Device and method with reduced pacemaker rate in heart valve replacement

Information

  • Patent Grant
  • 10709555
  • Patent Number
    10,709,555
  • Date Filed
    Monday, April 18, 2016
    8 years ago
  • Date Issued
    Tuesday, July 14, 2020
    4 years ago
Abstract
The disclosure relates to heart valve prostheses with the reduced need of pacemaker implantation and improved means for positioning the replacement heart valve.
Description

The present disclosure relates to heart valve prostheses with reduced pace maker rate and means and methods for visualization of the correct implantation of a medical device at the target site in a patient.


BACKGROUND

A number of applications have been established making use of medical devices, which can be delivered by way of minimally invasive methods in a patient. An example of such a medical device is a heart valve prosthesis.


Various replacement heart valves for aortic, mitral and tricuspid heart valves are currently available. In particular in the context of aortic heart valves replacement valves a side effect is the necessity of pace maker implantation in many implantations and devices. The requirement of a pacemaker can be as high as 30% in state of the art device implantation. This does not only have the drawback of another surgery and medical device with all its negative implications for the patient but also imposes increased cost in the context of such a heart valve replacement therapy. Accordingly there is a need to avoid or at least reduce the rate of pacemakers in such treatments.


Another problem often occurs when trying to achieving a correct implantation and positioning of the prosthesis at the target site in order to fully and reliably exhibit the prosthesis' function.


A particular example is a catheter-based aortic valve prosthesis consisting of a self-expanding stent and a valve known for treating aortic insufficiency. Such heart valve prostheses are positioned at the aortic annulus to replace the endogenous aortic valve. The aim is to correctly position the heart valve prosthesis with regard to the aortic annulus and the endogenous cusps.


WO2004/019825 describes an aortic prosthesis wherein the prosthesis exhibits feelers which are meant to be deployed first and placed into the aortic cusps. Once the feelers have been placed within the cusps the stent is deployed to complete the implantation. The entire implant procedure is guided by fluoroscopic imaging. The stent and feelers are visible under fluoroscopy. The aorta, aortic valve, and left ventricle are visualized indirectly by injecting contrast medium through an angiographic catheter into the left ventricle and ascending aorta. During valve deployment the angiographic catheters are retracted to avoid interference between the stent and the angiographic catheter. Thus, the operator mainly relies on tactile feedback for feeler placement.


In case of a transfemoral valve replacement, the tactile feedback may be inconsistent due to the tortuosity of the access vessels and the curvature of the aortic arch. As a result, the prosthesis may not be placed sufficiently correct at its target site. In case a prosthesis is applied that uses feelers, cusp positioners, hooks, rims or similar means to provide for precise positioning and/or targeting the endogenous leaflet cusps, these means may not be correctly positioned and/or they may be placed away from the base of the cusps or may damage the cusps.


There exists thus the need for better guiding the placement of the valve prosthesis and to avoid damage of the endogenous heart tissue and in particular cusp damage or perforation.


Another issue is leakage of blood between the replacement heart valve and the endogenous tissue e.g. at the annular ring of the aortic heart valve. Known prostheses try to improve leak tightness by applying or forming a ring or band along the annular ring and cover the prosthesis by a symmetric band made of biological or synthetic tissue. Some disclosures try to improve the leak tightness with the combination of the outward force of the prosthesis and the symmetrical band aligned along the annular ring. This approach is commonly used and it is acknowledged that a symmetrical sealing ring is a useful approach, which serves the purpose, however, this approach is not always 100% successful.


Yet another issue is the need for pacemaker implantation after heart valve replacement therapy. In currently available therapies and heart valve prostheses a considerable number of patients require a pacemaker implantation after heart valve replacement therapy. Currently there are a number of replacement heart valves on the market like the Sapiens HVT, the Lotus device, the Corevalve device or the Symetis device all for aortic heart valve replacement with a minimally invasive approach. The percentages of the requirement for pacemaker transplantation vary between these products. It is acknowledged that the pacemaker requirement is unwanted and makes yet another surgery necessary including all its negative implications.


Accordingly, there is a need to provide for methods and replacement heart valves with a reduced need of pacemaker implantation.


Hence it is one object to provide for a replacement heart valve therapy with reduced pacemaker rate.


It is another object to provide for a means and a method for save positioning replacement heart valves into an individual's body at a target site.


It is yet another object to be able to visually control the correct positioning of a replacement heart valve.


It is another object to provide heart valve prostheses with good or even advantageous leak tightness features.


It is yet another object to provide for a replacement heart valve therapy wherein the replacement heart valve is engineered in a manner so as to reduce or even substantially avoid the disadvantages of the prior art, or to provide for a replacement heart valve that combines the advantages of being capable of secure and correct positioning and at the same time exhibiting a reduced need for pacemaker implantation.


It is yet another object to provide for a replacement heart valve prosthesis which has improved properties or/and which exhibits advantageous features with respect to the pacemaker need, e.g., a reduced pacemaker need vis-à-vis known devices or a pacemaker rate that is acceptable, easy positioning, and/or good leak tightness features.


SUMMARY

In one aspect are disclosed replacement heart valve prostheses with the reduced need of pacemakers. The reduced need for pacemaker application after the replacement heart valve implantation according to some embodiments may be related to aspects of the prosthesis design.


In another aspect are disclosed methods for the minimally invasive application of said replacement heart valves by use of a catheter device in a transfemoral or transapical manner. The catheter may be adapted to the prosthesis in order to allow easy and correct implantation into the heart of an individual.


In another aspect is disclosed means for visualizing the positioning of replacement heart valves at an implant site inside an individual's body, wherein the medical implant exhibits a deformable indicator means.


In another aspect is disclosed a method for the visualization of the positioning of a medical implant exhibiting deformable detector means at an implant site inside a patient body wherein i. the implant is delivered by appropriate means close to or at least relatively close to the target implantation site; ii. the implant is approached to its final target site; iii. the approach of the implant is stopped when the deformable detector means indicate contact with the tissue of the final target site.


In yet another aspect is disclosed a method for minimally invasive implantation of a replacement heart valve in an individual.





BRIEF DESCRIPTION OF THE DRAWINGS

The Figures will describe various aspects without being understood as restrictive. The skilled person will also appreciate that any of the features as described in the Figures or in any of the examples mentioned herein may be combined with any other features or a number of features as described throughout the specification and claims herein.



FIGS. 1a-1c, at the left side, (FIG. 1a) describe a top view of a heart with the bundle of His (1), the septum (2), the mitral valve (3), the aortic valve with right leaflet (4), left leaflet (LC) and non-coronary leaflet (6). In the middle (FIG. 1b) is depicted the annular ring (7) of the aortic valve and the aortic arch (8). On the right side (FIG. 1c) a prosthesis is placed at the site of the endogenous aortic heart valve in the annular ring (7).



FIG. 2 depicts an aortic replacement valve according to an embodiment of the disclosure (14) flapped open to show three sections (16), (17), (18) from left to right and the distal prosthesis area. (9), (10), and (11) refer to the right coronary sinus, non-coronary sinus and left coronary sinus, respectively. The left coronary (12) and right coronary (13) are shown wherein the prosthesis is designed so as not to cover the coronaries (12) and (13). The prosthesis (14) in this embodiment exhibits between section (16) and (18) an area (19) which has a higher proximal edge.



FIG. 3 illustrates a part of the prosthesis according to another exemplary embodiment of the disclosure (14) wherein particular aspects of the stent forming part of the prosthesis are depicted. Other parts as necessary may form part of a prosthesis of the present disclosure which are not explicitly shown but which may form part of the prosthesis as disclosed herein. In particular the locator (20) and the proximal stent ring (21) are depicted. The proximal end of locator (20) may be specifically designed and engineered to provide for a particular dimension and distance with regard to the proximal end of the prosthesis according to the disclosure (14). In the present illustration it is 6 mm. However, other dimensions can be useful depending on the particular needs and requirements which can be adapted to, such as, e.g., a range of between 1 and 10 mm, e.g. 4 mm, 5 mm, 7 mm, 8 mm.



FIG. 4a (non-expanded state) and FIG. 4b (expanded state) show a prosthesis according to an exemplary embodiment (14) with a locator (20) attached to fastening arches (23). Also indicated are the proximal and distal prosthesis areas (21) and (22), respectively. The locator (20) may have an adapted design and positioning with respect to and as being connected with fastening arches (23). Also indicated is the foreshortening distance (24) and the fact that in its expanded state the locator(s) (20) may at least partially superpose some areas of the remaining prosthesis. The prosthesis (4) may exhibit three locators (20) but it may also be feasible to use more or less locators, e.g. two locators. Also the locators (20) may have the same design and length or may represent different embodiments, e.g., being engineered differently.



FIGS. 5a-5b show a variation of the prosthesis of FIGS. 4a-4b wherein the locator (20) is differently engineered and the foreshortening distance (24) is achieved in a variation of the one depicted in FIGS. 4a-4b.



FIGS. 4a-4b and 5a-5b show variations in the connection between the locator (20) and the fastening arches (23).



FIGS. 6a-6c show a prosthesis (14) according to another exemplary embodiment of the disclosure exhibiting a feeler and an indicator, and wherein the sequence of positioning of a medical implant according to the present disclosure is depicted.



FIG. 6a shows an aortic valve prosthesis comprising a stent, arch-shaped locator (20) connected to the commissures and extending proximally, and an arch-shaped indicator (25) connected to the commissures and extended proximally beyond the locators (20). The indicators may be formed e.g. from flexible radiopaque wires. FIG. 6b shows a locator (20) and corresponding indicator located distal to a native cusp. The indicator (25) is in its undistorted configuration. In FIG. 6c, the locator is advanced to the base of the native cusp. The indicator contacts the cusp first and is deformed by the force used to further advance the locator (20) and stent. The locator (20) is relatively stiff and does not deform. When the locator (20) approaches the base of the cusp, the most proximal segment of the indicator and the most segment of the locator (20) approach each other and contact each other. This configuration indicates that the locators are in full contact with the cusps. The locator and the indicator are radiopaque and there physical location to each other can be visualized using fluoroscopy. Alternatively, the locators (20) and/or the indicator may be made from non-radiopaque material. Individual radiopaque markers may be placed on the proximal segments of the locator (20) and indicator to visualize their respective location using fluoroscopy.



FIGS. 7a-7c and 8a-8c show alternative embodiments of the locators (20) and radiopaque indicators (25).


In FIGS. 7a-7c, a series of “antennas” extend from the proximal segment of the feeler in the direction of the cusps. The antennas may be made from flexible material such as a memory alloy. The antennas may have similar properties as guide wire tips to prevent tissue damage. The tip of the antenna or the entire antenna may be radiopaque. When the antennas contact the cusp (27) they are deflected. When multiple antennas are used, the array of antenna tips outlines the shape of the cusps (27). This may be helpful in visualizing the center of the cusp (27).



FIGS. 8a-8c show another alternative embodiment of the locators (20) and indicators (25). Each locator has an “M” shape with the ends of the M being connected to the stent. The center “Y” segment of the locator sits inside the valve cusp sandwiching the cusp between the Y segment and the stent. A single indicator (25) is connected to the base of the Y shaped locator (20) segment. The indicator may be similar in shape and construction of the indicators in FIGS. 7a-7c. Alternatively, the indicator (25) may be made from soft fabric, textile, mammalian tissue, or a polymer. Polymers may include but not limited to silicone, polyurethane, and ePTFE. The fabric, textile, and mammalian tissue may be attached to the locators (20) by sutures, clips, staples, or adhesives. The polymer may be attached to the locators (20) by adhesives, heat fusion, or over-molding. At least the proximal end of the indicator (25) may be radiopaque. Radiopaque markers may be sewed onto the fabric or imbedded or molded into the polymer material. the implantation direction into the cusps (27) is indicated by arrow (26).



FIG. 9 illustrates a indicator in form of a locator cover (28) which is affixed to the locator (20) and comprises one or more radio-opaque means for visualization with respective means and methods known by the skilled person during surgery. The locator cover (28) can be cut in different forms and seizes as is appropriate for affixing same to the locator (20). Such a cover may be made of material compatible with the remaining components of the prosthesis and may exhibit biocompatible characteristics. The cover (28) may be well compatible with its function and long term implantation into an individual. The cover and as well the other components of the prosthesis such as stent, biological and non-biological materials can be covered or coated with a coating which may facilitate implantation and/or biocompatibility with the tissue of the implantation site in the heart. The FIGS. 9a, 9b, 9c illustrate variations in the cover (28) and the positioning of the radio-opaque markers (29).



FIGS. 10a-10c show variations of locators (20) including a radio-opaque markers (29) wherein the locators (20) as well as the markers (29) are engineered with variations and additional variations in seize, dimension, marker (29) location are well within the scope of the present disclosure.



FIG. 11 depicts a prosthesis (14) according to an exemplary embodiment of the present disclosure and illustrates the cover (28) including the radio-opaque marker areas (29) attached to a locator (20) and indicates the distal area (22), the proximal area (24), the fixation arches (23).



FIG. 12 shows the prosthesis (14) implanted at the aortic annulus ring and the use for facilitation of better positioning by way of the locators (20) and radio-opaque (29) marked indicator in form of a locator cover (28) wherein calcified leaflets (31), the sinus of vasalva (30) and the (32) are shown.



FIGS. 13a-13c show another way of illustrating the prosthesis (14) as of FIG. 12 positioned and implanted at its target site.





DETAILED DESCRIPTION

The objects of the disclosure may be addressed by the prostheses and methods as disclosed herein.


In the following some terms of the disclosure will be defined and unless stated otherwise they will represent the meaning for the purpose of the description of the subject matter described herein.


“Heart valve prosthesis” or “prosthesis” or “medical implant” or “medical device” in the sense of the disclosure is any medical device like a heart valve that may be implanted into a patient by means of a minimally invasive procedure e.g. by way of the use of a catheter or a similar delivery device. “Prosthesis” relates to aortic, mitral and tricuspid replacement heart valves.


The term “proximal” refers to the part of the prosthesis which will be closer to the apex of the heart during or when implanted, and the term “distal” refers to the part of the prosthesis which is further away from the apex of the heart during or when implanted. The term “proximal” may also be used in the context of the locator means.


The term “varying” in connection with the proximal end or the edge of the proximal end refers to the specific design of the disclosed subject matter, wherein the edge of the proximal end of the prosthesis can be uniform and describe a ring ending at the same level. On the other hand different sections of the prosthesis can be designed in a way so as to have their edges of the proximal ends at differing levels and thus represent differing distances to e.g. the locator means in case the prosthesis consists of three sections wherein each section comprises on locator means. Thus the proximal end of the prosthesis may exhibit an undulating proximal edge.


“Tube perimeter” refers to e.g. a nitinol tube which is laser cut in order to receive the stent component of the prosthesis and which describes the same inner and outer dimension and surface over the tube. Accordingly, in some embodiments, no parts of the cut stent may substantially stick inwardly or outwardly of said tube.


The term “foreshortening” describes the change of position or position of the proximal end of the locator means when the stent component is expanded and the proximal end of the locator means moves outwardly of the tube perimeter and towards the proximal end of the prosthesis. Thus the distance between the proximal end of the locator means and the proximal end of the stent may be reduced “shortened” as compared to the non-expanded position of the proximal end of the locator means. The “foreshortening” may depend on the design of the locator means as such and on the connection with other parts of the stent. Thus a design such as an arch may be advantageous and its connections with its ends at each side with a fastening arch of the stent. The skilled person will appreciate that in this manner the “foreshortening” can be defined and it can vary between 1 and 15 mm, or one can achieve a foreshortening of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mm.


A “fastening arch” is a part of the stent to which the valve component is fixed, e.g., by suitable means and methods.


A “non-expanded state” and “expanded state” of the prosthesis refers to a design wherein the prosthesis can be crimped and placed to or in a catheter for minimally invasive delivery purposes. The prosthesis may be expanded by balloon expansion or self-expandable, and when placed and positioned at its target site it may exhibit its “expanded state”. Thus the “non-expanded state” represents the minimal diameter of the prosthesis and the “expanded state” represents its biggest diameter. It will be appreciated by the skilled person that the prosthesis when positioned at its target site may exhibit outward forces against e.g. the annular ring which may exhibit a force in counter direction and thus the prosthesis may not exhibit in this state its maximal diameter. The outward force may contribute to the fixation/positioning of the prosthesis.


“Heart pacemaker” or “pacemaker” in the sense of the disclosure are devices to trigger and control an appropriate or normal heart rate in an individual.


“Pacemaker rate” or the “need for pacemaker” or “the need for pacemaker implantation” relates to the fact that in heart valve replacement therapy after implantation of the prosthesis a number of patients require pacemakers.


Accordingly, an additional surgery is required in such individuals.


“Pacemaker rate” in this context refers to the percentage of individuals who need a pacemaker after valve implant. The pacemaker rate in currently available replacement heart valve treatment is in the range of 10% to 30%.


“Indicator means” or “indicators” in the sense of the disclosure are any constructive means that allow or facilitate the easy and precise positioning, e.g., by way of a visualization apparatus or devices that allow controlling the position of the medical device within a patient.


“Locator means” or “locator” or “feeler” in the sense of the disclosure is to be understood as any constructive element as part of the medical device to be implanted in an individual and which allows or facilitates the implantation and positioning, e.g., by making contact with or within a body or tissue part of the individual. The locator may be designed as is appropriate under the circumstances which will be described in more detail below.


“Locator probe” may form part of or be used together with a locator means and it may facilitate the correct positioning of the prosthesis at the target site in the individual. For easier visualization a opaque marker may be used.


A “valve component” in the sense of the disclosure is a biological or synthetic valve placed within the stent component and which may replace the endogenous valve function. It may comprise additional components to optimize the valve and overall prosthesis function, including, by not limited to, internal and/or external covers of the same or different biological and/or synthetic materials and sealing means.


A “sealing means” in the sense of the disclosure is a particular tissue, lining, covering, band made of synthetic and/or biological material that may be positioned outside the stent component, e.g., which may serve the purpose to prevent reflux of blood when the valve is in its closed position. In some embodiments, it is designed as a band around the stent component in e.g. an aortic valve as a symmetrical band at the location of the annular ring and which represents a sealing between the prosthesis and the endogenous valve. The “sealing means” of the disclosed prosthesis may be symmetrical and/or non-symmetrical and it may follow in particular at the outside of the prosthesis and may represent a covering. In a non-symmetrical design of the prosthesis as disclosed the “sealing means” may be more distal in the NCS section and more distal in the other two sections (16) (18).


The “target site” in the sense of the disclosure is the endogenous heart valve to be replaced by the replacement heart valve. In particular the “target site” is the position where the replacement heart valve will be implanted.


“Shortest distance” in the sense of the disclosure refers to two points that relate to design features of the prosthesis like locator and distal end which can be compared to the distance of other design features wherein the distance is measured in the same manner. “Opaque marker” in the sense of the disclosure is to be understood as any material that can be visualized by an apparatus to visualize the position of the device outside the individual's body during surgery or thereafter.


“Visualization” or “to visualize” in the sense of the disclosure includes any way to project the opaque marker and thus prosthesis position outside the individual's body.


Any other terms used in the following will be understood by the skilled person in the art and in the usual sense and manner usually applied in the art.


In the following various embodiments will be described wherein the skilled reader will understand that all features described therein may represent one single feature of the prosthesis and/or all features of the prosthesis, and any features as described herein may as well be combined in any way even if not explicitly so mentioned in the following.


In one aspect the disclosure relates to an aortic heart valve prosthesis for reducing the need for pacemaker implantation. FIG. 1 illustrates the anatomical location of the bundle of His of the conductive system. The bundle of His is located at the septum approximately 2 mm-10 mm below the aortic annulus and the non-coronary sinus. Many transcatheter prostheses for aortic valve replacement include a balloon or self-expanded stent scaffold that anchors the prosthesis in the aortic annulus. There is evidence that the stent scaffold interferes with the conductive system of the heart, which may result in the need for pacemaker implantation. A stent scaffold that extends into the left ventricle or excessively stretches the tissue in the aortic annulus may injure or irritate the bundle of His.


One potential strategy to mitigate the risk of irritating the conductive system is to place the proximal end of the stent scaffold within the aortic annulus and avoid extension of the stent scaffold into the left ventricle. This may require accurate axial placement of the stent scaffold inside the annulus. In one aspect of the present disclosure, the stent scaffold of the valve prosthesis includes axially extending locators. The locators may be positioned within the cusp of the native aortic valve. Placement of the locators within the cusps may prevent further proximal movement of the stent scaffold into the left ventricle. By adjusting the location of the proximal end of the locators with respect to the proximal end of the stent scaffold, infra-annular placement of the stent scaffold in the aortic annulus may be assured. The distance from the proximal end of the locators to the proximal end of the stent scaffold may be less than 10 mm, for example between 1 mm-5 mm.


The location of the proximal end of the locators with respect to the proximal stent scaffold may require the locators to overlap with the proximal stent ring of the stent scaffold. In an exemplary embodiment, the locators and the stent scaffold of the prosthesis are cut from the same metal tubing. This may minimize the profile of the prosthesis. FIGS. 4a-4b and 5a-5b demonstrate embodiments of one-piece stent scaffolds with locators. The locators may be connected to the mid-section of the stent by diagonal struts. Expansion of the stent scaffold from the crimped configuration into the implant configuration may cause foreshortening of the diagonal struts and proximal movement of the proximal end of the locators. In the crimped configuration, the proximal end of the locators may not overlap with the most proximal stent scaffold ring. In this configuration, the stent scaffold may have a low profile for placement in the delivery system. In the expanded configuration, the proximal end of the locators may overlap with the most proximal stent scaffold ring. In some embodiments, the proximal end of the locators is located less than 10 mm, e.g., between 1 mm and 5 mm, away from the proximal end of the stent scaffold when the stent scaffold is fully expanded.


In another aspect of the disclosure, interference of the stent scaffold with the bundle of His may be mitigated by an asymmetric stent scaffold design. The most proximal segment of the stent scaffold along the non-coronary sinus may be moved distally with respect to the most proximal segments of the stent scaffold along the left and right coronary sinus. The most proximal segment of the stent scaffold along the coronary sinus may be within or supra to the aortic annulus. In conjunction with the more distal placement of the non-coronary segment of the stent scaffold, the para-valvular seal zone in the non-coronary segment of the prosthesis may extend into the non-coronary sinus. Distal extension of the seal zone may be possible since the non-coronary sinus is void of coronary arteries that need to be kept patent to perfuse the heart. Thus, an asymmetric design of the prosthesis may take advantage of the unique anatomical location of the bundle of His with respect to the annulus and the non-coronary sinus. The seal elements of the prosthesis may be located proximal to the coronary arteries in the left and right coronary sinus and distal to the coronary arteries in the non-coronary sinus.


In another aspect of the disclosure, the prosthesis may have an asymmetric design and two locators for placement in the right and left coronary cusps. The non-coronary segment of the stent scaffold may not have a locator but a supra-annular stent segment that contacts the wall of the non-coronary sinus.


In one aspect the disclosure relates to a heart valve prosthesis for reducing the need for pacemaker after positioning at a target site, comprising a stent component, a valve component, a sealing means, and at least one locator means for a defined positioning of the prosthesis at the target site of an endogenous heart valve, and wherein the prosthesis may be expandable from a non-expanded to an expanded state, and wherein in the expanded state a shortest distance between a proximal end of the locator means and a proximal end of the prosthesis may be less than 15 mm, such as less than 10, 8, or 5 mm.


The prosthesis as disclosed herein may exhibit a number of advantages compared to other devices at least partially due to its engineering. For example, one advantage may be that the design of the prosthesis makes sure that the coronary arteries are substantially not covered or blinded by any prosthesis section or area and thus the circulation of blood is not affected.


Another advantage of the prosthesis as disclosed may be that its implantation may not substantially interfere with the heart functions. For example, its implantation may result in low side effects, e.g., such that the rate of pacemakers needed may be comparably low as compared to other devices.


In one embodiment the heart valve prosthesis as disclosed comprises a locator means comprising a locator probe for the visualization of the locator means.


The prosthesis can be a tube and/or mesh like design with symmetrical end portions. It can as well have in its structure within the tube structure asymmetrical with meander like structures and it can as well be designed so that the distance between a proximal end of the locator means in case there are two or three locator means referring to the three sections as described herein and a proximal end of the prosthesis is varying in circumferential direction. The same is possible for the distal end of the prosthesis. Such a design may be suitable, for example, wherein the proximal and/or distal end is varying in its end dimensions. Such a design may provide an advantage wherein critical areas and/or various other areas of the heart may be kept without contact with the prosthesis, or the contact may be minimal or such areas of the heart even repeatedly with or without contact with the prosthesis. Thus, in some embodiments, the disclosure may allow for the respective functional areas of the heart to exhibit without interference its functions. Examples may include the coronary arteries and the bundle of His.


The prosthesis as disclosed herein in one aspect may be designed wherein in the non-expanded state the locator means and the stent component extend along a tube perimeter and in the expanded state the locator means extend at least partially outside an expanded tube perimeter.


In a prosthesis as disclosed herein which exhibits locator means in one aspect may be characterized in that in the expanded state the locator means is positioned in proximal direction at least partially over the remaining stent portion (e.g., foreshortening).


The foreshortening may allow for a design—possibly in combination with one or more other dimensions of the prosthesis—which finally allows for a precise and correct positioning of the prosthesis at the target site and may reduce—possibly together with one or more other design features of the prosthesis as disclosed herein—the need for pacemaker implantation.


In an exemplary embodiment the foreshortening of the locator means in the expanded state compared to the non-expanded state is 1, 2, 3, 4, or 5 mm. The foreshortening can be adapted in particular prosthesis seizes, e.g. 23, 25 or 27 French, as may be useful in connection with the other prosthesis design features and seizes and dimensions. In such a manner the positive effect of reduced pacemaker need may be optimized as will be appreciated by the skilled person.


The locator means may be made as a locator arch and may be attached to or forming an integral part of the stent component. In some embodiments, the prosthesis may contain three locator means, each one being positioned in one section of the prosthesis. It may as well be designed in other geometrical forms.


The locator arch may be attached or forming an integral part with each of its ends with one fastening arch of the prosthesis. When the prosthesis expands from is non-expanded to its expanded stage at least two fastening arches, e.g., six fastening arches, two in each of the three prosthesis sections and three locator means respectively, may separate from each other and the locator arch may move with its tip in direction to the proximal end of the prosthesis. In this manner the positioning of the prosthesis and the dimensions of cusp positioning of the locator means, which may be one, two or three, and the proximal end within the target site (i.e. the endogenous heart valve) may be defined as well as the distances between the locator means ends as well as the proximal end of the prosthesis.


In one embodiment the fastening arch comprises fastening means which may serve for adjusting the valve component on the stent component. Other components like covers inside and/or outside the stent component made from biological or synthetic materials may also form part of the prosthesis as desired. Such covers may serve as sealing means.


In one embodiment the prosthesis as described herein is designed in a manner to substantially not cover the coronary arteries in the expanded state when placed at the target site. Thus the stent and covering components may be designed so that the respective parts are not at all covered, or exhibit one or more indentations provide for no or less or repeatedly no contact in line with the repeating heart beat of the individual. In such a design advantageously the respective functional areas of the heart may perform their functions without that the implanted prosthesis interferes therewith.


In one embodiment the prosthesis as disclosed herein is exhibiting or can be structured in three sections and wherein one section corresponds to the right coronary sinus (RCS), a second section corresponds to the left coronary sinus (LCS) and a third section corresponds to the non-coronary coronary sinus (NCS). The prosthesis as disclosed herein can further exhibit in one embodiment the sections wherein the three sections each comprise a distal and a proximal end, and said proximal ends extend with an equal length so that the sections RCS, LCS, NCS end at the same level, or the proximal ends corresponding to the RCS and LCS sections are shorter than the NCS section.


Accordingly, in the first above alternative the end of the prosthesis in combination with the dimensions as chosen for the locator means lead to a proximal end of the prosthesis that enters the left ventricle beyond the annular ring with less than 10 mm, such as less than 5 mm. The design of the disclosed prosthesis may provide that the heart functions are not or only minimally interfered with. In the second above alternative the prosthesis may exhibit a shortened NCS section at the proximal end and thus may avoid contact with the bundle of His.


In a third alternative the prosthesis as disclosed herein may be characterized in that the three proximal sections extend with an equal length so that the sections RCS, LCS, NCS end at the same level within the left ventricle and at the same time the NCS proximal section comprises an indentation. The indentation may provide also a design feature that avoids interference of the prosthesis with the endogenous heart functions such as inter alia a regulated and repeated heart beat.


Thus all three alternative designs of the prosthesis as disclosed herein may provide for a heart valve replacement therapy with less interference of the implanted prosthesis with the endogenous heart functions and may provide for inter alia a reduced need of pacemaker implantation.


The prosthesis as disclosed herein may achieve positive and advantageous pacemaker rates, e.g., depending on the particular design features. The prosthesis as disclosed herein after implantation in an individual may thus achieve positive pacemaker rates and may induce the need for pacemaker implantation of less than 15%, such as less than 10%, e.g., less than 8%. that the present disclosure includes a replacement heart valve prosthesis design wherein the proximal end of the proximal three sections has a shorter section NCS (17) (thus having a non-symmetrical overall design) and a non-symmetrical sealing means, which performs a good valve function and at the same time exhibits a sufficiently good sealing function and provides for a reduced need of pacemaker implantation.


In such an embodiment the sealing means may have a wave-like or U- or inverted V-shape and the sealing function may be achieved in the sections 16 and 18 at a more proximal and in the section 17 at a more distal area of the prosthesis. The areas which connect or lay between the actual sections 16, 17, 18 may be sufficient to provide for a sufficient and good sealing function.


The sealing means and sealing function may be equally designed and achieved as described above in the exemplary embodiment with an indentation area as described herein.


In another embodiment the prosthesis as disclosed may comprise a means for visualizing the positioning of the prosthesis at a target site of an individual wherein the means consists of or comprises a deformable indicator means.


The indicator means may be adapted to the other components of the prosthesis and can be adapted in any manner so that it can exhibit its function. In a embodiment the indicator means may comprise or consist of one or more wires or antennas. For visualization the indicator means may comprise radiopaque material.


In an alternative embodiment the prosthesis as described herein may comprise a counterpart to the indicator means suitable to contact each other. This counterpart may be designed in any suitable manner, and wherein the counterpart may be a locator means, a feeler, a cusp positioner, a hook and/or a rim, such as wherein the locator means, feeler, cusp positioner, hook and/or rim has U, V, Y, M or W shape.


The prosthesis as described herein may be characterized in that the indicator means and the locator means, feeler, cusp positioner, hook and/or rim may comprise the same or different materials. In one embodiment also the counterpart may comprise radiopaque material.


In at least one embodiment, a feeler means or the like may form part of the prosthesis. In one embodiment the indicator means and the feeler means or the like for a visualization means both may produce a visualizable signal. Accordingly, the operator may recognize the two signals produced by the indicator and feeler means, e.g., when the prosthesis has not reached the appropriate position. When the feeler(s), e.g., three feelers, have reached the correct position within the valve cusps the contact of the indicator means with the cusp bottom may effect a change of the geometry of the indicator means and the indicator means and the feelers may be in close proximity or in contact with each other so that the two visual signals may unify to produce at least partially at the indicator and feeler means one single signal. When the prosthesis thus has reached the correct position in the context of an aortic heart valve replacement procedure the feeler(s), e.g., the three feelers, and indicator means may be located in the cusps of the endogenous valve cusps and may produce three instead of six visual signals readily visible by the operator by way of suitable visualization means. Accordingly, the prosthesis may be positioned and its positioning can be controlled easily and efficiently.


The prosthesis as described may comprise and be made of various materials suitable for heart valve prostheses, which may consist of or comprise nitinol, soft fabric, textile, mammalian tissue, or one or more polymers, such as silicone, polyurethane, or ePTFE.


The prosthesis as described herein may be capable of replacement of any endogenous heart valve. In particular it may be useful for the replacement therapy of an aortic, or mitral heart valve.


In another aspect the disclosure relates to a method for visualizing the positioning of a prosthesis as disclosed herein wherein i. the prosthesis is delivered by appropriate means close or relatively close to the target implantation site; ii. the prosthesis is approached to its final target site; iii. the movement of the prosthesis is stopped when the deformable indicator means indicate contact with the tissue of the final target site; and the prosthesis is fully deployed at its final target site.


In yet another aspect the disclosure relates to a method for implantation of a heart valve prosthesis to a target site of an individual using a suitable catheter means and a heart valve prosthesis as described herein.


The prostheses as described herein may exhibit one or a number of advantages.


Known implants result in a pacemaker need of about 15 to 30%. In some embodiments of the present disclosure, the prosthesis is designed to reduce the need for pacemaker implantation after aortic heart valve replacement therapy by increasing the distance from the stent scaffold to the bundle of His. The corresponding need for pacemaker implantation may be less than 15%, such as less than 10% or even less than 8%.


Moreover, in embodiments wherein the design may exhibit a non-symmetric geometry in terms of the stent and the sealing material, the prosthesis may show little or no leakage, which may be unexpected for a non-symmetric design. One advantageous feature may be that in the area of the NC either the proximal section is shortened vis-à-vis the RC and LC section or the proximal part of the NC may be characterized by an indentation in direction towards the inner area of the prosthesis.


Various advantages of prosthesis as disclosed may be at least partly achieved by the design, features, and/or placement of locators, which may provide for a secure and/or precise positioning at the target site, e.g., in an advantageous manner such that they make sure that endogenous functions of the heart are satisfactory, like coronary artery function, bundle of His function, the valve as such with regard to functionality of the replacement valve, and the issue of leakage are met.


In particular the design and functionality of the locators, which may be, e.g., one, two, three or more locators, in the prosthesis and the foreshortening and the designed dimensions of the three sections of the prosthesis in relation to each other, the dimensions of the foreshortening as such and the dimensions of the proximal part of the prosthesis as well as the symmetry may contribute to various advantageous functional characteristics of the prosthesis as disclosed herein.


The attachment or design of the locators in an exemplary embodiment may be chosen to be in the middle area of the stent component. In addition the design of the locator, e.g., as an arch, may provide for a foreshortening that may be advantageous in view of a precise and proper positioning of the prosthesis.


The indicator means may be positioned or connected with the medical device in a manner so that it may make contact with the appropriate body compartment(s) or body part(s) during the implantation procedure so as to indicate correct and precise positioning of the medical device. It may comprise or consist of one or more wires or antennas.


In one embodiment the disclosure includes an indicator means and a so called counterpart means wherein these two parts are designed to be capable to contact each other.


In some embodiments, the prosthesis as described herein inter alia may be useful and may facilitate the correct positioning of a prosthesis at the target site and may avoid misplacement, e.g., based solely upon tactile feedback.


In one embodiment the prosthesis as disclosed comprises i. a shortened proximal section 17 or ii. it exhibits an indentation or open area in the proximal area of section 17, iii. the distal sections 16, 18 have either an open area at the areas where they are contacting the coronary arteries or the stent in this area does not contain a covering, or the distal section has a length in these sections that does not extend in its final positioning at the target site towards the coronary arteries, iv. a non-symmetrical sealing means in design version i.), v. three locator means designed as arches connected at their ends with fastening arches, and vi. a foreshortening of 5 mm.


Such an embodiment may be advantageous in terms of less interference with the endogenous heart function, may provide sufficient and/or good sealing features, and may be correctly positioned by way of minimally invasive catheter delivery.


LIST OF REFERENCE NUMBERS




  • 1 Bundle of His


  • 2 Septum


  • 3 Mitral Valve


  • 4 leaflet (RC) of aortic valve


  • 5 leaflet (LC) of aortic valve


  • 6 leaflet (NC) of aortic valve


  • 7 annulus


  • 8 aortic arch


  • 9 RC (right coronary) sinus


  • 10 NC (nucleus coronary) sinus


  • 11 LC (left coronary) sinus


  • 12 left coronary artery


  • 13 right coronary artery


  • 14 aortic heart valve prosthesis


  • 15 sealing means


  • 16 first section of prosthesis


  • 17 second section of prosthesis


  • 18 third section of prosthesis


  • 19 area without stent and sealing means or designed as indentation


  • 20 locator means


  • 21 proximal section (preferred as stent ring)


  • 21′ proximal end


  • 22 distal stent section


  • 23 fastening arch


  • 24 foreshortening distance/length


  • 25 indicator means


  • 26 positioning direction of prosthesis


  • 27 aortic cusp


  • 28 locator cover


  • 29 radio-opaque marker


  • 30 sinus of vasalva


  • 31 calcified aortic leaflets


  • 32 left ventricle

  • D distance of proximal end of locator means and proximal end of prosthesis


Claims
  • 1. A heart valve prosthesis, comprising: a stent component comprising a scaffold including cells proximate a proximal end of the stent component,a valve component coupled to an inner surface of the stent component,a seal coupled to an outer surface of the stent component,at least one locator pointing in a proximal direction for positioning the prosthesis at a target site of an endogenous heart valve, andan indicator extending in the proximal direction and configured to move relative to the locator upon contact with the target site,wherein the prosthesis is expandable from a non-expanded state to an expanded state, a shortest distance from a proximal end of the locator to a proximal end of the prosthesis being less in the expanded state than a shortest distance from the proximal end of the locator to the proximal end of the prosthesis in the non-expanded state,wherein, in the non-expanded state, the proximal end of the locator radially overlaps at least a portion of the cells, andwherein, in the expanded state, the shortest distance between the proximal end of the locator and the proximal end of the prosthesis is greater than zero and less than 10 mm.
  • 2. The prosthesis according to claim 1, wherein the locator comprises a probe.
  • 3. The prosthesis according to claim 1, wherein the distance between the proximal end of the locator and the proximal end of the prosthesis varies in a circumferential direction of the prosthesis.
  • 4. The prosthesis according to claim 1, wherein in the non-expanded state, the locator and the stent component extend along a tube perimeter, and in the expanded state, the locator extends at least partially outside an expanded tube perimeter.
  • 5. The prosthesis according to claim 1, wherein the locator comprises an arch attached to, or forming an integral part of, the stent component, and wherein the shortest distance between the proximal end of the locator and the proximal end of the stent component in the expanded state as compared to the non-expanded state differs by 1 mm, 2 mm, 3 mm, 4 mm, or 5 mm.
  • 6. The prosthesis according to claim 5, wherein the arch of the locator has two ends, and wherein each end is attached to, or forms an integral part of, a fastening arch of the stent component.
  • 7. The prosthesis according to claim 1, wherein the prosthesis is configured to not cover one or more coronary arteries when placed at the target site when in the expanded state.
  • 8. The prosthesis according to claim 1, wherein the stent component comprises three sections including a first section that corresponds to a right coronary sinus (RCS), a second section that corresponds to a left coronary sinus (LCS), and a third section that corresponds to a non-coronary coronary sinus (NCS), wherein the three sections each comprise a distal end and a proximal end; and wherein: the proximal end of each section extends with an equal length so that the sections corresponding to the RCS, LCS, and NCS end at the same level, orthe proximal ends corresponding to the RCS and LCS sections are shorter than the proximal end of the NCS section.
  • 9. The prosthesis according to claim 8, wherein the proximal end of each section extends with an equal length so that the sections corresponding to the RCS, LCS, and NCS end at the same level, and wherein the NCS proximal section comprises an indentation.
  • 10. The prosthesis according to claim 1, wherein the indicator comprises one or more wires or antennas.
  • 11. The prosthesis according to claim 1, wherein the indicator comprises a radiopaque material.
  • 12. The prosthesis according to claim 1, wherein the stent component comprises a counterpart to the indicator.
  • 13. The prosthesis according to claim 12, wherein the counterpart comprises the at least one locator, a feeler, a hook, or a rim; and wherein the counterpart has a U, V, Y, M or W shape.
  • 14. The prosthesis according to claim 13, wherein the indicator and the counterpart comprise the same materials.
  • 15. The prosthesis according to claim 12, wherein the counterpart comprises a radiopaque material.
  • 16. The prosthesis according to claim 1, wherein the stent component comprises nitinol, and the seal comprises soft fabric, textile, mammalian tissue, or a polymer.
  • 17. The prosthesis according to claim 1, wherein the prosthesis is an aortic heart valve including three leaflets, or a mitral heart valve including two leaflets.
  • 18. A heart valve prosthesis, comprising: a stent component comprising a scaffold including cells proximate a proximal end of the stent component,a valve component,a seal configured to prevent reflux of blood between the prosthesis and an endogenous heart valve when the valve component is in a closed position,at least one locator pointing in a proximal direction for positioning the prosthesis at a target site of the endogenous heart valve, the locator comprising an arch attached to, or forming an integral part of, the stent component, andan indicator extending in the proximal direction and configured to move relative to the locator upon contact with the target site,wherein the prosthesis is expandable from a non-expanded state to an expanded state, a shortest distance from a proximal end of the locator to a proximal end of the prosthesis being less in the expanded state than a shortest distance from the proximal end of the locator to the proximal end of the prosthesis in the non-expanded state,wherein, in the non-expanded state, the proximal end of the locator radially overlaps at least a portion of the cells, andwherein, in the expanded state, the proximal end of the locator does not radially overlap the cells and the shortest distance between the proximal end of the locator and the proximal end of the prosthesis is 1 mm to 5 mm.
Parent Case Info

This application is a national stage filing under 35 U.S.C. § 371 of International Application No. PCT/EP2016/058532 filed on Apr. 18, 2016, which published in the English language and claims the benefit of priority to U.S. Provisional Application No. 62/155,849 filed on May 1, 2015.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP2016/058532 4/18/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2016/177562 11/10/2016 WO A
US Referenced Citations (344)
Number Name Date Kind
3755823 Hancock Sep 1973 A
4485816 Krumme Dec 1984 A
4502488 Degironimo et al. Mar 1985 A
4922905 Strecker May 1990 A
4994077 Dobben Feb 1991 A
5002566 Carpentier et al. Mar 1991 A
5026377 Burton et al. Jun 1991 A
5035706 Giantureo et al. Jul 1991 A
5053008 Bajaj Oct 1991 A
5061277 Carpentier et al. Oct 1991 A
5094661 Levy et al. Mar 1992 A
5104407 Lam et al. Apr 1992 A
5163953 Vince Nov 1992 A
5197979 Quintero et al. Mar 1993 A
5211183 Wilson May 1993 A
5234447 Kaster et al. Aug 1993 A
5279612 Eberhardt Jan 1994 A
5332402 Teitelbaum Jul 1994 A
5336258 Quintero et al. Aug 1994 A
5350399 Erlebacher et al. Sep 1994 A
5352240 Ross Oct 1994 A
5368608 Levy et al. Nov 1994 A
5411552 Andersen et al. May 1995 A
5429144 Wilk Jul 1995 A
5456713 Chuter Oct 1995 A
5509930 Love Apr 1996 A
5540712 Kleshinski et al. Jul 1996 A
5549666 Hata et al. Aug 1996 A
5595571 Jaffe et al. Jan 1997 A
5609626 Quijano et al. Mar 1997 A
5613982 Goldstein Mar 1997 A
5632778 Goldstein May 1997 A
5643278 Wijay Jul 1997 A
5655548 Nelson et al. Aug 1997 A
5674298 Levy et al. Oct 1997 A
5679112 Levy et al. Oct 1997 A
5683451 Lenker et al. Nov 1997 A
5697972 Kim et al. Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5733325 Robinson et al. Mar 1998 A
5746775 Levy et al. May 1998 A
5755777 Chuter May 1998 A
5817113 Gifford, III et al. Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824080 Lamuraglia Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5841382 Walden et al. Nov 1998 A
5843181 Jaffe et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5876434 Flomenblit et al. Mar 1999 A
5880242 Hu et al. Mar 1999 A
5885238 Stevens et al. Mar 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5899936 Goldstein May 1999 A
5928281 Huynh et al. Jul 1999 A
5935163 Gabbay Aug 1999 A
5104407 Lam et al. Sep 1999 B1
5957949 Leonhardt et al. Sep 1999 A
5987344 West Nov 1999 A
6001126 Nguyen-Thien-Nhon Dec 1999 A
5061277 Carpentier et al. Feb 2000 B1
6077297 Robinson et al. Jun 2000 A
6093530 McIlroy et al. Jul 2000 A
6102944 Huynh et al. Aug 2000 A
6117169 Moe Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6177514 Pathak et al. Jan 2001 B1
6183481 Lee et al. Feb 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6214055 Simionescu et al. Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6241738 Dereume Jun 2001 B1
6254564 Wilk et al. Jul 2001 B1
6254636 Peredo Jul 2001 B1
6273876 Klima et al. Aug 2001 B1
6283995 Moe et al. Sep 2001 B1
6287338 Sarnowski et al. Sep 2001 B1
6338740 Carpentier Jan 2002 B1
6342070 Nguyen-Thien-Nhon Jan 2002 B1
6344044 Fulkerson et al. Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352547 Brown et al. Mar 2002 B1
6379740 Rinaldi et al. Apr 2002 B1
6391538 Vyavahare et al. May 2002 B1
6425916 Garrison et al. Jul 2002 B1
6454799 Schreck Sep 2002 B1
6471723 Ashworth et al. Oct 2002 B1
6478819 Moe Nov 2002 B2
6508833 Pavcnik et al. Jan 2003 B2
6509145 Torrianni Jan 2003 B1
6521179 Girardot et al. Feb 2003 B1
6540782 Snyders Apr 2003 B1
6558417 Peredo May 2003 B2
6558418 Carpentier et al. May 2003 B2
6572642 Rinaldi et al. Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6613086 Moe et al. Sep 2003 B1
6682559 Myers et al. Jan 2004 B2
6730118 Spenser et al. May 2004 B2
6736845 Marquez et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6776791 Stallings et al. Aug 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6808529 Fulkerson Oct 2004 B2
6821211 Otten et al. Nov 2004 B2
6821297 Snyders Nov 2004 B2
6824970 Vyavahare et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6861211 Levy et al. Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6881199 Wilk et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6945997 Huynh et al. Sep 2005 B2
6974474 Pavcnik et al. Dec 2005 B2
7014655 Barbarash et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037333 Myers et al. May 2006 B2
7050276 Nishiyama May 2006 B2
7078163 Torrianni Jul 2006 B2
7081132 Cook et al. Jul 2006 B2
7101396 Artof et al. Sep 2006 B2
7137184 Schreck et al. Nov 2006 B2
7141064 Scott et al. Nov 2006 B2
7163556 Xie et al. Jan 2007 B2
7189259 Simionescu et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7238200 Lee et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7318278 Zhang et al. Jan 2008 B2
7318998 Goldstein et al. Jan 2008 B2
7322932 Xie et al. Jan 2008 B2
7329278 Seguin et al. Feb 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7399315 Iobbi Jul 2008 B2
7452371 Pavcnik et al. Nov 2008 B2
7473275 Marquez Jan 2009 B2
7896915 Guyenot et al. Mar 2011 B2
7914575 Guyenot et al. Mar 2011 B2
8052750 Tuval Nov 2011 B2
10321987 Wang Jun 2019 B2
10543084 Guyenot Jan 2020 B2
20010011187 Pavcnik et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20020010489 Gayzel et al. Jan 2002 A1
20020032481 Gabbay Mar 2002 A1
20020035390 Schaldach et al. Mar 2002 A1
20020045846 Kaplon et al. Apr 2002 A1
20020045929 Diaz Apr 2002 A1
20020055774 Liddicoat May 2002 A1
20020055775 Carpentier et al. May 2002 A1
20020120322 Thompson et al. Aug 2002 A1
20020120323 Thompson et al. Aug 2002 A1
20020123790 White et al. Sep 2002 A1
20020133226 Marquez et al. Sep 2002 A1
20020143387 Soetikno et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020161426 Iancea Oct 2002 A1
20020177840 Farnholtz Nov 2002 A1
20020198594 Schreck Dec 2002 A1
20030027332 Lafrance et al. Feb 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030036795 Andersen et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030065386 Weadock Apr 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030139796 Sequin et al. Jul 2003 A1
20030139803 Sequin et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030195620 Huynh et al. Oct 2003 A1
20030236570 Cook et al. Dec 2003 A1
20040006380 Buck et al. Jan 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040073289 Hartley et al. Apr 2004 A1
20040078950 Schreck et al. Apr 2004 A1
20040093060 Seguin et al. May 2004 A1
20040093063 Wright et al. May 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040148018 Carpentier et al. Jul 2004 A1
20040153145 Simionescu et al. Aug 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040193244 Hartley et al. Sep 2004 A1
20040206363 McCarthy et al. Oct 2004 A1
20040210301 Obermiller Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210306 Quijano et al. Oct 2004 A1
20040243143 Corcoran et al. Dec 2004 A1
20040249343 Cioanta Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050009000 Wilhelm et al. Jan 2005 A1
20050033220 Wilk et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050060018 Dittman Mar 2005 A1
20050075725 Rowe Apr 2005 A1
20050075776 Cho Apr 2005 A1
20050096726 Sequin et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050098547 Cali et al. May 2005 A1
20050113902 Geiser et al. May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050119728 Sarac Jun 2005 A1
20050119736 Zilla et al. Jun 2005 A1
20050125075 Meade et al. Jun 2005 A1
20050137499 Sheets et al. Jun 2005 A1
20050137609 Guiraudon Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050143804 Haverkost Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050149166 Schaeffer et al. Jul 2005 A1
20050150775 Zhang et al. Jul 2005 A1
20050171597 Boatman et al. Aug 2005 A1
20050171598 Schaeffer Aug 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050222668 Schaeffer et al. Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050267560 Bates Dec 2005 A1
20060009842 Huynh et al. Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060047343 Oviatt et al. Mar 2006 A1
20060058864 Schaeffer et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060111770 Pavcnik et al. May 2006 A1
20060136034 Modesitt et al. Jun 2006 A1
20060142846 Pavcnik et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060155366 LaDuca et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060193885 Neethling et al. Aug 2006 A1
20060210597 Hiles Sep 2006 A1
20060224183 Freudenthal Oct 2006 A1
20060229561 Huszar Oct 2006 A1
20060229718 Marquez Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060246584 Covelli Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20060290027 O'Connor et al. Dec 2006 A1
20060293745 Carpentier et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070005131 Taylor Jan 2007 A1
20070005132 Simionescu et al. Jan 2007 A1
20070020248 Everaerts et al. Jan 2007 A1
20070021826 Case et al. Jan 2007 A1
20070027535 Purdy, Jr. et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070038295 Case et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070050014 Johnson Mar 2007 A1
20070056346 Spenser et al. Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070093887 Case et al. Apr 2007 A1
20070100435 Case et al. May 2007 A1
20070100440 Figulla et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070123700 Ueda et al. May 2007 A1
20070123979 Perier et al. May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070162103 Case et al. Jul 2007 A1
20070173932 Cali et al. Jul 2007 A1
20070179592 Schaeffer Aug 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070239271 Nguyen Oct 2007 A1
20070244551 Stobie Oct 2007 A1
20070260327 Case et al. Nov 2007 A1
20070288087 Fearnot et al. Dec 2007 A1
20080004688 Spenser et al. Jan 2008 A1
20080021546 Patz et al. Jan 2008 A1
20080022504 Melsheimer Jan 2008 A1
20080033534 Cook et al. Feb 2008 A1
20080039934 Styrc Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080077236 Letac et al. Mar 2008 A1
20080086205 Gordy et al. Apr 2008 A1
20080097586 Pavcnik et al. Apr 2008 A1
20080102439 Tian et al. May 2008 A1
20080127707 Kokish et al. Jun 2008 A1
20080133003 Seguin et al. Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147182 Righini et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080200977 Paul et al. Aug 2008 A1
20080215143 Seguin Sep 2008 A1
20080221703 Que et al. Sep 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080262602 Wilk et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20080275549 Rowe Nov 2008 A1
20090093876 Nitzan et al. Apr 2009 A1
20090192591 Ryan Jul 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20100082094 Quadri Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100160725 Kiser et al. Jun 2010 A1
20100249915 Zhang Sep 2010 A1
20100249916 Zhang Sep 2010 A1
20100249917 Zhang Sep 2010 A1
20100249918 Zhang Sep 2010 A1
20100262231 Tuval et al. Oct 2010 A1
20110093007 Abbott et al. Apr 2011 A1
20110208290 Straubinger et al. Aug 2011 A1
20110208297 Tuval et al. Aug 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120078360 Rafiee Mar 2012 A1
20140236287 Clague Aug 2014 A1
20160051362 Cooper Feb 2016 A1
20200054449 Min Feb 2020 A1
Foreign Referenced Citations (249)
Number Date Country
2006308187 May 2007 AU
2006310681 May 2007 AU
2436258 Jan 2005 CA
2595233 Jul 2006 CA
2627555 May 2007 CA
1745727 Mar 2006 CN
2762776 Mar 2006 CN
1897892 Jan 2007 CN
2933337 Aug 2007 CN
101431963 May 2009 CN
101605509 Dec 2009 CN
101623217 Jan 2010 CN
101700199 May 2010 CN
101720211 Jun 2010 CN
102271626 Dec 2011 CN
4316971 Nov 1994 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19633901 Feb 1998 DE
20003874 Jun 2000 DE
19857887 Jul 2000 DE
10010073 Sep 2001 DE
10010074 Oct 2001 DE
10034105 Apr 2002 DE
101 21 210 Nov 2002 DE
19546692 Nov 2002 DE
10301026 Feb 2004 DE
10302447 Jul 2004 DE
10335948 Feb 2005 DE
10010074 Apr 2005 DE
19857887 May 2005 DE
10010073 Dec 2005 DE
10 2005 051 849 May 2007 DE
10 2005 052628 May 2007 DE
20 2007 005 491 Jul 2007 DE
20221871 Oct 2008 DE
0084395 Jul 1983 EP
0402036 Dec 1990 EP
0402176 Dec 1990 EP
0411118 Feb 1991 EP
0458877 Apr 1991 EP
0515324 Nov 1992 EP
0547135 Jun 1993 EP
0657147 Jun 1995 EP
0 592 410 Oct 1995 EP
0 592 410 Nov 1995 EP
0729364 Sep 1996 EP
0756498 May 1997 EP
0778775 Jun 1997 EP
0826346 Mar 1998 EP
0896813 Feb 1999 EP
0903122 Mar 1999 EP
0928615 Jul 1999 EP
0938877 Sep 1999 EP
0986348 Mar 2000 EP
1 251 805 Oct 2000 EP
1041942 Oct 2000 EP
1041943 Oct 2000 EP
1117446 Jul 2001 EP
1 233 731 May 2002 EP
1206179 May 2002 EP
1251804 Oct 2002 EP
0 971 649 Dec 2002 EP
1281357 Feb 2003 EP
1281375 Feb 2003 EP
1 017 868 Sep 2003 EP
1354569 Oct 2003 EP
1452153 Sep 2004 EP
0987998 Oct 2004 EP
1 087 727 Nov 2004 EP
1499366 Jan 2005 EP
1518518 Mar 2005 EP
1 253 875 Apr 2005 EP
1 251 803 Jun 2005 EP
1469797 Nov 2005 EP
1 690 515 Aug 2006 EP
1 255 510 Mar 2007 EP
1112042 Nov 2007 EP
1878407 Jan 2008 EP
1886649 Feb 2008 EP
1 900 343 Mar 2008 EP
1259195 Oct 2008 EP
1980220 Oct 2008 EP
1994913 Nov 2008 EP
2 000 115 Dec 2008 EP
2474287 Jul 2012 EP
3028668 Jun 2016 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2828263 Feb 2003 FR
2433700 Jul 2007 GB
2440809 Feb 2008 GB
52-86296 Jul 1977 JP
62-227352 Oct 1987 JP
1049571 Feb 1989 JP
7-504091 May 1995 JP
2001-526574 Dec 2001 JP
2004-504111 Feb 2002 JP
2002-525168 Aug 2002 JP
2002-525169 Aug 2002 JP
2002-536115 Oct 2002 JP
2003-515386 May 2003 JP
2003-523262 Aug 2003 JP
2003-524504 Aug 2003 JP
2004-283461 Oct 2004 JP
2005-118585 May 2005 JP
2007-521125 Aug 2007 JP
2007-296375 Nov 2007 JP
2008-539985 Nov 2008 JP
2009-131397 Jun 2009 JP
2009-534157 Sep 2009 JP
2010-526609 Aug 2010 JP
WO 9212690 Aug 1982 WO
WO-9009102 Aug 1990 WO
WO 9117720 Nov 1991 WO
WO 9511055 Apr 1995 WO
WO-9524873 Sep 1995 WO
WO-9528183 Oct 1995 WO
WO 9529713 Nov 1995 WO
WO-9613227 May 1996 WO
WO 9727893 Aug 1997 WO
WO 9727898 Aug 1997 WO
WO-9732615 Sep 1997 WO
WO 9808456 Mar 1998 WO
WO 9811846 Mar 1998 WO
WO 9819633 May 1998 WO
WO 9843556 Oct 1998 WO
WO-9846165 Oct 1998 WO
WO 9853761 Dec 1998 WO
WO 9936001 Jul 1999 WO
WO-9937337 Jul 1999 WO
WO 9942058 Aug 1999 WO
WO 9953987 Oct 1999 WO
WO-9966863 Dec 1999 WO
WO 0002503 Jan 2000 WO
WO 0015148 Mar 2000 WO
WO 0018330 Apr 2000 WO
WO 0018333 Apr 2000 WO
WO-0018445 Apr 2000 WO
WO 0021464 Apr 2000 WO
WO 200025702 May 2000 WO
WO 0047139 Aug 2000 WO
WO-0053125 Sep 2000 WO
WO-0062714 Oct 2000 WO
WO 0069367 Nov 2000 WO
WO 0078226 Dec 2000 WO
WO-0110209 Feb 2001 WO
WO 200135870 May 2001 WO
WO-0141679 Jun 2001 WO
WO 2001039700 Jun 2001 WO
WO 0149213 Jul 2001 WO
WO-0151104 Jul 2001 WO
WO 0154625 Aug 2001 WO
WO-0158503 Aug 2001 WO
WO 0162189 Aug 2001 WO
WO 0164137 Sep 2001 WO
WO 0222054 Mar 2002 WO
WO 200236048 May 2002 WO
WO-02058745 Aug 2002 WO
WO-02100301 Dec 2002 WO
WO-02102286 Dec 2002 WO
WO 03003949 Jan 2003 WO
WO-03007795 Jan 2003 WO
WO 2003003949 Jan 2003 WO
WO-03009785 Feb 2003 WO
WO 03013239 Feb 2003 WO
WO 2003011195 Feb 2003 WO
WO 03028592 Apr 2003 WO
WO 03047468 Jun 2003 WO
WO 03051231 Jun 2003 WO
WO-03079928 Oct 2003 WO
WO 03079933 Oct 2003 WO
WO 03092554 Nov 2003 WO
WO 2003096935 Nov 2003 WO
WO 2004004597 Jan 2004 WO
WO 2004016200 Feb 2004 WO
WO 2004016201 Feb 2004 WO
WO 2004019825 Mar 2004 WO
WO-2004026117 Apr 2004 WO
WO 2004026173 Apr 2004 WO
WO 2004028399 Apr 2004 WO
WO 2004030515 Apr 2004 WO
WO 2004043301 May 2004 WO
WO 2004064671 Aug 2004 WO
WO 2004082527 Sep 2004 WO
WO 2004082528 Sep 2004 WO
WO 2004096100 Nov 2004 WO
WO 2005011534 Feb 2005 WO
WO 2005021063 Mar 2005 WO
WO 2005034812 Apr 2005 WO
WO 2005062980 Jul 2005 WO
WO 2005063980 Jul 2005 WO
WO 2005070343 Aug 2005 WO
WO-2005072654 Aug 2005 WO
WO 2005102015 Nov 2005 WO
WO 2006066327 Jun 2006 WO
WO-2006066327 Jun 2006 WO
WO 2006070372 Jul 2006 WO
WO 2006076890 Jul 2006 WO
WO 2006089517 Aug 2006 WO
WO-2006102063 Sep 2006 WO
WO 2006108090 Oct 2006 WO
WO 2006124649 Nov 2006 WO
WO-2006124649 Nov 2006 WO
WO 2006127756 Nov 2006 WO
WO 2006127765 Nov 2006 WO
WO 2006129441 Dec 2006 WO
WO-2006132948 Dec 2006 WO
WO 2006133959 Dec 2006 WO
WO 2007047488 Apr 2007 WO
WO 2007047945 Apr 2007 WO
WO 2007048529 May 2007 WO
WO-2007048529 May 2007 WO
WO 2007051620 May 2007 WO
WO-2007071436 Jun 2007 WO
WO 2007098232 Aug 2007 WO
WO 2007120543 Oct 2007 WO
WO 2007123956 Nov 2007 WO
WO-2008028569 Mar 2008 WO
WO 2008035337 Mar 2008 WO
WO 2008045949 Apr 2008 WO
WO 2008051554 May 2008 WO
WO 2008070797 Jun 2008 WO
WO 2008079962 Jul 2008 WO
WO 2008098191 Aug 2008 WO
WO 2008101083 Aug 2008 WO
WO 2008125153 Oct 2008 WO
WO 2008138584 Nov 2008 WO
WO 2008150529 Dec 2008 WO
WO 2009053497 Apr 2009 WO
WO 2009094188 Jul 2009 WO
WO 2009094501 Jul 2009 WO
WO 2009106545 Sep 2009 WO
WO 2009149462 Dec 2009 WO
WO 2011008812 Jan 2011 WO
WO 2011060386 May 2011 WO
WO 2011104269 Sep 2011 WO
WO 2011120050 Sep 2011 WO
WO 2011144351 Nov 2011 WO
WO 2011147849 Dec 2011 WO
WO 2012023980 Feb 2012 WO
WO 2012036742 Mar 2012 WO
WO 2012038550 Mar 2012 WO
WO 2012039748 Mar 2012 WO
WO 2012082952 Jun 2012 WO
WO 2012106491 Aug 2012 WO
WO 2012142189 Oct 2012 WO
WO 2015028209 Mar 2015 WO
WO 2016093877 Jun 2016 WO
Non-Patent Literature Citations (11)
Entry
Aortenklappenbioprothese erfolgreich in der Entwicklung, May 16, 2003 (1 page).
English translation of Aortenklappenbioprothese erfolgreich in der Entwicklung (2 pages), (May 2003).
Ferrari, “Entwicklung eines Verfahrens zum transvaskulären Aortenklappenersatz,” Habilitationsschrift, Medizinische Fakultät der Friedrich-Schiller-Universität Jena, pp. 49-52, dated Sep. 2003.
Ferrari, “Entwicklung eines Verfahrens zum transvaskulären Aortenklappenersatz,” Habilitationsschrift, Medizinische Fakultät der Friedrich-Schiller-Universität Jena, pp. 1-159, dated Sep. 2003.
International Search Report for PCT/EP2016/058532, dated Jul. 11, 2016 (4 pages).
Liang, Ma, et al., “Double-crowned valved stents for off-pump mitral valve replacement,” Eur. J. Cardio-Thoracic Surgery, vol. 28, pp. 194-198 (2005) (5 pages); Aug. 2005.
Huber, Christoph H., et al. “Direct Access Valve Replacement (DAVR)—are we entering a new era in cardiac surgery?” Eur. J. Cardio-Thoracic Surgery, vol. 29, pp. 380-385 (2006) (6 pages); received Mar. 2006.
Klein, Allan L. et al., “Age-related Prevalence of Valvular Regurgitation in Normal Subjects: A Comprehensive Color Flow Examination of 118 Volunteers,” J. Am. Soc. Echocardiography, vol. 3, No. 1, pp. 54-63 (1990) (10 pages), Jan.-Feb. 1990.
Gummert, J.F. et al., “Cardiac Surgery in Germany During 2007: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 56, pp. 328-336 (2008) (9 pages), Sep. 2008.
Gummert, J.F. et al., “Cardiac Surgery in Germany During 2006: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 55, pp. 343-350 (2007) (8 pages), Sep. 2007.
Ferrari, M.W. et al., “Transarterial Aortic Valve Replacement with a Self expanding Stent in Pigs,” Heart, vol. 90, No. 11, pp. 1326-1331 (2004), Nov. 2004.
Related Publications (1)
Number Date Country
20180289471 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
62155849 May 2015 US