that the cow will produce.
Approaches to treat hoof disease have been developed. One approach to treating animal hooves is to topically treat each affected hoof with a chemical manually. The chemical is typically sprayed on the hoof manually by a farm worker when the animal is brought in for milking. While a topical treatment is effective it is expensive due to the labor involved and is not often used for that reason on larger farms.
A second approach that is used is to guide the animals through a footbath containing a chemical diluted in water that treats the hooves. This approach has the disadvantage that the chemical is usually highly diluted with water in the footbath. Additionally, the footbath must be frequently emptied and refilled with fresh chemical because the footbath gets rapidly soiled and losses effectiveness. Typically, approximately 80% of the chemical that is placed into the footbath is discarded after 200-300 cows have passed through the footbath. That means that up to 80% of the chemicals that are used are wasted.
Currently two of the most prevalent chemicals used for hoof care are formaldehyde and copper sulfate. These chemicals are used because of their relative effectiveness in a diluted form. Formaldehyde is problematic in the use on a dairy because of negative potential human exposure issues. Copper sulfate is problematic because it can accumulate in the soils when the footbath is emptied into the manure lagoon and is then placed onto agricultural fields when the manure products are applied as fertilizers. Because of these problems with traditional footbaths other hoof treatment systems have been devised.
Hoof treatment systems have been described that use spray systems to treat the hoof. One such device is described in U.S. Pat. No. 5,630,379, and includes a spray bath that uses an electronic control to activate the sprayers to wash the hooves and then to apply a chemical to the hooves to promote hoof health. A major disadvantage to this sprayer system is that the chemical is not directed to the hoof exclusively and a large amount of chemicals are wasted through overspray.
One hoof treatment system has been described and manufactured by VINK-ELST BV (Netherlands) wherein the cow climbs onto a split platform and the rear of the hoof is sprayed by a chemical. The chemical is then collected in trays through which the cow walks, is filtered, and then recycled to minimize loss. This system has two major disadvantages. First the cows are required to walk slowly through the trays. This slows the cows' exit from the milking parlor where most hoof baths are placed, and more importantly the trays are soiled by the animals causing an inactivation of the chemical and requiring frequent replacement of the chemical and therefore wasted chemical.
Another hoof treatment system has been described in U.S. Patent applications 2008/0120089 and 2009/0178626. This device sprays the hoof of the animal when it steps onto a pressure sensitive mat. While the device reduces waste of the chemical by use of the directed and specific spray, the device has the disadvantage that the pressure mat is expensive and subject to failure due to constant use. Additionally, every individual spray head requires an activation and deactivation capability making it an expensive overall device to manufacture and maintain.
The present invention overcomes the shortcomings of the previously described devices and systems, by recycling and filtering hoof treatment chemicals in an economic design. Additionally the present invention has a low maintenance requirement.
The present invention is directed to a device for applying a hoof treatment fluid to animal hooves. The device includes a storage reservoir to store a hoof treatment fluid, a sensor to detect the presence of an animal, and preferably to detect a position of at least one of its hooves, a hoof treatment fluid sprayer directed at an animal hoof position, a recycle compartment positioned to collect a substantial portion of the hoof treatment fluid that does not strike the hooves, and a return system to return the collected portion of the hoof treatment fluid to the storage reservoir. An automated control device can be used to process sensor signals and control pumps, valves, and other system components. This hoof treatment device is placed in a pathway for an animal such that the animal can pass across it when it walks.
In a system of the present invention, there is a hoof sprayer and a recycling portion. The sprayer can include multiple spray nozzles that spray a foot treatment solution from a reservoir directly onto an animal's foot or hoof. Some of the sprayed fluid does not strike the hoof, so the overspray is collected in a collection tray. The overspray is directed above the animal walking surface so that the collected overspray is relatively clean.
After the overspray is collected, it is filtered and pumped back into the storage reservoir. This system uses a minimal amount of hoof treatment fluid because the overspray recycling system reduces waste. Contamination of the recycled fluid is very low because the fluid is sprayed above, and not on, the floor. Thus, some of the spray contacts a hoof, but most of the rest of the spray is captured before it is contaminated by the floor. Because very little hoof treatment fluid is needed on a per cow basis, the system is very cost effective. A method for treating animal hooves is also disclosed, and includes the steps of detecting an animal, spraying a treatment fluid toward the animal's hooves, and collecting oversprayed treatment fluid in a recycling system.
The present invention is directed to apparatus and methods for applying a hoof treatment fluid to animal hooves. A suitable device in accordance with the present invention includes; a storage reservoir to store a hoof treatment fluid, a sensor to detect the presence of an animal by detecting hooves, other body parts or an identification device on the animal, a hoof treatment fluid sprayer directed toward a hoof location and toward a recycle compartment that is preferably positioned opposite to the sprayer for collecting a substantial portion of the hoof treatment fluid that does not strike the hoof, a return system for returning the hoof treatment fluid to the storage reservoir, and an optional automated controller to interact with the sensor and the sprayer. The automated controller 17 is optional because the sprayer and related components can be activated directly by the sensor.
This device is placed in a pathway for an animal such that the animal can pass across it when it walks. In one embodiment, the device is placed in the exit lane of a milking parlor to spray hooves after the animal has been milked and is leaving the milking parlor. A “hoof” or hooves as defined herein can include any portion of an animal foot, or lower leg area, including the foot, the horny sheath covering the toes of a mammal, and the tissue adjacent to the horny sheath.
A manifold 5 is configured to supply hoof treatment fluid to the spray nozzles 3 equally. The manifold 5 is preferably connected to a pump 7 through a conduit 6. The pump 7 is connected to a reservoir 10 through a conduit 8. A filter 38 resides within the conduit 8 to filter particulates out of the hoof treatment fluid that passes through pump 7. The filter 38 is a feature that can be used when the possibility of the presence of particulates may be pumped to nozzles 3 causing a restriction or plugging of the nozzles.
The sprayer compartment 1 also preferably includes flush nozzles 20. The flush nozzles 20 are an optional feature present in the device depicted in
In an alternative configuration (not shown), the present invention has the flush nozzles contained within a center sheathed area. The center sheathed area is positioned between the compartments 1 and 2 to allow the wash fluid to be sprayed essentially perpendicular to the direction of movement of the animal through the device. The center sheathed area traverses between the sprayer compartment 1 and the recycle compartment 2 and a central conduit provides the wash fluid to the flush nozzles that then clean the area.
The recycle compartment 2 preferably contains a collection tray 55 connected to the recycle pump 12 through the conduit 11. The conduit 11 opens into recycle compartment 2 through an opening 32. The conduit 13 connects the recycle pump 12 to the reservoir 10. A filter 37 is disposed within conduit 11. The filter 37 may be one or multiple filtration devices that can remove debris that may have incidentally passed through the collection tray 55.
The sensor 16 senses the presence of an animal by detecting the animal itself of an ear tag or other such device. Preferably, the sensor 16 senses a hoof and its position and transmits a signal that activates the device. Nonetheless, by simply detecting the presence of an animal, it can be predetermined when and where to spray treatment fluid, so it is not necessary to sense individual hooves.
There may be more than one sensor incorporated into the device that can cause the spray nozzles 3 to spray hoof treatment fluid at different times as the animal moves between sprayer compartment 1 and recycle compartment 2 (Right to left, as illustrated.). In one embodiment, two sensors 16 are used to activate the device to spray the front hooves and the spray the rear hooves at two different times based on the position of the animal as detected by the two sensors 16. In the embodiment shown in
The sensor 16 detects the presence of an animal that has entered the device 100 and sends a signal to the controller 17 (when included) through an electronic connection 18 or through a wireless transmitter (not shown). After receiving the signal from the sensor 16, the controller 17 activates the pump 7 through electrical connection 28 or a wireless connection which pumps hoof treatment fluid 14 through the conduit 6, the manifold 5, the shutoffs valves 4 and the spray nozzles 3. In an alternate embodiment when a controller 17 is not used, the sensor 16 directly activates the pump 7 to begin spraying the hooves. As the hoof treatment fluid exits the spray nozzles 3, it passes through the opening 30 in the sprayer compartment 1 and the hoof treatment fluid that does not spray the hooves travels to the recycle compartment 2 to be recycled.
The sensor 16 may use one or more types of sensing technology to identify the presence of an animal within the sprayer device 100. The sensor 16 can be a photoelectric sensing system that is activated when the animal breaks a beam of light between an emitter and a detector of the sensor. A typical sensor that might be used is Model DPPS made by Greenfield Industries, Inc. located at 2501 Davis Creek Rd., Seneca, Calif. 29678. The sensor 16 may use an infrared light detector. The sensor 16 may be a motion detector that uses passive infrared, ultrasonic or microwave technology or a combination thereof. An example of an ultrasonic sensor that can be used in the present invention is Parallax's PING device distributed by Trossen Robotics located at 2739 Curtiss Lane, Downers Grove, Ill. 60515. The sensor 16 may be a proximity sensor based on capacitance. The second sensor (not shown) that may be installed at a second location to turn on the device a second time, may be the same type or different type as the first sensor. The sensor 16 may be a physical sensor. One type of physical sensor is a wand type sensor that has a magnetic switch that is tripped when an animal bends or pivots the wand. Other sensors may also be used if they can identify the presence of the animal or its individual hooves. The sensor 16 may be positioned above or to the side of the animal depending on the nature of the sensor 16 or other physical features of the dairy. Optionally, the sensor 16 does not detect the animal itself, but identifies an ear tag or some other identification device on the animal.
In the embodiment depicted in
When the shutoff valves 4 experience reduced pressure, they stop fluid flow out of spray nozzles 3 when reaching their preset pressure release value. This value is typically between 1-40 psi above ambient. In a preferred embodiment, this value is between 3-15 psi above ambient. For example, if the preset value for the shutoff valves 4 is 8 psi above ambient, then when the solenoid valve 35 opens and the pump 7 stops pumping the pressure drops below 8 psi above ambient rapidly and the shutoff valves 4 stop the hoof treatment fluid spray abruptly. In this scenario, the fluid stream travelling between the sprayer compartment 1 and the recycle compartment 2 stops abruptly, preventing a dribbling of fluid into the space between the two compartments as the pressure gradually dissipates. This reduces waste of the dribbling hoof treatment fluid, making the device very efficient through the conservation of chemicals used in the device. This conservation also has the advantage of making the device very economical to use.
The controller 17 or the sensor 16 may control the length of time that the pump 7 runs thereby limiting the amount of hoof treatment fluid sprayed at any one time. For example, when the sensor 16 detects an animal, it may turn on the pump 7 for three seconds and then turn the pump 7 off. This will conserve spray that might strike the hoof that is not needed since the hoof is sufficiently covered in hoof treatment fluid within the three second time period. Alternatively, the controller 17 may turn the pump off.
At occasional times, the floor area between compartments 1 and 2 and sides 40 and 41 may become soiled by an animal. The sides 40 and 41 may be elevated to allow and control the passage of flush fluids and debris. A plain water or chemical solution wash can be used to remove the soil. The system can include the wash nozzles 20, the wash manifold 21, the conduit 22, the pump 23, the conduit 24, and the valve 25 to produce the desired washing. At a chosen interval, fresh water may be pumped onto the floor area to wash away any soiling that may occur. This interval may be controlled by the controller 17 based on a lull of activity or it may be determined by a set schedule. Alternately, a separate timer can be used to turn on the wash system. The valve 25 is connected to a water source and can be opened by a timer or the controller 17 through the electrical connection 26 or a wireless connection. The conduit 24 connects the valve 25 to the pump 23 which can be activated at the same time that the valve 25 opens through the electrical connection 27 or a wireless connection. When activated, the pump 23 forces water through the conduit 22 and wash manifold 21, and through the nozzles 20 washing away any soil in the floor area. If the water pressure at the available source is about 30 psi or higher, a pump may not be needed to wash the floor.
The size of the hoof treatment chemical reservoir 10 can vary depending on the type of hoof treatment fluid that is used and the number of animals treated. In one embodiment, the reservoir 10 contains at least approximately one month's worth of ready to use hoof treatment fluid. This allows for a minimal replacement routine. In a second embodiment, a concentrate vessel contains a concentrated hoof treatment fluid that is diluted using locally obtained water prior to going into the reservoir 10. This can be accomplished using a venturi type or other suitable mixer. This can also be accomplished using multiple pumps and valves to control the mixing of a solution.
The recycle compartment 2 preferably contains collection tray 55 into which hoof treatment fluid accumulates after striking the rear wall 54 of the collection tray 55. The opening 32 connects to the conduit 11 wherein the recycled hoof treatment fluid is filtered through the filter 37. Hoof treatment fluid is returned to the reservoir 10 through conduit 13 by the recycle pump 12 which can be controlled through the controller 17, for example, via an electrical connection 29 or a wireless connection. The pump 1 may be activated by the sensor 16 or the controller 17. Recycled hoof treatment fluid can then be resupplied to the spray nozzles 3, as described above.
In one embodiment, two separate hoof treatment chemical fluid streams are combined just prior to filling a relatively small reservoir 10. Water may or may not be added to this mixed stream to produce the final hoof treatment fluid. Because a small reservoir is used, when the cycle of animals passing through the device 100 is complete, very little hoof treatment fluid remains in the reservoir 10. This is particularly beneficial when a somewhat labile active ingredient is used as the hoof treatment fluid. For example, when a hoof treatment fluid containing chlorine dioxide is made using this scheme, the remaining hoof treatment fluid may only be stable for a limited timeframe. By making the hoof treatment fluid in situ, as described above and keeping the reservoir small, the fluid is still highly active and efficacious when used. This mixing can be controlled by the controller 17 or a separate control system.
One advantage of the present invention is that a more concentrated hoof solution can be put on the animal hoof. This is more efficient because there is less wasted chemical compared to a traditional footbath.
Preferably, a guard 60 covers the recycle compartment 2 so that little or no soiling can occur when the animal passes over the recycle compartment 2. This minimizes the recycled hoof treatment fluid from being contaminated and deactivated by manure or other soil. The filter 37 also serves to ensure that less particulate material returns to the reservoir 10.
As described above, the wash nozzles 58 spray wash fluid onto the floor area between sprayer compartment 1 and recycle compartment 2 and between sides 40 and 41 to remove any accumulated or deposited soil in the floor area. As shown in
The present invention is designed to introduce a hoof treatment fluid onto the hoof in a very efficient manner that wastes very little hoof treatment chemicals. As a consequence, the hoof treatment fluid can be more concentrated and more efficacious using similar chemicals as are used in a traditional footbath and still be cheaper to operate on a cost per cow basis because of this efficiency. The hoof treatment fluid can contain one or more active ingredient such as antimicrobial agents, oxidizers, surfactants, viscosity modifiers, hydrotropes, emulsifiers, and solvents, and combinations thereof. The hoof treatment fluid can contain, but is not limited to, active ingredients from the group including hydrogen peroxide, hypochlorite, Peracetic acid, fatty acids, lactic acid, quats, benzalkonium chloride, triclosan, triclocarban, chloramines, ozone, biguanide, hexachlorophene, copper sulfate, zinc sulfate, formaldehyde, glutaraldehyde, organic acids, antibiotics, fungicides, chlorine dioxide, iodine, alcohol, essential oils, short chain carboxylic acids, silver, bronopol, niacin, parabens, benzoic acid, sodium benzoate, lactic acid, acetic acid, propionic acid, ozone, sodium bisulfate, sodium metabisulfate, phenol, phenolic compounds, and combinations thereof. In one embodiment, an active hoof treatment chemical can made in situ by combining two or more constituents in separate product streams prior to flowing from the sprayer. For example, a solution of sodium chlorite may be combined with a solution of an acid to produce chlorine dioxide prior to being sprayed. In a second embodiment, an active hoof treatment chemical can be made more active, for example by increasing or decreasing the pH of the hoof treatment fluid at the time of spraying because the lower pH active is labile and cannot be stored for more than a short time.
Inerts and excipients can also be incorporated into the hoof treatment fluid. These include materials from the group comprised of surfactants, solvents, water, hydrotropes, salts, acids, chelators, emulsifiers, opacifier, pH modifiers, thickeners, dyes, preservatives, and combinations thereof.
In a preferred embodiment of the present invention, the hoof treatment fluid is low foaming. A low foaming fluid allows for the hoof treatment fluid that does not strike the hoof to be collected in recycle compartment in a pumpable form whereby the unused portion of the fluid can be pumped back to the reservoir. A low foaming hoof treatment fluid is a fluid that either generates no or very little foam when sprayed through spray nozzles 3 and collected in the recycle compartment, or generates foam that dissipates quickly into a pumpable fluid. In one embodiment, none of the ingredients in the hoof treatment fluid cause foaming. In another embodiment, when one or more ingredients in the hoof treatment fluid causes foaming a defoamer ingredient can be incorporated into the hoof treatment fluid to reduce or eliminate the foam.
In another embodiment of the device, a sprayer design that limits foaming can be used or a defoaming apparatus can be placed in the recycle compartment 2 which can effectively reduce or eliminate any foaming that occurs. Another means to minimize foaming is to feed a defoaming ingredient into the recycle compartment 2 that causes most of the foam to dissipate. Another means to accomplish this is to incorporate a mechanical system that breaks the foam, such as a heated coil system.
In another embodiment, a multiple part hoof treatment fluid is delivered to the spray nozzles 3 by mixing two or more chemical components together on site to make the hoof treatment fluid. This mixing can occur in a separate operation prior to filling the reservoir.
One advantage of the present invention is that it recycles most of the excess hoof treatment fluid that does not strike the animal hoof. This makes the system very economical because waste is minimized. Because wasted hoof treatment fluid is minimized in the present invention, a more concentrated fluid may be used compared to the concentration of the actives in a footbath. This allows for a more effective treatment regimen. The present invention is less harmful to the environment than traditional footbaths because less chemical ends up in the manure stream that eventually goes onto farmland.
This application claims priority to U.S. Provisional Application No. 61/460,983, filed Jan. 11, 2011, which is incorporated herein by reference in its entirety. The invention relates generally to hoof treating apparatus and methods, and more particularly to a hoof spray device that captures overspray of hoof treatment fluid.
Number | Date | Country | |
---|---|---|---|
61460983 | Jan 2011 | US |