The invention generally pertains to percutaneous and intravascular devices for nerve modulation and/or ablation.
Certain treatments require the temporary or permanent interruption or modification of select nerve function. One example treatment is renal nerve ablation which is sometimes used to treat conditions related to congestive heart failure. The kidneys produce a sympathetic response to congestive heart failure, which, among other effects, increases the undesired retention of water and/or sodium. Ablating some of the nerves running to the kidneys may reduce or eliminate this sympathetic function, which may provide a corresponding reduction in the associated undesired symptoms.
Many body tissues such as nerves, including renal nerves, brain tissue, cardiac tissue and the tissue of other body organs are in close proximity to blood vessels or other body cavities and thus can be accessed percutaneously or intravascularly through the walls of the blood vessels. In some instances, it may be desirable to ablate perivascular nerves using a radio frequency (RF) electrode. In other instances, the perivascular nerves may be ablated by other means including application of thermal, ultrasonic, laser, microwave, and other related energy sources to the vessel wall.
In treatments involving perivascular nerves such as renal nerves, treatment methods employing such energy sources have tended to apply the energy as a generally circumferential ring to ensure that the nerves are modulated. However, such a treatment may result in thermal injury to the vessel wall near the electrode and other undesirable side effects such as, but not limited to, blood damage, clotting, weakened vessel wall, and/or protein fouling of the electrode.
It is therefore desirable to provide for alternative systems and methods for tissue treatment such as intravascular nerve modulation treatments that distribute ablation or modulations sites along and around the vessel or other body cavity.
Some embodiments of the invention are directed to a balloon catheter configured for tissue modulation such as nerve modulation and/or ablation. The balloon catheter includes an inflatable balloon at or proximate a distal end of the device. The wall of the balloon is constructed so as to allow electricity such as RF energy through at certain locations and to prevent the transmission of RF energy or electricity at other locations. An electrode extends through the lumen of the balloon to supply the electricity or RF energy. In use, the balloon is inflated with a conductive fluid such as saline and positioned at a desired location for treatment. In some embodiments, the balloon may be in circumferential contact with a wall such as a blood vessel wall at the treatment location. The electrode is activated and the RF energy is transmitted through the conductive fluid and out the balloon through the RF permeable locations to modulate or ablate tissue.
The balloon may be a multilayer balloon with a first layer made from an RF permeable material and a second layer made from an electrically insulative material. The RF permeable material may be, for example, a hydrophilic polyurethane, and the electrically insulative material may be, for example, a (non-hydrophilic) polyurethane. The locations or windows that allow the transmission of RF energy do not include the electrically insulative material. These balloon walls of these RF permeable materials may be formed of a single layer of the RF permeable material and the remainder of the balloon may have two layers, one of the RF permeable material and one of the electrically insulative material.
The balloon catheter may include other elements such a multi-lumen catheter shaft. The multi-lumen catheter shaft may include a guidewire lumen and one or two fluid lumens as well as conductive members to connect the electrode and one or more sensors to a power and control system. For embodiments that include two fluid lumens, one fluid lumen may be used to introduce the conductive fluid into the balloon and the other fluid lumen may be used to evacuate the conductive fluid from the balloon. In this manner, the conductive fluid may be circulated within the balloon. In some embodiments, the fluid intake lumen has a fluid inlet fluidly connected to the balloon lumen at a distal location in the balloon and the fluid outlet lumen has a fluid outlet fluidly connected to the balloon lumen at a more proximal location in the balloon.
The electrode may be any suitable electrode member and may, for example, be a ribbon electrode that is helically wound about the catheter shaft within the balloon lumen and may be made from any suitable material such as platinum.
One illustrative embodiment has a balloon with three, four or more RF permeable windows through the balloon wall. The windows may be circular, oval, diamond-shaped, bowtie-shaped, or another appropriate shape and are spaced out longitudinally and circumferentially. Preferably, the windows are arranged so that the treatment area receives a tissue modulation or ablation treatment provides the desired coverage. For example, in some embodiments, the windows are arranged so that any line drawn longitudinally along the balloon wall passes through at least one window. Such a window arrangement allows for coverage around the circumference of the blood vessel while still permitting the windows to be spaced apart longitudinally. In other embodiments, one or more of the windows are arranged so that a line drawn longitudinally along the balloon wall passes through parts of two windows. In other embodiments, the number and arrangement of windows is such that so that any line drawn longitudinally along the balloon wall passes through at least two windows.
Another illustrative embodiment includes one or more helically shaped windows along the length, or along a portion of the length of the balloon. Another illustrative embodiment includes one or more windows that extend circumferentially around the balloon.
Another illustrative embodiment includes a helically shaped balloon where the balloon lumen is helically shaped and wraps around the catheter shaft. In this embodiment, one or more windows may be positioned on the outer diameter of the balloon catheter and are arranged so that any line drawn longitudinally (i.e. parallel to the catheter shaft) along the outer diameter of the balloon wall passes through at least one window. In one illustrative embodiment, a helically shaped window extends along the outer diameter of the helically shaped balloon.
In another illustrative embodiment, the RF permeable portions of the balloon are more compliant than the electrically insulative portions and pressure provided by the conductive fluid may cause the windows to bulge out. Such variations in the relative compliance of the different portions of the balloon may be effected by material selection, durometer selection, by varying the thickness of the layers or portions of layers or by other suitable method.
In another illustrative embodiment, the windows are molded to extend out from the balloon wall beyond the electrically insulative material.
In one illustrative method of use, a balloon catheter according to an embodiment of the invention is inserted percutaneously and/or intravascularly to a treatment location using a guidewire, a guide catheter or other conventional means. The balloon is inflated with the conductive fluid and the conductive fluid is circulated within the balloon. The electrode is activated and RF energy is transmitted from the electrode and through the conductive fluid and RF permeable windows into the tissue of the desired treatment area. The treatment may be ended after a predetermined time or after a predetermined condition is met. For example, impedance may be measured through the electrode and the treatment may be ended after a predetermined change in the measured impedance.
The above summary of some example embodiments is not intended to describe each disclosed embodiment or every implementation of the invention.
The invention may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The drawings, which are not necessarily to scale, are not intended to limit the scope of the claimed invention. The detailed description and drawings illustrate example embodiments of the claimed invention.
All numbers are herein assumed to be modified by the term “about.” The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include the plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described unless cleared stated to the contrary.
While the devices and methods described herein are discussed relative to renal nerve modulation through a blood vessel wall, it is contemplated that the devices and methods may be used in other applications where nerve modulation and/or ablation are desired. The term modulation refers to ablation and other techniques that may alter the function of affected nerves and other tissue such as brain tissue or cardiac tissue. When multiple ablations are desirable, they may be performed sequentially by a single ablation device.
The control and power element 18 may include monitoring elements to monitor parameters such as power, temperature, voltage, pulse size, impedance and/or shape and other suitable parameters, with sensors mounted along renal nerve modulation device 12, as well as suitable controls for performing the desired procedure. In some embodiments, the power element 18 may control a radio frequency (RF) electrode. The electrode may be configured to operate at a frequency of approximately 460 kHz. It is contemplated that any desired frequency in the RF range may be used, for example, from 450-500 kHz. It is further contemplated that other ablation devices may be used as desired, for example, but not limited to resistance heating, ultrasound, microwave, and laser devices and these devices may require that power be supplied by the power element 18 in a different form.
A cross-sectional view of the shaft 34 of the renal nerve modulation device 12 proximal to the balloon is illustrated in
A cross-sectional view of the shaft 34 distal to fluid outlet 32 is illustrated in
Balloon 22 is shown in cross-section as having a first layer 44 and a second layer 46. A window 28 is formed in balloon 22 by the absence of second layer 46. First layer 44 is preferably made from an RF permeable material. One suitable material is a hydrophilic polyurethane. Other suitable materials include other hydrophilic polymers such as hydrophilic Pebax, hydrophilic nylons, hydrophilic polyesters, or block co-polymers with built-in hydrophilic blocks. Hydrophilic Pebax grades that may be suitable include Pebax MV1074, Pebax MV 1041, Pebax MP 1878, Pebax MV-3000, and Pebax MH-1657. In some embodiments, one ore more of the hydrophilic polymers such as the hydrophilic Pebax grades are used in blends with other polymers used in balloons such as Pebax 6333, Pebax 7033, Pebax 7233, Nylon 12, Vestamid L2101F, Grilamid L20, and Grilamid L25. Suitable hydrophilic polymers may exhibit between 6% to 120% hydrophilicity (or % water absorption), between 20% to 50% hydrophilicity or other suitable range. The second layer 46 is preferably made from an electrically non-conductive polymer such as a non-hydrophilic polyurethane, Pebax, nylon, polyester or block-copolymer. Other suitable materials include any of a range of electrically non-conductive polymers. The materials of the first layer and the second layer may be selected to have good bonding characteristics between the two layers. For example, a balloon 22 may be formed from a first layer 44 made from a hydrophilic Pebax and a second layer 46 made from a regular or non-hydrophilic Pebax. In other embodiments, a suitable tie layer (not illustrated) may be provided between the two layers.
The particular balloon illustrated in
Electrode 24 may be a flat ribbon electrode made from platinum, gold, stainless steel, cobalt alloys, or other non-oxidizing materials. In some instances, titanium, tantalum, or tungsten may be used. Electrode 24 may extend along substantially the whole length of the balloon 22 or may extend only as far as the distal edge of the most distal window 28. The electrode 24 may have a generally helical shape and may be wrapped around shaft 34. In some cases, electrode 24 may be bonded to shaft 34. The electrode 24 and windows 28 may be arranged so that the electrode extends directly under the windows 28. In some embodiments, electrode 24 may be a wire or may be a tubular member disposed around shaft 34. In some embodiments, a plurality of electrodes 24 may be used and each of the plurality may be fixed to the shaft 34 under windows 28 and may share a common connected to conductive element 16. In other embodiments that include more than one electrode, each electrode may be separately controllable. In such embodiments, the balloon may be partitioned into more than one chamber and each chamber may include one or more electrodes. The electrode may be selected to provide a particular level of flexibility to the balloon to enhance the maneuverability of the system. It can be appreciated that there are many variations contemplated for electrode 24.
Another variation is illustrated in
In a variation of the embodiment of
The windows may overlap circumferentially while being spaced apart axially. If a line drawn from the proximal end of the cylindrical balloon wall to the distal end of the cylindrical balloon wall passes through two balloons, those two balloons are said to circumferentially overlap.
The degree of circumferential overlap may be expressed in terms of the circumferential dimension of a window 28, in terms of the circumference of the balloon or in terms of an absolute dimension. For example, two adjacent windows may exhibit circumferential overlap that is between 0.2 and 0.8 mm, that is between 0.3 and 0.7 mm, that is between 0.4 and 0.6 mm, that is at least 0.3 mm, that is at least 0.4 mm, or that is at least 0.5 mm, or that is between 20% and 30% of the circumferential dimension of one of the two windows, that is between 24% and 26% of the circumferential dimension of one of the two windows, that is between 5% and 15% of a circumferential dimension of the cylindrical balloon wall, that is between 6% and 7% of a circumferential dimension of the cylindrical balloon wall, or that is between 10% and 14% of a circumferential dimension of the cylindrical balloon wall, for example.
The windows 28 preferably have a greater circumferential dimension than axial dimension. For example, the ratio of axial dimension to circumferential dimension for a window may be greater than 1.5:1, greater than 2:1, greater than 3 to 1 or some other suitable number. A window may have an axial dimension of 1 mm, 1.25 mm, 1.5 mm, 1.75 mm, 2 mm, 2.25 mm, 2.5 mm or other suitable dimension and a circumferential dimension of greater than 3 mm such as 3 mm, 3.5 mm, 4 mm, 4.5 mm or 5 mm. The circumferential dimension of a window 28 may be 20%, 25%, 30% or other suitable percentage of the circumferences of the cylindrical portion of the balloon wall.
The windows 28 of
The windows of
Multilayer balloons 22 having windows 28 may be made according to one of the methods described herein or by another suitable method. In one method, the first layer 44 and the second layer 46 of the balloon are manufactured separately, using blow-molding techniques or other suitable methods. Holes are formed in second layer 46 by a laser, hole punch, mechanical or hydraulic cutting element or other suitable technique. The first layer 44 is positioned inside of the second layer 46 and the two layers 44, 46 are fused together using heat, a chemical solvent, an adhesive or other suitable technique. In some cases, the two layers may be positioned inside of a mold and/or pressure may be exerted inside layer 44 to fuse the two layers in an expanded position using heat, solvents or adhesives. In some instances, the two layers are not directly joined but rather are separately attached to shaft 34.
In another method of manufacture, the inner layer 44 is formed over a flexible mandrel. The flexible mandrel has a shape like that of inner layer 44 in the expanded position but is made from a material, such as silicon, that does not adhere well to the material of the inner layer 44. The inner layer 44 may be formed over the flexible mandrel by dip coating, spray coating, blow molding or other suitable techniques. A masking material is applied over the inner layer where the one or more windows 28 are desired. The masking material may be fixed to the inner layer using a removable or temporary adhesive. The flexible mandrel, with the inner layer and masking material thereon is then dip coated again using a non-conductive polymer to form outer layer 46. The outer layer is cut at the edges of the masking material and the masking material along with the outer layer material that is on the masking material is removed, thus forming balloon 22. Finally, the flexible mandrel is removed from within balloon 22.
The helical balloons of the
In use, a renal ablation system such as system 12 is provided. The system may be used with a standard guide catheter such as a 6 French guide catheter. The balloon and in particular the hydrophilic or techophilic material may be hydrated as part of the preparatory steps. Hydration may be effected by soaking the balloon in a saline solution. A one minute, five minute or other suitable soak may be effect. Then the system 12 may be introduced percutaneously as is conventional in the intravascular medical device arts by using a guide catheter and/or a guide wire. For example, a guide wire such as a 0.014″ diameter guidewire may be introduced percutaneously through a femoral artery and navigated to a renal artery using standard radiographic techniques. In some embodiments, a delivery sheath 14 may be introduced over the guide wire and the guide wire may be withdrawn, and the system 12 may be then introduced through the delivery sheath. In other embodiments, the system 12 may be introduced over the guidewire, or the system, including a delivery sheath 14 may be introduced over a guidewire. In embodiments involved a delivery sheath 14, the system 12 may be delivered distally from the distal end of the delivery sheath 14 into position, or the delivery sheath may be withdrawn proximally to expose the system 12. A conductive fluid 26 is introduced into the balloon through fluid inlet lumen 40 and fluid inlet 30. The conductive fluid expands the balloon to the desired size. The balloon expansion may be monitored indirectly by monitoring the volume of conductive fluid introduced into the system or may be monitored through radiographic or other conventional means. Optionally, once the balloon is expanded to the desired size, fluid may be circulated within the balloon by continuing to introduced fluid through the fluid inlet 30 while withdrawing fluid from the balloon through the fluid outlet 32. The rate of circulation of the fluid may be between 2 and 20 ml/min, between 3 and 15 ml/min, between 5 and 10 ml/min or other desired rate of circulation. The balloon may be kept at or near a desired pressure such as a pressure of between 1 and 6 atmospheres, between 1.5 and 4 atmospheres, between 2.5 and 3.5 atmospheres or other desired pressure. The electrode 24 is then activated by supplying energy to the electrode. The energy may be supplied at 400-500 Hz and at between 0.5 and 1 amp. The energy is transmitted through the medium of the conductive fluid and through windows 28 to the blood vessel wall to modulate or ablate the tissue. The second layer 46 of the balloon prevents the energy transmission through the balloon wall except at windows 28 (which lack second layer 46). The progress of the treatment may be monitored by monitoring changes in impedance through the electrode. Other measurements such as pressure and/or temperature measurements may be conducted during the procedure as desired. The circulation of the conductive fluid 26 may mitigate the temperature rise of the tissue of the blood vessel 48 in contact with the windows 28. The electrode 24 is preferably activated for an effective length of time, such as 1 minute or 2 minutes. One the procedure is finished at a particular location, the balloon 22 may be partially or wholly deflated and moved to a different location such as the other renal artery, and the procedure may be repeated at another location as desired using conventional delivery and repositioning techniques.
While various embodiments of the nerve modulation system have been described with respect to the drawings, several embodiments will now be described using claim language. However, the following examples are not intended to be inclusive of every embodiment or combination of features described herein.
1. An intravascular catheter, comprising:
an elongate member having a proximal end and a distal end;
a balloon having an interior surface, and exterior surface, a lumen defined by the interior surface and comprising at least one section that is permeable to RF radiation, the at least one section extending from the interior surface of the balloon to the exterior surface of the balloon; and
an electrode disposed in the balloon.
2. The intravascular catheter of example 1 wherein the balloon further comprises at least one section that is non-electrically conductive.
3. The intravascular catheter of any of examples 1-2 wherein the balloon comprises three or more sections that are permeable to RF radiation.
4. The intravascular catheter of example 3 wherein the three or more sections are spaced circumferentially and longitudinally with respect to each other.
5. The intravascular catheter of any of examples 3-4 wherein the balloon comprises four sections that are permeable to RF radiation.
6. The intravascular catheter of example 1 wherein the at least one section is a helically shaped section.
7. The intravascular catheter of example 1 wherein the at least one section is a cylindrical section extending around the circumference of the balloon.
8. The intravascular catheter of example 7 wherein the at least one section is situated centrally on the balloon between a proximal end of the balloon and a distal end of the balloon.
9. The intravascular catheter of any of examples 1-2 wherein the balloon has a helically-shaped lumen.
10. The intravascular catheter of example 9 wherein the at least one section is helically shaped and extends along the outer diameter of the balloon.
11. The intravascular system of example 9 wherein the balloon comprises three or more sections that are permeable to RF radiation.
12. The intravascular system of example 11 wherein the three or more sections are spaced circumferentially and longitudinally with respect to each other.
13. The intravascular system of any of examples 11-12 wherein the balloon comprises four sections that are permeable to RF radiation.
14. The intravascular catheter of any of examples 9-13 wherein the sections are located on the outer diameter of the spiral.
15. The intravascular catheter of any of examples 2-14 wherein the at least one RF permeable section comprises a compliant polymeric material.
16. The intravascular catheter of example 15 wherein the non-electrically conductive section comprises a non-compliant polymeric material.
17. The intravascular catheter of any of examples 1-16 wherein the at least one RF permeable section comprises a hydrophilic polymer.
18. The intravascular catheter of example 17 wherein the at least one RF permeable section comprises a hydrophilic polyurethane.
19. The catheter of any of examples 1-18 wherein the at least one RF permeable section comprises a hydrophilic polymer selected from the group consisting of hydrophilic Pebax, hydrophilic nylons, hydrophilic polyesters, or block co-polymers with built-in hydrophilic blocks, Pebax MV1074, Pebax MV 1041, Pebax MP 1878, Pebax MV-3000, Pebax MH-1657.
20. The catheter of any of examples 17-19 wherein the at least one RF permeable section comprises the hydrophilic polymer blended with a second polymer.
21. The catheter of example 20 wherein the second polymer is selected from a group consisting of Pebax 6333, Pebax 7033, Pebax 7233, Nylon 12, Vestamid L2101F, Grilamid L20, and Grilamid L25.
22. The catheter of any of examples 17-21 wherein the hydrophilic polymer has between 20% to 50% hydrophilicity.
23. The catheter of any of examples 2-22 wherein the non-electrically conductive section comprises a non-hydrophilic polymer.
24. The intravascular catheter of any of examples 2-23 wherein the non-electrically conductive section comprises a non-hydrophilic polyurethane.
25. The intravascular catheter of any of examples 1-24 wherein the balloon comprises a first layer and a second layer.
26. The intravascular catheter of example 25 wherein the first layer is permeable to RF radiation and the second layer is non-electrically conductive.
27. The intravascular catheter of any of examples 25-26 wherein the first layer is inside the second layer.
28. The intravascular catheter of any of examples 25-27 wherein the at least one section that is permeable to RF radiation does not include the second layer.
29. The intravascular catheter of any of examples 25-28 wherein the at least one section that is permeable to RF radiation consists essentially of the first layer.
30. The intravascular catheter of any of examples 25-29 wherein at the at least one section that is permeable to RF radiation, the first layer defines the outer surface of the balloon.
31. The intravascular catheter of example 25 wherein the first layer is permeable to RF radiation and the second layer is non-electrically conductive, wherein the first layer is generally inside the second layer, wherein at the at least one section that is permeable to RF radiation, the first layer defines the outer surface of the balloon, and wherein at the at least one section that is permeable to RF radiation, the first layer extends radially beyond the second layer.
32. The intravascular catheter of example 31 wherein the at least one section that is permeable to RF radiation comprises a plurality of convex windows.
33. The intravascular catheter of any of examples 1-32 wherein the electrode extends under at least one section that is permeable to RF.
34. The intravascular catheter of any of examples 1-32 wherein the electrode extends for at least 80% the length of the balloon.
35. The intravascular catheter of any of examples 1-34 wherein the electrode is helically shaped.
36. The intravascular catheter of any of examples 1-35 wherein the elongate member extends the length of the balloon.
37. The intravascular catheter of example 36 wherein the electrode is disposed on an outer surface of the elongate member.
38. The intravascular catheter of any of examples 36-37 wherein the elongate member comprises a guidewire lumen having an open distal end.
39. The intravascular catheter of any of examples 36-38 wherein the elongate member further comprises a fluid supply lumen having an opening fluidly connected to the balloon lumen.
40. The intravascular catheter of example 39 wherein the elongate member further comprises a fluid return lumen having an opening fluidly connected to the shaft.
41. The intravascular catheter of example 40 wherein the fluid supply lumen opening is distal the fluid return lumen opening.
42. The intravascular catheter of example 41 wherein the fluid supply lumen opening is in a distal waist of the balloon.
43. The intravascular catheter of example 42 wherein the fluid return lumen opening is in a proximal waist of the balloon.
44. The intravascular catheter of any of examples 1-43 further comprising a temperature sensor.
45. The intravascular catheter of example 44 wherein the temperature sensor is disposed on the elongate member.
46. The intravascular catheter of example 44 wherein the temperature sensor is disposed on the balloon.
47. An intravascular catheter, comprising:
an elongate member having a proximal end and a distal end;
a balloon having a lumen and a balloon wall, the balloon wall comprising one or more RF permeable windows through a non-electrically conductive balloon wall, the one ore move RF permeable windows impervious to fluid flow;
an electrode disposed within the balloon and extending distally to the furthest distal RF permeable section.
48. The intravascular catheter of example 47, wherein the electrode is helically shaped.
49. The intravascular catheter of any of examples 47-48 wherein the elongate member extends through the balloon.
50. The intravascular catheter of example 49 further comprising a fluid supply lumen and fluid return lumen fluidly connected to the balloon lumen.
51. An intravascular catheter, comprising:
an elongate member having a proximal end and a distal end;
a balloon having an interior surface, an exterior surface, a lumen defined by the interior surface and a cylindrical wall extending between the interior surface and the exterior surface, the cylindrical wall having a proximal end and a distal end, the balloon having a plurality of electrically conductive windows disposed in the wall and able to pass an electric current between the interior surface and the exterior surface, the plurality of windows arranged such that every line extending along the wall the shortest distance from the proximal end of the wall to the distal end of the wall passes through at least one window, wherein at least one of the plurality of windows extends further in a circumferential direction than in an axial direction and wherein the balloon wall is otherwise electrically insulative; and
an electrode disposed in the balloon.
52. The catheter of example 51 wherein at least one of the plurality of windows is oval.
53. The catheter of example 51 wherein at least one of the plurality of windows is oblong.
54. The catheter of example 51 wherein at least one of the plurality of windows is diamond-shaped.
55. The catheter of example 51 wherein at least one of the plurality of windows is bowtie-shaped.
56. The catheter of any of examples 51-55 wherein the plurality of windows are spaced axially from each other.
57. The catheter of any of examples 51-56 wherein the plurality of windows are arranged in a spiral shape on the balloon wall.
58. The catheter of any of examples 51-57 wherein any two adjacent windows circumferentially overlap such that a line extending along the wall the shortest distance from the proximal end of the wall to the distal end of the wall passes through the two adjacent windows.
59. The catheter of example 58 wherein any two adjacent windows have a circumferential overlap of at least 0.3 mm.
60. The catheter of example 58 wherein any two adjacent windows have a circumferential overlap of at least 0.4 mm.
61. The catheter of example 58 wherein any two adjacent windows have a circumferential overlap of at least 0.5 mm.
62. The catheter of any of examples 58-61 wherein any two adjacent windows have a circumferential overlap of between 20% and 30% of the circumferential dimension of one of the two adjacent windows.
63. The catheter of any of examples 58-62 wherein any two adjacent windows have a circumferential overlap of between 24% and 26% of the circumferential dimension of one of the two adjacent windows.
64. The catheter of any of examples 58-63 wherein any two adjacent windows have a circumferential overlap of between 6% and 7% of a circumferential dimension of the cylindrical balloon wall.
65. The catheter of any of examples 58-63 wherein any two adjacent windows have a circumferential overlap of between 10% and 14% of a circumferential dimension of the cylindrical balloon wall.
66. The catheter of any of examples 51-65 wherein the ratio of the circumferential dimension to the axial dimension of at least one of the plurality of windows is between 1.5:1 and 4:1.
67. The catheter of any of examples 51-65 wherein the ratio of the circumferential dimension to the axial dimension of at least one of the plurality of windows is 1.5:1.
68. The catheter of any of examples 1-65 wherein the ratio of the circumferential dimension to the axial dimension of at least one of the plurality of windows is about 2:1 and 4:1.
69. The catheter of any of examples 1-65 wherein the ratio of the circumferential dimension to the axial dimension of at least one of the plurality of windows is about 3:1.
70. The catheter of any of examples 1-69 wherein the ratio of the circumferential dimension to the axial dimension is the same for each of the plurality of windows.
71. The catheter of any of examples 1-70 wherein each of the plurality of windows is the same shape.
72. The catheter of any of examples 1-71 wherein the plurality of windows comprises four windows.
73. The catheter of any of examples 1-72 wherein the plurality of windows comprises six windows.
74. The catheter of any of examples 1-73 wherein the plurality of windows comprises eight windows.
75. The catheter of any of examples 1-74 wherein the plurality of balloons are arranged on the intersections of a grid wherein the grid lines are a plurality of circumferential lines of the balloon wall and a plurality of helical lines extending from the proximal end of the balloon wall to the distal end of the balloon wall.
76. The catheter of example 75 wherein the plurality of helical lines are equally spaced around the balloon walls.
77. The catheter of any of examples 75-76 wherein the plurality of helical lines consist of two helical lines.
78. The catheter of any of examples 75-76 wherein the plurality of helical lines consist of three helical lines.
79. The catheter of any of examples 75-76 wherein the plurality of helical lines consist of four helical lines.
80. The catheter of any of examples 75-79 wherein the plurality of circumferential lines are spaced at regular intervals.
81. The catheter of any of examples 75-80 wherein the plurality of circumferential lines consist of two circumferential lines.
82. The catheter of any of examples 75-80 wherein the plurality of circumferential lines consist of three circumferential lines.
83. The catheter of any of examples 75-80 wherein the plurality of circumferential lines consist of four circumferential lines.
84. The catheter of any of examples 51-83 wherein a circumferential dimension of at least one of the plurality of balloons is between 20% and 30% of the circumference of the cylindrical balloon wall.
85. The catheter of any of examples 51-84 wherein a circumferential dimension of at least one of the plurality of balloons is between 22% and 28% of the circumference of the cylindrical balloon wall.
86. The catheter of any of examples 51-85 wherein a circumferential dimension of at least one of the plurality of balloons is between 24% and 26% of the circumference of the cylindrical balloon wall.
87. The catheter of any of examples 51-86 wherein the plurality of windows comprises a hydrophilic polymer.
88. The catheter of any of examples 51-87 wherein the plurality of windows comprises a hydrophilic polymer selected from the group consisting of hydrophilic Pebax, hydrophilic nylons, hydrophilic polyesters, or block co-polymers with built-in hydrophilic blocks, Pebax MV1074, Pebax MV 1041, Pebax MP 1878, Pebax MV-3000, Pebax MH-1657.
89. The catheter of any of examples 87-88 wherein the plurality of windows comprises the hydrophilic polymer blended with a second polymer.
90. The catheter of example 89 wherein the second polymer is selected from a group consisting of Pebax 6333, Pebax 7033, Pebax 7233, Nylon 12, Vestamid L2101F, Grilamid L20, and Grilamid L25.
91. The catheter of any of examples 87-90 wherein the hydrophilic polymer has between 20% to 50% hydrophilicity.
92. The catheter of any of examples 51-91 wherein the balloon wall comprises a non-hydrophilic polymer.
93. The catheter of any of examples 51-92 wherein the balloon comprises a first layer and a second layer.
94. The intravascular catheter of example 70 wherein the first layer is electrically conductive and the second layer is non-electrically conductive.
95. The intravascular catheter of any of examples 93-94 wherein the first layer is inside the second layer.
96. The intravascular catheter of any of examples 93-95 wherein plurality of windows do not include the second layer.
97. The intravascular catheter of any of examples 93-96 wherein the plurality of windows consist essentially of the first layer.
98. The intravascular catheter of any of examples 51-97 wherein the electrode extends for at least 50% the length of the balloon.
99. The intravascular catheter of any of examples 51-97 wherein the electrode extends for at least 80% the length of the balloon.
100. The intravascular catheter of any of examples 51-99 wherein the electrode extends for the length of the balloon.
101. The intravascular catheter of any of examples 51-99 wherein the electrode is helically shaped.
102. The intravascular catheter of any of examples 51-101 wherein the elongate member extends the length of the balloon.
103. The intravascular catheter of example 102 wherein the electrode is disposed on an outer surface of the elongate member.
104. The intravascular catheter of any of examples 102-103 wherein the elongate member comprises a guidewire lumen having an open distal end.
105. The intravascular catheter of any of examples 102-104 wherein the elongate member further comprises a fluid supply lumen having an opening fluidly connected to the balloon lumen.
106. The intravascular catheter of example 105 wherein the elongate member further comprises a fluid return lumen having an opening fluidly connected to the shaft.
107. The intravascular catheter of example 106 wherein the fluid supply lumen opening is distal the fluid return lumen opening.
108. The intravascular catheter of example 107 wherein the fluid supply lumen opening is in a distal waist of the balloon.
109. The intravascular catheter of example 108 wherein the fluid return lumen opening is in a proximal waist of the balloon.
110. The intravascular catheter of any of examples 51-109 further comprising a temperature sensor.
111. The intravascular catheter of example 110 wherein the temperature sensor is disposed on the elongate member.
112. The intravascular catheter of example 110 wherein the temperature sensor is disposed on the balloon.
113. A method of nerve modulation, comprising:
providing a catheter according to any of examples 1-112;
moving the balloon to a region of interest;
inflating the balloon with an electrically conductive fluid; and
activating the electrode.
114. The method of example 113 wherein the step of moving the balloon to a region of interest includes the step of advancing the catheter within a blood vessel.
115. The method of any of examples 113-114 wherein the step of moving the balloon to a region of interest includes the step of advancing the catheter along a guidewire.
116. The method of any of examples 113-115 wherein the step of inflating the balloon includes the step of contacting the outer wall of the balloon to the region of interest.
117. The method of example 116 further comprising the step of circulating the fluid through the balloon at a rate of between 5 ml/min and 10 ml/min.
118. The method of any of examples 114-117 wherein the electrically conductive fluid comprises saline.
119. The method of any of examples 114-118 wherein the electrically conductive fluid comprises a hypertonic solution.
120. The method of any of examples 114-119 wherein the electrically conductive fluid comprises a contrast solution.
121. The method of any of examples 113-120 further comprising the step of hydrating the balloon prior to moving the balloon to a region of interest.
122. The method of example 121 wherein the step of hydrating the balloon comprises the step of soaking the balloon in a saline solution.
123. The method of example 72 wherein the step of soaking the balloon in a saline solution involves soaking of soaking the balloon in a saline solution for at least one minute.
124. The method of example 72 wherein the step of soaking the balloon in a saline solution involves soaking of soaking the balloon in a saline solution for at least five minutes.
Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and principles of this invention, and it should be understood that this invention is not to be unduly limited to the illustrative embodiments set forth hereinabove. All publications and patents are herein incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application Ser. No. 61/580,972, filed Dec. 28, 2011; to U.S. Provisional Application Ser. No. 61/605,615, filed Oct. Mar. 1, 2012; and to U.S. Provisional Application Ser. No. 61/605,624, filed Oct. Mar. 1, 2012, all of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
164184 | Kiddee | Jun 1875 | A |
1167014 | O'Brien | Jan 1916 | A |
2505358 | Gusberg et al. | Apr 1950 | A |
2701559 | Cooper | Feb 1955 | A |
3108593 | Glassman | Oct 1963 | A |
3108594 | Glassman | Oct 1963 | A |
3540431 | Mobin | Nov 1970 | A |
3952747 | Kimmell | Apr 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4046150 | Schwartz et al. | Sep 1977 | A |
4290427 | Chin | Sep 1981 | A |
4402686 | Medel | Sep 1983 | A |
4483341 | Witteles et al. | Nov 1984 | A |
4574804 | Kurwa | Mar 1986 | A |
4587975 | Salo et al. | May 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4765331 | Petruzzi et al. | Aug 1988 | A |
4770653 | Shturman | Sep 1988 | A |
4784132 | Fox et al. | Nov 1988 | A |
4784162 | Ricks et al. | Nov 1988 | A |
4785806 | Deckelbaum et al. | Nov 1988 | A |
4788975 | Shturman et al. | Dec 1988 | A |
4790310 | Ginsburg et al. | Dec 1988 | A |
4799479 | Spears | Jan 1989 | A |
4823791 | D'Amelio et al. | Apr 1989 | A |
4830003 | Wolff et al. | May 1989 | A |
4849484 | Heard | Jul 1989 | A |
4862886 | Clarke et al. | Sep 1989 | A |
4887605 | Angelsen et al. | Dec 1989 | A |
4920979 | Bullara et al. | May 1990 | A |
4938766 | Jarvik | Jul 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
5034010 | Kittrell et al. | Jul 1991 | A |
5052402 | Bencini et al. | Oct 1991 | A |
5053033 | Clarke et al. | Oct 1991 | A |
5071424 | Reger et al. | Dec 1991 | A |
5074871 | Groshong et al. | Dec 1991 | A |
5098429 | Sterzer et al. | Mar 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5109859 | Jenkins | May 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5129396 | Rosen et al. | Jul 1992 | A |
5139496 | Hed | Aug 1992 | A |
5143836 | Hartman et al. | Sep 1992 | A |
5156610 | Reger et al. | Oct 1992 | A |
5158564 | Schnepp-Pesch | Oct 1992 | A |
5170802 | Mehra | Dec 1992 | A |
5178620 | Eggers et al. | Jan 1993 | A |
5178625 | Groshong et al. | Jan 1993 | A |
5190540 | Lee | Mar 1993 | A |
5211651 | Reger et al. | May 1993 | A |
5234407 | Teirstein et al. | Aug 1993 | A |
5242441 | Avitall | Sep 1993 | A |
5251634 | Weinberg et al. | Oct 1993 | A |
5255679 | Imran | Oct 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5267954 | Nita et al. | Dec 1993 | A |
5277201 | Stern et al. | Jan 1994 | A |
5282484 | Reger et al. | Feb 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5295484 | Marcus | Mar 1994 | A |
5297564 | Love et al. | Mar 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5301683 | Durkan | Apr 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
5304121 | Sahatjian | Apr 1994 | A |
5304171 | Gregory et al. | Apr 1994 | A |
5304173 | Kittrell et al. | Apr 1994 | A |
5306250 | March et al. | Apr 1994 | A |
5312328 | Nita et al. | May 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5322064 | Lundquist | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5326341 | Lew et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5330518 | Neilson et al. | Jul 1994 | A |
5333614 | Feiring | Aug 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5364392 | Warner et al. | Nov 1994 | A |
5365172 | Hrovat et al. | Nov 1994 | A |
5368557 | Nita et al. | Nov 1994 | A |
5368558 | Nita et al. | Nov 1994 | A |
5380274 | Nita et al. | Jan 1995 | A |
5380319 | Saito et al. | Jan 1995 | A |
5382228 | Nita et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5397301 | Pflueger et al. | Mar 1995 | A |
5397339 | Desai | Mar 1995 | A |
5401272 | Perkins et al. | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405318 | Nita et al. | Apr 1995 | A |
5405346 | Grundy et al. | Apr 1995 | A |
5409000 | Imran | Apr 1995 | A |
5417672 | Nita et al. | May 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5432876 | Appeldorn et al. | Jul 1995 | A |
5441498 | Perkins et al. | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5451207 | Yock et al. | Sep 1995 | A |
5453091 | Taylor et al. | Sep 1995 | A |
5454788 | Walker et al. | Oct 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5455029 | Hartman et al. | Oct 1995 | A |
5456682 | Edwards et al. | Oct 1995 | A |
5457042 | Hartman et al. | Oct 1995 | A |
5471982 | Edwards et al. | Dec 1995 | A |
5474530 | Passafaro et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5496311 | Abele et al. | Mar 1996 | A |
5496312 | Klicek et al. | Mar 1996 | A |
5498261 | Strul | Mar 1996 | A |
5505201 | Grill et al. | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5531520 | Grimson et al. | Jul 1996 | A |
5540656 | Pflueger et al. | Jul 1996 | A |
5540679 | Fram et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5542917 | Nita et al. | Aug 1996 | A |
5545161 | Imran | Aug 1996 | A |
5562100 | Kittrell et al. | Oct 1996 | A |
5571122 | Kelly et al. | Nov 1996 | A |
5571151 | Gregory | Nov 1996 | A |
5573531 | Gregory et al. | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5584831 | McKay | Dec 1996 | A |
5584872 | Lafontaine et al. | Dec 1996 | A |
5588962 | Nicholas et al. | Dec 1996 | A |
5599346 | Edwards et al. | Feb 1997 | A |
5601526 | Chapelon et al. | Feb 1997 | A |
5609606 | O'Boyle et al. | Mar 1997 | A |
5626576 | Janssen | May 1997 | A |
5630837 | Crowley | May 1997 | A |
5637090 | McGee et al. | Jun 1997 | A |
5643255 | Organ | Jul 1997 | A |
5643297 | Nordgren et al. | Jul 1997 | A |
5647847 | Lafontaine et al. | Jul 1997 | A |
5649923 | Gregory et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653684 | Laptewicz et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5665062 | Houser | Sep 1997 | A |
5665098 | Kelly et al. | Sep 1997 | A |
5666964 | Meilus | Sep 1997 | A |
5667490 | Keith et al. | Sep 1997 | A |
5672174 | Gough et al. | Sep 1997 | A |
5676693 | Lafontaine | Oct 1997 | A |
5678296 | Fleischhacker et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
RE35656 | Feinberg | Nov 1997 | E |
5688266 | Edwards et al. | Nov 1997 | A |
5693015 | Walker et al. | Dec 1997 | A |
5693029 | Leonhardt et al. | Dec 1997 | A |
5693043 | Kittrell et al. | Dec 1997 | A |
5693082 | Warner et al. | Dec 1997 | A |
5695504 | Gifford et al. | Dec 1997 | A |
5697369 | Long, Jr. et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5702386 | Stern et al. | Dec 1997 | A |
5702433 | Taylor et al. | Dec 1997 | A |
5706809 | Littmann et al. | Jan 1998 | A |
5713942 | Stern et al. | Feb 1998 | A |
5715819 | Svenson et al. | Feb 1998 | A |
5735846 | Panescu et al. | Apr 1998 | A |
5741214 | Ouchi et al. | Apr 1998 | A |
5741248 | Stern et al. | Apr 1998 | A |
5741249 | Moss et al. | Apr 1998 | A |
5743903 | Stern et al. | Apr 1998 | A |
5748347 | Erickson | May 1998 | A |
5749914 | Janssen | May 1998 | A |
5755682 | Knudson et al. | May 1998 | A |
5755715 | Stern et al. | May 1998 | A |
5755753 | Knowlton et al. | May 1998 | A |
5769847 | Panescu et al. | Jun 1998 | A |
5769880 | Truckai et al. | Jun 1998 | A |
5775338 | Hastings | Jul 1998 | A |
5776174 | Van Tassel | Jul 1998 | A |
5779698 | Clayman et al. | Jul 1998 | A |
5782760 | Schaer | Jul 1998 | A |
5785702 | Murphy et al. | Jul 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5800484 | Gough et al. | Sep 1998 | A |
5800494 | Campbell et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5810803 | Moss et al. | Sep 1998 | A |
5810810 | Tay et al. | Sep 1998 | A |
5817092 | Behl | Oct 1998 | A |
5817113 | Gifford et al. | Oct 1998 | A |
5817144 | Gregory et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5827203 | Nita et al. | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5830213 | Panescu et al. | Nov 1998 | A |
5830222 | Makower | Nov 1998 | A |
5832228 | Holden et al. | Nov 1998 | A |
5833593 | Liprie | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5840076 | Swanson et al. | Nov 1998 | A |
5843016 | Lugnani et al. | Dec 1998 | A |
5846238 | Jackson et al. | Dec 1998 | A |
5846239 | Swanson et al. | Dec 1998 | A |
5846245 | McCarthy et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5853411 | Whayne et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5865801 | Houser | Feb 1999 | A |
5868735 | Lafontaine et al. | Feb 1999 | A |
5868736 | Swanson et al. | Feb 1999 | A |
5871483 | Jackson et al. | Feb 1999 | A |
5871524 | Knowlton et al. | Feb 1999 | A |
5875782 | Ferrari et al. | Mar 1999 | A |
5876369 | Houser | Mar 1999 | A |
5876374 | Alba et al. | Mar 1999 | A |
5876397 | Edelman et al. | Mar 1999 | A |
5879348 | Owens et al. | Mar 1999 | A |
5891114 | Chien et al. | Apr 1999 | A |
5891135 | Jackson et al. | Apr 1999 | A |
5891136 | McGee et al. | Apr 1999 | A |
5891138 | Tu et al. | Apr 1999 | A |
5895378 | Nita | Apr 1999 | A |
5897552 | Edwards et al. | Apr 1999 | A |
5902328 | Lafontaine et al. | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5904667 | Falwell et al. | May 1999 | A |
5904697 | Gifford et al. | May 1999 | A |
5904709 | Arndt et al. | May 1999 | A |
5906614 | Stern et al. | May 1999 | A |
5906623 | Peterson | May 1999 | A |
5906636 | Casscells et al. | May 1999 | A |
5916192 | Nita et al. | Jun 1999 | A |
5916227 | Keith et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919219 | Knowlton et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5925038 | Panescu et al. | Jul 1999 | A |
5934284 | Plaia et al. | Aug 1999 | A |
5935063 | Nguyen | Aug 1999 | A |
5938670 | Keith et al. | Aug 1999 | A |
5947977 | Slepian et al. | Sep 1999 | A |
5948011 | Knowlton et al. | Sep 1999 | A |
5951494 | Wang et al. | Sep 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5954717 | Behl et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957941 | Ream et al. | Sep 1999 | A |
5957969 | Warner et al. | Sep 1999 | A |
5961513 | Swanson et al. | Oct 1999 | A |
5964757 | Ponzi et al. | Oct 1999 | A |
5967976 | Larsen et al. | Oct 1999 | A |
5967978 | Littmann et al. | Oct 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5971975 | Mills et al. | Oct 1999 | A |
5972026 | Laufer et al. | Oct 1999 | A |
5980563 | Tu et al. | Nov 1999 | A |
5989208 | Nita et al. | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
5993462 | Pomeranz et al. | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
5999678 | Murphy et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6004316 | Laufer et al. | Dec 1999 | A |
6007514 | Nita | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6012457 | Lesh | Jan 2000 | A |
6013033 | Berger et al. | Jan 2000 | A |
6014590 | Whayne et al. | Jan 2000 | A |
6022309 | Celliers et al. | Feb 2000 | A |
6024740 | Lesh | Feb 2000 | A |
6030611 | Gorecki et al. | Feb 2000 | A |
6032675 | Rubinsky et al. | Mar 2000 | A |
6033397 | Laufer et al. | Mar 2000 | A |
6033398 | Farley et al. | Mar 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6036689 | Tu et al. | Mar 2000 | A |
6041260 | Stern et al. | Mar 2000 | A |
6050994 | Sherman et al. | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6063085 | Tay et al. | May 2000 | A |
6066096 | Smith et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6068638 | Makower | May 2000 | A |
6068653 | Lafontaine | May 2000 | A |
6071277 | Farley et al. | Jun 2000 | A |
6071278 | Panescu et al. | Jun 2000 | A |
6078839 | Carson | Jun 2000 | A |
6079414 | Roth | Jun 2000 | A |
6080171 | Keith et al. | Jun 2000 | A |
6081749 | Ingle et al. | Jun 2000 | A |
6086581 | Reynolds et al. | Jul 2000 | A |
6093166 | Knudson et al. | Jul 2000 | A |
6096021 | Helm et al. | Aug 2000 | A |
6099526 | Whayne et al. | Aug 2000 | A |
6102908 | Tu et al. | Aug 2000 | A |
6106477 | Miesel et al. | Aug 2000 | A |
6110187 | Donlon et al. | Aug 2000 | A |
6114311 | Parmacek et al. | Sep 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6120476 | Fung et al. | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6121775 | Pearlman | Sep 2000 | A |
6123679 | Lafaut et al. | Sep 2000 | A |
6123682 | Knudson et al. | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6129725 | Tu et al. | Oct 2000 | A |
6135997 | Laufer et al. | Oct 2000 | A |
6142991 | Schatzberger et al. | Nov 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6149647 | Tu et al. | Nov 2000 | A |
6152899 | Farley et al. | Nov 2000 | A |
6152912 | Jansen et al. | Nov 2000 | A |
6156046 | Passafaro et al. | Dec 2000 | A |
6158250 | Tibbals et al. | Dec 2000 | A |
6159187 | Park et al. | Dec 2000 | A |
6159225 | Makower | Dec 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6162184 | Swanson et al. | Dec 2000 | A |
6165163 | Chien et al. | Dec 2000 | A |
6165172 | Farley et al. | Dec 2000 | A |
6165187 | Reger et al. | Dec 2000 | A |
6168594 | Lafontaine et al. | Jan 2001 | B1 |
6171321 | Gifford, III et al. | Jan 2001 | B1 |
6179832 | Jones et al. | Jan 2001 | B1 |
6179835 | Panescu et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6183468 | Swanson et al. | Feb 2001 | B1 |
6183486 | Snow et al. | Feb 2001 | B1 |
6190379 | Heuser et al. | Feb 2001 | B1 |
6191862 | Swanson et al. | Feb 2001 | B1 |
6197021 | Panescu et al. | Mar 2001 | B1 |
6200266 | Shokrollahi et al. | Mar 2001 | B1 |
6203537 | Adrian | Mar 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6210406 | Webster | Apr 2001 | B1 |
6211247 | Goodman | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6228109 | Tu et al. | May 2001 | B1 |
6231516 | Keilman et al. | May 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6236883 | Ciaccio et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238389 | Paddock et al. | May 2001 | B1 |
6238392 | Long | May 2001 | B1 |
6241666 | Pomeranz et al. | Jun 2001 | B1 |
6241753 | Knowlton | Jun 2001 | B1 |
6245020 | Moore et al. | Jun 2001 | B1 |
6245045 | Stratienko | Jun 2001 | B1 |
6248126 | Lesser et al. | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6280466 | Kugler et al. | Aug 2001 | B1 |
6283935 | Laufer et al. | Sep 2001 | B1 |
6283959 | Lalonde et al. | Sep 2001 | B1 |
6284743 | Parmacek et al. | Sep 2001 | B1 |
6287323 | Hammerslag | Sep 2001 | B1 |
6290696 | Lafontaine | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6298256 | Meyer | Oct 2001 | B1 |
6299379 | Lewis | Oct 2001 | B1 |
6299623 | Wulfman | Oct 2001 | B1 |
6309379 | Willard et al. | Oct 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6311090 | Knowlton | Oct 2001 | B1 |
6317615 | KenKnight et al. | Nov 2001 | B1 |
6319242 | Patterson et al. | Nov 2001 | B1 |
6319251 | Tu et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6350248 | Knudson et al. | Feb 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6353751 | Swanson et al. | Mar 2002 | B1 |
6355029 | Joye et al. | Mar 2002 | B1 |
6357447 | Swanson et al. | Mar 2002 | B1 |
6361519 | Knudson et al. | Mar 2002 | B1 |
6364840 | Crowley | Apr 2002 | B1 |
6371965 | Gifford, III et al. | Apr 2002 | B2 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6377854 | Knowlton | Apr 2002 | B1 |
6377855 | Knowlton | Apr 2002 | B1 |
6379352 | Reynolds et al. | Apr 2002 | B1 |
6379373 | Sawhney et al. | Apr 2002 | B1 |
6381497 | Knowlton | Apr 2002 | B1 |
6381498 | Knowlton | Apr 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6387380 | Knowlton | May 2002 | B1 |
6389311 | Whayne et al. | May 2002 | B1 |
6389314 | Feiring | May 2002 | B2 |
6391024 | Sun et al. | May 2002 | B1 |
6394096 | Constantz | May 2002 | B1 |
6394956 | Chandrasekaran et al. | May 2002 | B1 |
6398780 | Farley et al. | Jun 2002 | B1 |
6398782 | Pecor et al. | Jun 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6401720 | Stevens et al. | Jun 2002 | B1 |
6402719 | Ponzi et al. | Jun 2002 | B1 |
6405090 | Knowlton | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6421559 | Pearlman | Jul 2002 | B1 |
6423057 | He et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6427118 | Suzuki | Jul 2002 | B1 |
6428534 | Joye et al. | Aug 2002 | B1 |
6428536 | Panescu et al. | Aug 2002 | B2 |
6430446 | Knowlton | Aug 2002 | B1 |
6432102 | Joye et al. | Aug 2002 | B2 |
6436056 | Wang et al. | Aug 2002 | B1 |
6438424 | Knowlton | Aug 2002 | B1 |
6440125 | Rentrop | Aug 2002 | B1 |
6442413 | Silver | Aug 2002 | B1 |
6443965 | Gifford, III et al. | Sep 2002 | B1 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6447505 | McGovern et al. | Sep 2002 | B2 |
6447509 | Bonnet et al. | Sep 2002 | B1 |
6451034 | Gifford, III et al. | Sep 2002 | B1 |
6451044 | Naghavi et al. | Sep 2002 | B1 |
6453202 | Knowlton | Sep 2002 | B1 |
6454737 | Nita et al. | Sep 2002 | B1 |
6454757 | Nita et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6458098 | Kanesaka | Oct 2002 | B1 |
6461378 | Knowlton | Oct 2002 | B1 |
6468276 | McKay | Oct 2002 | B1 |
6468297 | Williams et al. | Oct 2002 | B1 |
6470216 | Knowlton | Oct 2002 | B1 |
6470219 | Edwards et al. | Oct 2002 | B1 |
6471696 | Berube et al. | Oct 2002 | B1 |
6475213 | Whayne et al. | Nov 2002 | B1 |
6475215 | Tanrisever | Nov 2002 | B1 |
6475238 | Fedida et al. | Nov 2002 | B1 |
6477426 | Fenn et al. | Nov 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6481704 | Koster et al. | Nov 2002 | B1 |
6482202 | Goble et al. | Nov 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6488679 | Swanson et al. | Dec 2002 | B1 |
6489307 | Phillips et al. | Dec 2002 | B1 |
6491705 | Gifford, III et al. | Dec 2002 | B2 |
6494891 | Cornish et al. | Dec 2002 | B1 |
6497711 | Plaia et al. | Dec 2002 | B1 |
6500172 | Panescu et al. | Dec 2002 | B1 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6508765 | Suorsa et al. | Jan 2003 | B2 |
6508804 | Sarge et al. | Jan 2003 | B2 |
6508815 | Strul et al. | Jan 2003 | B1 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6511496 | Huter et al. | Jan 2003 | B1 |
6511500 | Rahme | Jan 2003 | B1 |
6514236 | Stratienko | Feb 2003 | B1 |
6514245 | Williams et al. | Feb 2003 | B1 |
6514248 | Eggers et al. | Feb 2003 | B1 |
6517534 | McGovern et al. | Feb 2003 | B1 |
6517572 | Kugler et al. | Feb 2003 | B2 |
6522913 | Swanson et al. | Feb 2003 | B2 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6524299 | Tran et al. | Feb 2003 | B1 |
6527765 | Kelman et al. | Mar 2003 | B2 |
6527769 | Langberg et al. | Mar 2003 | B2 |
6540761 | Houser | Apr 2003 | B2 |
6542781 | Koblish et al. | Apr 2003 | B1 |
6544780 | Wang | Apr 2003 | B1 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6549800 | Atalar et al. | Apr 2003 | B1 |
6552796 | Magnin et al. | Apr 2003 | B2 |
6554780 | Sampson et al. | Apr 2003 | B1 |
6558381 | Ingle et al. | May 2003 | B2 |
6558382 | Jahns et al. | May 2003 | B2 |
6564096 | Mest | May 2003 | B2 |
6565582 | Gifford, III et al. | May 2003 | B2 |
6569109 | Sakurai et al. | May 2003 | B2 |
6569177 | Dillard et al. | May 2003 | B1 |
6570659 | Schmitt | May 2003 | B2 |
6572551 | Smith et al. | Jun 2003 | B1 |
6572612 | Stewart et al. | Jun 2003 | B2 |
6577902 | Laufer et al. | Jun 2003 | B1 |
6579308 | Jansen et al. | Jun 2003 | B1 |
6579311 | Makower | Jun 2003 | B1 |
6582423 | Thapliyal et al. | Jun 2003 | B1 |
6589238 | Edwards et al. | Jul 2003 | B2 |
6592526 | Lenker | Jul 2003 | B1 |
6592567 | Levin et al. | Jul 2003 | B1 |
6595959 | Stratienko | Jul 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6602242 | Fung | Aug 2003 | B1 |
6602246 | Joye et al. | Aug 2003 | B1 |
6605084 | Acker et al. | Aug 2003 | B2 |
6623452 | Chien et al. | Sep 2003 | B2 |
6623453 | Guibert et al. | Sep 2003 | B1 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632196 | Houser | Oct 2003 | B1 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6648854 | Patterson et al. | Nov 2003 | B1 |
6648878 | Lafontaine | Nov 2003 | B2 |
6648879 | Joye et al. | Nov 2003 | B2 |
6651672 | Roth | Nov 2003 | B2 |
6652513 | Panescu et al. | Nov 2003 | B2 |
6652515 | Maguire et al. | Nov 2003 | B1 |
6656136 | Weng et al. | Dec 2003 | B1 |
6658279 | Swanson et al. | Dec 2003 | B2 |
6659981 | Stewart et al. | Dec 2003 | B2 |
6666858 | Lafontaine | Dec 2003 | B2 |
6666863 | Wentzel et al. | Dec 2003 | B2 |
6669655 | Acker et al. | Dec 2003 | B1 |
6669692 | Nelson et al. | Dec 2003 | B1 |
6673040 | Samson et al. | Jan 2004 | B1 |
6673064 | Rentrop | Jan 2004 | B1 |
6673066 | Werneth | Jan 2004 | B2 |
6673090 | Root et al. | Jan 2004 | B2 |
6673101 | Fitzgerald et al. | Jan 2004 | B1 |
6673290 | Whayne et al. | Jan 2004 | B1 |
6676678 | Gifford, III et al. | Jan 2004 | B2 |
6679268 | Stevens et al. | Jan 2004 | B2 |
6681773 | Murphy et al. | Jan 2004 | B2 |
6682541 | Gifford, III et al. | Jan 2004 | B1 |
6684098 | Oshio et al. | Jan 2004 | B2 |
6685732 | Kramer | Feb 2004 | B2 |
6685733 | Dae et al. | Feb 2004 | B1 |
6689086 | Nita et al. | Feb 2004 | B1 |
6689148 | Sawhney et al. | Feb 2004 | B2 |
6690181 | Dowdeswell et al. | Feb 2004 | B1 |
6692490 | Edwards | Feb 2004 | B1 |
6695830 | Vigil et al. | Feb 2004 | B2 |
6695857 | Gifford, III et al. | Feb 2004 | B2 |
6699241 | Rappaport et al. | Mar 2004 | B2 |
6699257 | Gifford, III et al. | Mar 2004 | B2 |
6702748 | Nita et al. | Mar 2004 | B1 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6706010 | Miki et al. | Mar 2004 | B1 |
6706011 | Murphy-Chutorian et al. | Mar 2004 | B1 |
6706037 | Zvuloni et al. | Mar 2004 | B2 |
6709431 | Lafontaine | Mar 2004 | B2 |
6711429 | Gilboa et al. | Mar 2004 | B1 |
6712815 | Sampson et al. | Mar 2004 | B2 |
6714822 | King et al. | Mar 2004 | B2 |
6716184 | Vaezy et al. | Apr 2004 | B2 |
6720350 | Kunz et al. | Apr 2004 | B2 |
6723043 | Kleeman et al. | Apr 2004 | B2 |
6723064 | Babaev | Apr 2004 | B2 |
6736811 | Panescu et al. | May 2004 | B2 |
6743184 | Sampson et al. | Jun 2004 | B2 |
6746401 | Panescu | Jun 2004 | B2 |
6746464 | Makower | Jun 2004 | B1 |
6746474 | Saadat | Jun 2004 | B2 |
6748953 | Sherry et al. | Jun 2004 | B2 |
6749607 | Edwards et al. | Jun 2004 | B2 |
6752805 | Maguire et al. | Jun 2004 | B2 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6763261 | Casscells, III et al. | Jul 2004 | B2 |
6764501 | Ganz | Jul 2004 | B2 |
6769433 | Zikorus et al. | Aug 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6771996 | Bowe et al. | Aug 2004 | B2 |
6773433 | Stewart et al. | Aug 2004 | B2 |
6786900 | Joye et al. | Sep 2004 | B2 |
6786901 | Joye et al. | Sep 2004 | B2 |
6786904 | Döscher et al. | Sep 2004 | B2 |
6788977 | Fenn et al. | Sep 2004 | B2 |
6790206 | Panescu | Sep 2004 | B2 |
6790222 | Kugler et al. | Sep 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
6797933 | Mendis et al. | Sep 2004 | B1 |
6797960 | Spartiotis et al. | Sep 2004 | B1 |
6800075 | Mische et al. | Oct 2004 | B2 |
6802857 | Walsh et al. | Oct 2004 | B1 |
6807444 | Tu et al. | Oct 2004 | B2 |
6811550 | Holland et al. | Nov 2004 | B2 |
6813520 | Truckai et al. | Nov 2004 | B2 |
6814730 | Li | Nov 2004 | B2 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6823205 | Jara | Nov 2004 | B1 |
6824516 | Batten et al. | Nov 2004 | B2 |
6827726 | Parodi | Dec 2004 | B2 |
6827926 | Robinson et al. | Dec 2004 | B2 |
6829497 | Mogul | Dec 2004 | B2 |
6830568 | Kesten et al. | Dec 2004 | B1 |
6837886 | Collins et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6845267 | Harrison | Jan 2005 | B2 |
6847848 | Sterzer | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6849075 | Bertolero et al. | Feb 2005 | B2 |
6853425 | Kim et al. | Feb 2005 | B2 |
6855123 | Nita | Feb 2005 | B2 |
6855143 | Davison | Feb 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6872183 | Sampson et al. | Mar 2005 | B2 |
6884260 | Kugler et al. | Apr 2005 | B2 |
6889694 | Hooven | May 2005 | B2 |
6893436 | Woodard et al. | May 2005 | B2 |
6895077 | Karellas et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6898454 | Atalar et al. | May 2005 | B2 |
6899711 | Stewart et al. | May 2005 | B2 |
6899718 | Gifford, III et al. | May 2005 | B2 |
6905494 | Yon et al. | Jun 2005 | B2 |
6908462 | Joye et al. | Jun 2005 | B2 |
6909009 | Koridze | Jun 2005 | B2 |
6911026 | Hall et al. | Jun 2005 | B1 |
6915806 | Pacek et al. | Jul 2005 | B2 |
6923805 | LaFontaine et al. | Aug 2005 | B1 |
6923808 | Taimisto | Aug 2005 | B2 |
6926246 | Ginggen | Aug 2005 | B2 |
6926713 | Rioux et al. | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929009 | Makower et al. | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929639 | Lafontaine | Aug 2005 | B2 |
6932776 | Carr | Aug 2005 | B2 |
6936047 | Nasab et al. | Aug 2005 | B2 |
6942620 | Nita et al. | Sep 2005 | B2 |
6942657 | Sinofsky et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6942692 | Landau et al. | Sep 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6949121 | Laguna | Sep 2005 | B1 |
6952615 | Satake | Oct 2005 | B2 |
6953425 | Brister | Oct 2005 | B2 |
6955174 | Joye et al. | Oct 2005 | B2 |
6955175 | Stevens et al. | Oct 2005 | B2 |
6959711 | Murphy et al. | Nov 2005 | B2 |
6960207 | Vanney et al. | Nov 2005 | B2 |
6962584 | Stone et al. | Nov 2005 | B1 |
6964660 | Maguire et al. | Nov 2005 | B2 |
6966908 | Maguire et al. | Nov 2005 | B2 |
6972015 | Joye et al. | Dec 2005 | B2 |
6972024 | Kilpatrick et al. | Dec 2005 | B1 |
6974456 | Edwards et al. | Dec 2005 | B2 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
6979329 | Burnside et al. | Dec 2005 | B2 |
6979420 | Weber | Dec 2005 | B2 |
6984238 | Gifford, III et al. | Jan 2006 | B2 |
6985774 | Kieval et al. | Jan 2006 | B2 |
6986739 | Warren et al. | Jan 2006 | B2 |
6989009 | Lafontaine | Jan 2006 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6991617 | Hektner et al. | Jan 2006 | B2 |
7001378 | Yon et al. | Feb 2006 | B2 |
7006858 | Silver et al. | Feb 2006 | B2 |
7022105 | Edwards | Apr 2006 | B1 |
7022120 | Lafontaine | Apr 2006 | B2 |
7025767 | Schaefer et al. | Apr 2006 | B2 |
7033322 | Silver | Apr 2006 | B2 |
7033372 | Cahalan | Apr 2006 | B1 |
7041098 | Farley et al. | May 2006 | B2 |
7050848 | Hoey et al. | May 2006 | B2 |
7063670 | Sampson et al. | Jun 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7063719 | Jansen et al. | Jun 2006 | B2 |
7066895 | Podany | Jun 2006 | B2 |
7066900 | Botto et al. | Jun 2006 | B2 |
7066904 | Rosenthal et al. | Jun 2006 | B2 |
7072720 | Puskas | Jul 2006 | B2 |
7074217 | Strul et al. | Jul 2006 | B2 |
7081112 | Joye et al. | Jul 2006 | B2 |
7081114 | Rashidi | Jul 2006 | B2 |
7083614 | Fjield et al. | Aug 2006 | B2 |
7084276 | Vu et al. | Aug 2006 | B2 |
7087026 | Callister et al. | Aug 2006 | B2 |
7087051 | Bourne et al. | Aug 2006 | B2 |
7087052 | Sampson et al. | Aug 2006 | B2 |
7087053 | Vanney | Aug 2006 | B2 |
7089065 | Westlund et al. | Aug 2006 | B2 |
7097641 | Arless et al. | Aug 2006 | B1 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7101368 | Lafontaine | Sep 2006 | B2 |
7104983 | Grasso, III et al. | Sep 2006 | B2 |
7104987 | Biggs et al. | Sep 2006 | B2 |
7108715 | Lawrence-Brown et al. | Sep 2006 | B2 |
7112196 | Brosch et al. | Sep 2006 | B2 |
7112198 | Satake | Sep 2006 | B2 |
7112211 | Gifford, III et al. | Sep 2006 | B2 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7122033 | Wood | Oct 2006 | B2 |
7134438 | Makower et al. | Nov 2006 | B2 |
7137963 | Nita et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
7155271 | Halperin et al. | Dec 2006 | B2 |
7157491 | Mewshaw et al. | Jan 2007 | B2 |
7157492 | Mewshaw et al. | Jan 2007 | B2 |
7158832 | Kieval et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7165551 | Edwards et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7172589 | Lafontaine | Feb 2007 | B2 |
7172610 | Heitzmann et al. | Feb 2007 | B2 |
7181261 | Silver et al. | Feb 2007 | B2 |
7184811 | Phan et al. | Feb 2007 | B2 |
7184827 | Edwards | Feb 2007 | B1 |
7189227 | Lafontaine | Mar 2007 | B2 |
7192427 | Chapelon et al. | Mar 2007 | B2 |
7192586 | Bander | Mar 2007 | B2 |
7197354 | Sobe | Mar 2007 | B2 |
7198632 | Lim et al. | Apr 2007 | B2 |
7200445 | Dalbec et al. | Apr 2007 | B1 |
7201749 | Govari et al. | Apr 2007 | B2 |
7203537 | Mower | Apr 2007 | B2 |
7214234 | Rapacki et al. | May 2007 | B2 |
7220233 | Nita et al. | May 2007 | B2 |
7220239 | Wilson et al. | May 2007 | B2 |
7220257 | Lafontaine | May 2007 | B1 |
7220270 | Sawhney et al. | May 2007 | B2 |
7232458 | Saadat | Jun 2007 | B2 |
7232459 | Greenberg et al. | Jun 2007 | B2 |
7238184 | Megerman et al. | Jul 2007 | B2 |
7241273 | Maguire et al. | Jul 2007 | B2 |
7241736 | Hunter et al. | Jul 2007 | B2 |
7247141 | Makin et al. | Jul 2007 | B2 |
7250041 | Chiu et al. | Jul 2007 | B2 |
7250440 | Mewshaw et al. | Jul 2007 | B2 |
7252664 | Nasab et al. | Aug 2007 | B2 |
7252679 | Fischell et al. | Aug 2007 | B2 |
7264619 | Venturelli | Sep 2007 | B2 |
7279600 | Mewshaw et al. | Oct 2007 | B2 |
7280863 | Shachar | Oct 2007 | B2 |
7282213 | Schroeder et al. | Oct 2007 | B2 |
7285119 | Stewart et al. | Oct 2007 | B2 |
7285120 | Im et al. | Oct 2007 | B2 |
7288089 | Yon et al. | Oct 2007 | B2 |
7288096 | Chin | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7293562 | Malecki et al. | Nov 2007 | B2 |
7294125 | Phalen et al. | Nov 2007 | B2 |
7294126 | Sampson et al. | Nov 2007 | B2 |
7294127 | Leung et al. | Nov 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7297475 | Koiwai et al. | Nov 2007 | B2 |
7300433 | Lane et al. | Nov 2007 | B2 |
7301108 | Egitto et al. | Nov 2007 | B2 |
7310150 | Guillermo et al. | Dec 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7314483 | Landau et al. | Jan 2008 | B2 |
7317077 | Averback et al. | Jan 2008 | B2 |
7323006 | Andreas et al. | Jan 2008 | B2 |
7326206 | Paul et al. | Feb 2008 | B2 |
7326226 | Root et al. | Feb 2008 | B2 |
7326235 | Edwards | Feb 2008 | B2 |
7326237 | DePalma et al. | Feb 2008 | B2 |
7329236 | Kesten et al. | Feb 2008 | B2 |
7335180 | Nita et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7341570 | Keren et al. | Mar 2008 | B2 |
7343195 | Strommer et al. | Mar 2008 | B2 |
7347857 | Anderson et al. | Mar 2008 | B2 |
7348003 | Salcedo et al. | Mar 2008 | B2 |
7352593 | Zeng et al. | Apr 2008 | B2 |
7354927 | Vu | Apr 2008 | B2 |
7359732 | Kim et al. | Apr 2008 | B2 |
7361341 | Salcedo et al. | Apr 2008 | B2 |
7364566 | Elkins et al. | Apr 2008 | B2 |
7367970 | Govari et al. | May 2008 | B2 |
7367975 | Malecki et al. | May 2008 | B2 |
7371231 | Rioux et al. | May 2008 | B2 |
7387126 | Cox et al. | Jun 2008 | B2 |
7393338 | Nita | Jul 2008 | B2 |
7396355 | Goldman et al. | Jul 2008 | B2 |
7402151 | Rosenman et al. | Jul 2008 | B2 |
7402312 | Rosen et al. | Jul 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7406970 | Zikorus et al. | Aug 2008 | B2 |
7407502 | Strul et al. | Aug 2008 | B2 |
7407506 | Makower | Aug 2008 | B2 |
7407671 | McBride et al. | Aug 2008 | B2 |
7408021 | Averback et al. | Aug 2008 | B2 |
7410486 | Fuimaono et al. | Aug 2008 | B2 |
7413556 | Zhang et al. | Aug 2008 | B2 |
7425212 | Danek et al. | Sep 2008 | B1 |
7426409 | Casscells, III et al. | Sep 2008 | B2 |
7435248 | Taimisto et al. | Oct 2008 | B2 |
7447453 | Kim et al. | Nov 2008 | B2 |
7449018 | Kramer | Nov 2008 | B2 |
7452538 | Ni et al. | Nov 2008 | B2 |
7473890 | Grier et al. | Jan 2009 | B2 |
7476384 | Ni et al. | Jan 2009 | B2 |
7479157 | Weber et al. | Jan 2009 | B2 |
7481803 | Kesten et al. | Jan 2009 | B2 |
7485104 | Kieval | Feb 2009 | B2 |
7486805 | Krattiger | Feb 2009 | B2 |
7487780 | Hooven | Feb 2009 | B2 |
7493154 | Bonner et al. | Feb 2009 | B2 |
7494485 | Beck et al. | Feb 2009 | B2 |
7494486 | Mische et al. | Feb 2009 | B2 |
7494488 | Weber | Feb 2009 | B2 |
7494661 | Sanders | Feb 2009 | B2 |
7495439 | Wiggins | Feb 2009 | B2 |
7497858 | Chapelon et al. | Mar 2009 | B2 |
7499745 | Littrup et al. | Mar 2009 | B2 |
7500985 | Saadat | Mar 2009 | B2 |
7505812 | Eggers et al. | Mar 2009 | B1 |
7505816 | Schmeling et al. | Mar 2009 | B2 |
7507233 | Littrup et al. | Mar 2009 | B2 |
7507235 | Keogh et al. | Mar 2009 | B2 |
7511494 | Wedeen | Mar 2009 | B2 |
7512445 | Truckai et al. | Mar 2009 | B2 |
7527643 | Case et al. | May 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7540852 | Nita et al. | Jun 2009 | B2 |
7540870 | Babaev | Jun 2009 | B2 |
RE40863 | Tay et al. | Jul 2009 | E |
7556624 | Laufer et al. | Jul 2009 | B2 |
7558625 | Levin et al. | Jul 2009 | B2 |
7563247 | Maguire et al. | Jul 2009 | B2 |
7566319 | McAuley et al. | Jul 2009 | B2 |
7569052 | Phan et al. | Aug 2009 | B2 |
7582111 | Krolik et al. | Sep 2009 | B2 |
7584004 | Caparso et al. | Sep 2009 | B2 |
7585835 | Hill et al. | Sep 2009 | B2 |
7591996 | Hwang et al. | Sep 2009 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7598228 | Hattori et al. | Oct 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7603166 | Casscells, III et al. | Oct 2009 | B2 |
7604608 | Nita et al. | Oct 2009 | B2 |
7604633 | Truckai et al. | Oct 2009 | B2 |
7615015 | Coleman | Nov 2009 | B2 |
7615072 | Rust et al. | Nov 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7621902 | Nita et al. | Nov 2009 | B2 |
7621929 | Nita et al. | Nov 2009 | B2 |
7626015 | Feinstein et al. | Dec 2009 | B2 |
7626235 | Kinoshita | Dec 2009 | B2 |
7632268 | Edwards et al. | Dec 2009 | B2 |
7632845 | Vu et al. | Dec 2009 | B2 |
7635383 | Gumm | Dec 2009 | B2 |
7640046 | Pastore et al. | Dec 2009 | B2 |
7641633 | Laufer et al. | Jan 2010 | B2 |
7641679 | Joye et al. | Jan 2010 | B2 |
7646544 | Batchko et al. | Jan 2010 | B2 |
7647115 | Levin et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7655006 | Sauvageau et al. | Feb 2010 | B2 |
7662114 | Seip et al. | Feb 2010 | B2 |
7664548 | Amurthur et al. | Feb 2010 | B2 |
7670279 | Gertner | Mar 2010 | B2 |
7670335 | Keidar | Mar 2010 | B2 |
7671084 | Mewshaw et al. | Mar 2010 | B2 |
7678104 | Keidar | Mar 2010 | B2 |
7678106 | Lee | Mar 2010 | B2 |
7678108 | Chrisitian et al. | Mar 2010 | B2 |
7691080 | Seward et al. | Apr 2010 | B2 |
7699809 | Urmey | Apr 2010 | B2 |
7706882 | Francischelli et al. | Apr 2010 | B2 |
7715912 | Rezai et al. | May 2010 | B2 |
7717853 | Nita | May 2010 | B2 |
7717909 | Strul et al. | May 2010 | B2 |
7717948 | Demarais et al. | May 2010 | B2 |
7722539 | Carter et al. | May 2010 | B2 |
7725157 | Dumoulin et al. | May 2010 | B2 |
7727178 | Wilson et al. | Jun 2010 | B2 |
7736317 | Stephens et al. | Jun 2010 | B2 |
7736360 | Mody et al. | Jun 2010 | B2 |
7736362 | Eberl et al. | Jun 2010 | B2 |
7738952 | Yun et al. | Jun 2010 | B2 |
7740629 | Anderson et al. | Jun 2010 | B2 |
7741299 | Feinstein et al. | Jun 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7744594 | Yamazaki et al. | Jun 2010 | B2 |
7753907 | DiMatteo et al. | Jul 2010 | B2 |
7756583 | Demarais et al. | Jul 2010 | B2 |
7758510 | Nita et al. | Jul 2010 | B2 |
7758520 | Griffin et al. | Jul 2010 | B2 |
7759315 | Cuzzocrea et al. | Jul 2010 | B2 |
7766833 | Lee et al. | Aug 2010 | B2 |
7766878 | Tremaglio, Jr. et al. | Aug 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7767844 | Lee et al. | Aug 2010 | B2 |
7769427 | Shachar | Aug 2010 | B2 |
7771372 | Wilson | Aug 2010 | B2 |
7771421 | Stewart et al. | Aug 2010 | B2 |
7776967 | Perry et al. | Aug 2010 | B2 |
7777486 | Hargreaves et al. | Aug 2010 | B2 |
7780660 | Bourne et al. | Aug 2010 | B2 |
7789876 | Zikorus et al. | Sep 2010 | B2 |
7792568 | Zhong et al. | Sep 2010 | B2 |
7799021 | Leung et al. | Sep 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7806871 | Li et al. | Oct 2010 | B2 |
7811265 | Hering et al. | Oct 2010 | B2 |
7811281 | Rentrop | Oct 2010 | B1 |
7811313 | Mon et al. | Oct 2010 | B2 |
7816511 | Kawashima et al. | Oct 2010 | B2 |
7818053 | Kassab | Oct 2010 | B2 |
7819866 | Bednarek | Oct 2010 | B2 |
7822460 | Halperin et al. | Oct 2010 | B2 |
7828837 | Khoury | Nov 2010 | B2 |
7832407 | Gertner | Nov 2010 | B2 |
7833220 | Mon et al. | Nov 2010 | B2 |
7837676 | Sinelnikov et al. | Nov 2010 | B2 |
7837720 | Mon | Nov 2010 | B2 |
7841978 | Gertner | Nov 2010 | B2 |
7846157 | Kozel | Dec 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7846172 | Makower | Dec 2010 | B2 |
7849860 | Makower et al. | Dec 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7853333 | Demarais | Dec 2010 | B2 |
7854734 | Biggs et al. | Dec 2010 | B2 |
7857756 | Warren et al. | Dec 2010 | B2 |
7862565 | Eder et al. | Jan 2011 | B2 |
7863897 | Slocum, Jr. et al. | Jan 2011 | B2 |
7869854 | Shachar et al. | Jan 2011 | B2 |
7873417 | Demarais et al. | Jan 2011 | B2 |
7887538 | Bleich et al. | Feb 2011 | B2 |
7894905 | Pless et al. | Feb 2011 | B2 |
7896873 | Hiller et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7901402 | Jones et al. | Mar 2011 | B2 |
7901420 | Dunn | Mar 2011 | B2 |
7905862 | Sampson | Mar 2011 | B2 |
7918850 | Govari et al. | Apr 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7937143 | Demarais et al. | May 2011 | B2 |
7938830 | Saadat et al. | May 2011 | B2 |
7942874 | Eder et al. | May 2011 | B2 |
7942928 | Webler et al. | May 2011 | B2 |
7946976 | Gertner | May 2011 | B2 |
7950397 | Thapliyal et al. | May 2011 | B2 |
7955293 | Nita et al. | Jun 2011 | B2 |
7956613 | Wald | Jun 2011 | B2 |
7959627 | Utley et al. | Jun 2011 | B2 |
7962854 | Vance et al. | Jun 2011 | B2 |
7967782 | Laufer et al. | Jun 2011 | B2 |
7967808 | Fitzgerald et al. | Jun 2011 | B2 |
7972327 | Eberl et al. | Jul 2011 | B2 |
7972330 | Alejandro et al. | Jul 2011 | B2 |
7983751 | Zdeblick et al. | Jul 2011 | B2 |
8001976 | Gertner | Aug 2011 | B2 |
8007440 | Magnin et al. | Aug 2011 | B2 |
8012147 | Lafontaine | Sep 2011 | B2 |
8019435 | Hastings et al. | Sep 2011 | B2 |
8021362 | Deem et al. | Sep 2011 | B2 |
8021413 | Dierking et al. | Sep 2011 | B2 |
8025661 | Arnold et al. | Sep 2011 | B2 |
8027718 | Spinner et al. | Sep 2011 | B2 |
8031927 | Karl et al. | Oct 2011 | B2 |
8033284 | Porter et al. | Oct 2011 | B2 |
8048144 | Thistle et al. | Nov 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8052700 | Dunn | Nov 2011 | B2 |
8062289 | Babaev | Nov 2011 | B2 |
8075580 | Makower | Dec 2011 | B2 |
8080006 | Lafontaine et al. | Dec 2011 | B2 |
8088127 | Mayse et al. | Jan 2012 | B2 |
8116883 | Williams et al. | Feb 2012 | B2 |
8119183 | O'Donoghue et al. | Feb 2012 | B2 |
8120518 | Jang et al. | Feb 2012 | B2 |
8123741 | Marrouche et al. | Feb 2012 | B2 |
8128617 | Bencini et al. | Mar 2012 | B2 |
8131371 | Demarals et al. | Mar 2012 | B2 |
8131372 | Levin et al. | Mar 2012 | B2 |
8131382 | Asada | Mar 2012 | B2 |
8137274 | Weng et al. | Mar 2012 | B2 |
8140170 | Rezai et al. | Mar 2012 | B2 |
8143316 | Ueno | Mar 2012 | B2 |
8145316 | Deem et al. | Mar 2012 | B2 |
8145317 | Demarais et al. | Mar 2012 | B2 |
8150518 | Levin et al. | Apr 2012 | B2 |
8150519 | Demarais et al. | Apr 2012 | B2 |
8150520 | Demarais et al. | Apr 2012 | B2 |
8152830 | Gumm | Apr 2012 | B2 |
8162933 | Francischelli et al. | Apr 2012 | B2 |
8175711 | Demarais et al. | May 2012 | B2 |
8187261 | Watson | May 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8192053 | Owen et al. | Jun 2012 | B2 |
8198611 | LaFontaine et al. | Jun 2012 | B2 |
8214056 | Hoffer et al. | Jul 2012 | B2 |
8221407 | Phan et al. | Jul 2012 | B2 |
8226637 | Satake | Jul 2012 | B2 |
8231617 | Satake | Jul 2012 | B2 |
8241217 | Chiang et al. | Aug 2012 | B2 |
8257724 | Cromack et al. | Sep 2012 | B2 |
8257725 | Cromack et al. | Sep 2012 | B2 |
8260397 | Ruff et al. | Sep 2012 | B2 |
8263104 | Ho et al. | Sep 2012 | B2 |
8273023 | Razavi | Sep 2012 | B2 |
8277379 | Lau et al. | Oct 2012 | B2 |
8287524 | Siegel | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8292881 | Brannan et al. | Oct 2012 | B2 |
8293703 | Averback et al. | Oct 2012 | B2 |
8295902 | Salahieh et al. | Oct 2012 | B2 |
8295912 | Gertner | Oct 2012 | B2 |
8308722 | Ormsby et al. | Nov 2012 | B2 |
8317776 | Ferren et al. | Nov 2012 | B2 |
8317810 | Stangenes et al. | Nov 2012 | B2 |
8329179 | Ni et al. | Dec 2012 | B2 |
8336705 | Okahisa | Dec 2012 | B2 |
8343031 | Gertner | Jan 2013 | B2 |
8343145 | Brannan | Jan 2013 | B2 |
8347891 | Demarais et al. | Jan 2013 | B2 |
8353945 | Andreas et al. | Jan 2013 | B2 |
8364237 | Stone et al. | Jan 2013 | B2 |
8366615 | Razavi | Feb 2013 | B2 |
8382697 | Brenneman et al. | Feb 2013 | B2 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8396548 | Perry et al. | Mar 2013 | B2 |
8398629 | Thistle | Mar 2013 | B2 |
8401667 | Gustus et al. | Mar 2013 | B2 |
8403881 | Ferren et al. | Mar 2013 | B2 |
8406877 | Smith et al. | Mar 2013 | B2 |
8409172 | Moll et al. | Apr 2013 | B2 |
8409193 | Young et al. | Apr 2013 | B2 |
8409195 | Young | Apr 2013 | B2 |
8418362 | Zerfas et al. | Apr 2013 | B2 |
8452988 | Wang | May 2013 | B2 |
8454594 | Demarais et al. | Jun 2013 | B2 |
8460358 | Andreas et al. | Jun 2013 | B2 |
8465452 | Kassab | Jun 2013 | B2 |
8469919 | Ingle et al. | Jun 2013 | B2 |
8473067 | Hastings et al. | Jun 2013 | B2 |
8480663 | Ingle et al. | Jul 2013 | B2 |
8485992 | Griffin et al. | Jul 2013 | B2 |
8486060 | Kotmel et al. | Jul 2013 | B2 |
8486063 | Werneth et al. | Jul 2013 | B2 |
8488591 | Miali et al. | Jul 2013 | B2 |
20010007070 | Stewart et al. | Jul 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020022864 | Mahvi et al. | Feb 2002 | A1 |
20020042639 | Murphy-Chutorian et al. | Apr 2002 | A1 |
20020045811 | Kittrell et al. | Apr 2002 | A1 |
20020045890 | Celliers et al. | Apr 2002 | A1 |
20020062146 | Makower et al. | May 2002 | A1 |
20020065542 | Lax et al. | May 2002 | A1 |
20020087151 | Mody et al. | Jul 2002 | A1 |
20020095197 | Lardo et al. | Jul 2002 | A1 |
20020107536 | Hussein | Aug 2002 | A1 |
20020147480 | Mamayek | Oct 2002 | A1 |
20020169444 | Mest et al. | Nov 2002 | A1 |
20020198520 | Coen et al. | Dec 2002 | A1 |
20030065317 | Rudie et al. | Apr 2003 | A1 |
20030092995 | Thompson | May 2003 | A1 |
20030139689 | Shturman et al. | Jul 2003 | A1 |
20030195501 | Sherman et al. | Oct 2003 | A1 |
20030199747 | Michlitsch et al. | Oct 2003 | A1 |
20040010118 | Zerhusen et al. | Jan 2004 | A1 |
20040019348 | Stevens et al. | Jan 2004 | A1 |
20040024371 | Plicchi et al. | Feb 2004 | A1 |
20040043030 | Griffiths et al. | Mar 2004 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040073206 | Foley et al. | Apr 2004 | A1 |
20040088002 | Boyle et al. | May 2004 | A1 |
20040093055 | Bartorelli et al. | May 2004 | A1 |
20040106871 | Hunyor et al. | Jun 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040147915 | Hasebe | Jul 2004 | A1 |
20040162555 | Farley et al. | Aug 2004 | A1 |
20040167506 | Chen | Aug 2004 | A1 |
20040186356 | O'Malley et al. | Sep 2004 | A1 |
20040187875 | He et al. | Sep 2004 | A1 |
20040193211 | Voegele et al. | Sep 2004 | A1 |
20040220556 | Cooper et al. | Nov 2004 | A1 |
20040243022 | Carney et al. | Dec 2004 | A1 |
20040253304 | Gross et al. | Dec 2004 | A1 |
20040267250 | Yon et al. | Dec 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050080374 | Esch et al. | Apr 2005 | A1 |
20050129616 | Salcedo et al. | Jun 2005 | A1 |
20050137180 | Robinson et al. | Jun 2005 | A1 |
20050143817 | Hunter et al. | Jun 2005 | A1 |
20050148842 | Wang et al. | Jul 2005 | A1 |
20050149069 | Bertolero et al. | Jul 2005 | A1 |
20050149080 | Hunter et al. | Jul 2005 | A1 |
20050149158 | Hunter et al. | Jul 2005 | A1 |
20050149173 | Hunter et al. | Jul 2005 | A1 |
20050149175 | Hunter et al. | Jul 2005 | A1 |
20050154277 | Tang et al. | Jul 2005 | A1 |
20050154445 | Hunter et al. | Jul 2005 | A1 |
20050154453 | Hunter et al. | Jul 2005 | A1 |
20050154454 | Hunter et al. | Jul 2005 | A1 |
20050165389 | Swain et al. | Jul 2005 | A1 |
20050165391 | Maguire et al. | Jul 2005 | A1 |
20050165467 | Hunter et al. | Jul 2005 | A1 |
20050165488 | Hunter et al. | Jul 2005 | A1 |
20050175661 | Hunter et al. | Aug 2005 | A1 |
20050175662 | Hunter et al. | Aug 2005 | A1 |
20050175663 | Hunter et al. | Aug 2005 | A1 |
20050177103 | Hunter et al. | Aug 2005 | A1 |
20050177225 | Hunter et al. | Aug 2005 | A1 |
20050181004 | Hunter et al. | Aug 2005 | A1 |
20050181008 | Hunter et al. | Aug 2005 | A1 |
20050181011 | Hunter et al. | Aug 2005 | A1 |
20050181977 | Hunter et al. | Aug 2005 | A1 |
20050182479 | Bonsignore et al. | Aug 2005 | A1 |
20050183728 | Hunter et al. | Aug 2005 | A1 |
20050186242 | Hunter et al. | Aug 2005 | A1 |
20050186243 | Hunter et al. | Aug 2005 | A1 |
20050191331 | Hunter et al. | Sep 2005 | A1 |
20050203410 | Jenkins | Sep 2005 | A1 |
20050209587 | Joye et al. | Sep 2005 | A1 |
20050214205 | Salcedo et al. | Sep 2005 | A1 |
20050214207 | Salcedo et al. | Sep 2005 | A1 |
20050214208 | Salcedo et al. | Sep 2005 | A1 |
20050214209 | Salcedo et al. | Sep 2005 | A1 |
20050214210 | Salcedo et al. | Sep 2005 | A1 |
20050214268 | Cavanagh et al. | Sep 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20050228415 | Gertner | Oct 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050232921 | Rosen et al. | Oct 2005 | A1 |
20050234312 | Suzuki et al. | Oct 2005 | A1 |
20050245862 | Seward | Nov 2005 | A1 |
20050251116 | Steinke et al. | Nov 2005 | A1 |
20050252553 | Ginggen | Nov 2005 | A1 |
20050256398 | Hastings et al. | Nov 2005 | A1 |
20050267556 | Shuros et al. | Dec 2005 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060018949 | Ammon et al. | Jan 2006 | A1 |
20060024564 | Manclaw | Feb 2006 | A1 |
20060025765 | Landman et al. | Feb 2006 | A1 |
20060062786 | Salcedo et al. | Mar 2006 | A1 |
20060083194 | Dhrimaj et al. | Apr 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060089638 | Carmel et al. | Apr 2006 | A1 |
20060095096 | DeBenedictis et al. | May 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060142790 | Gertner | Jun 2006 | A1 |
20060147492 | Hunter et al. | Jul 2006 | A1 |
20060167106 | Zhang et al. | Jul 2006 | A1 |
20060167498 | DiLorenzo | Jul 2006 | A1 |
20060171895 | Bucay-Couto | Aug 2006 | A1 |
20060184221 | Stewart et al. | Aug 2006 | A1 |
20060195139 | Gertner | Aug 2006 | A1 |
20060206150 | Demarais et al. | Sep 2006 | A1 |
20060224153 | Fischell et al. | Oct 2006 | A1 |
20060239921 | Mangat et al. | Oct 2006 | A1 |
20060240070 | Cromack et al. | Oct 2006 | A1 |
20060247266 | Yamada et al. | Nov 2006 | A1 |
20060247760 | Ganesan et al. | Nov 2006 | A1 |
20060263393 | Demopulos et al. | Nov 2006 | A1 |
20060269555 | Salcedo et al. | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20060287644 | Inganas et al. | Dec 2006 | A1 |
20070016184 | Cropper et al. | Jan 2007 | A1 |
20070016274 | Boveja et al. | Jan 2007 | A1 |
20070027390 | Maschke et al. | Feb 2007 | A1 |
20070043077 | Mewshaw et al. | Feb 2007 | A1 |
20070043409 | Brian et al. | Feb 2007 | A1 |
20070049924 | Rahn | Mar 2007 | A1 |
20070066972 | Ormsby et al. | Mar 2007 | A1 |
20070073151 | Lee | Mar 2007 | A1 |
20070093710 | Maschke | Apr 2007 | A1 |
20070100405 | Thompson et al. | May 2007 | A1 |
20070106247 | Burnett et al. | May 2007 | A1 |
20070112327 | Yun et al. | May 2007 | A1 |
20070118107 | Francischelli et al. | May 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070129761 | Demarais et al. | Jun 2007 | A1 |
20070135875 | Demarais et al. | Jun 2007 | A1 |
20070149963 | Matsukuma et al. | Jun 2007 | A1 |
20070162109 | Davila et al. | Jul 2007 | A1 |
20070173805 | Weinberg et al. | Jul 2007 | A1 |
20070179496 | Swoyer et al. | Aug 2007 | A1 |
20070203480 | Mody et al. | Aug 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208134 | Hunter et al. | Sep 2007 | A1 |
20070208210 | Gelfand et al. | Sep 2007 | A1 |
20070208256 | Marilla | Sep 2007 | A1 |
20070208301 | Evard et al. | Sep 2007 | A1 |
20070219576 | Cangialosi | Sep 2007 | A1 |
20070225781 | Saadat et al. | Sep 2007 | A1 |
20070233170 | Gertner | Oct 2007 | A1 |
20070239062 | Chopra et al. | Oct 2007 | A1 |
20070248639 | Demopulos et al. | Oct 2007 | A1 |
20070249703 | Mewshaw et al. | Oct 2007 | A1 |
20070254833 | Hunter et al. | Nov 2007 | A1 |
20070265687 | Deem et al. | Nov 2007 | A1 |
20070278103 | Hoerr et al. | Dec 2007 | A1 |
20070282302 | Wachsman et al. | Dec 2007 | A1 |
20070292411 | Salcedo et al. | Dec 2007 | A1 |
20070293782 | Marino | Dec 2007 | A1 |
20070299043 | Hunter et al. | Dec 2007 | A1 |
20080004673 | Rossing et al. | Jan 2008 | A1 |
20080009927 | Vilims | Jan 2008 | A1 |
20080015501 | Gertner | Jan 2008 | A1 |
20080021408 | Jacobsen et al. | Jan 2008 | A1 |
20080033049 | Mewshaw | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080039830 | Munger et al. | Feb 2008 | A1 |
20080051454 | Wang | Feb 2008 | A1 |
20080064957 | Spence | Mar 2008 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080071306 | Gertner | Mar 2008 | A1 |
20080082109 | Moll et al. | Apr 2008 | A1 |
20080086072 | Bonutti et al. | Apr 2008 | A1 |
20080091193 | Kauphusman et al. | Apr 2008 | A1 |
20080097251 | Babaev | Apr 2008 | A1 |
20080097426 | Root et al. | Apr 2008 | A1 |
20080108867 | Zhou | May 2008 | A1 |
20080119879 | Brenneman et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080132450 | Lee et al. | Jun 2008 | A1 |
20080140002 | Ramzipoor et al. | Jun 2008 | A1 |
20080147002 | Gertner | Jun 2008 | A1 |
20080161662 | Golijanin et al. | Jul 2008 | A1 |
20080161717 | Gertner | Jul 2008 | A1 |
20080161801 | Steinke et al. | Jul 2008 | A1 |
20080171974 | Lafontaine et al. | Jul 2008 | A1 |
20080172035 | Starksen et al. | Jul 2008 | A1 |
20080172104 | Kieval et al. | Jul 2008 | A1 |
20080188912 | Stone et al. | Aug 2008 | A1 |
20080188913 | Stone et al. | Aug 2008 | A1 |
20080208162 | Joshi | Aug 2008 | A1 |
20080208169 | Boyle et al. | Aug 2008 | A1 |
20080213331 | Gelfand et al. | Sep 2008 | A1 |
20080215117 | Gross | Sep 2008 | A1 |
20080221448 | Khuri-Yakub et al. | Sep 2008 | A1 |
20080234790 | Bayer et al. | Sep 2008 | A1 |
20080243091 | Humphreys et al. | Oct 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080249525 | Lee et al. | Oct 2008 | A1 |
20080249547 | Dunn | Oct 2008 | A1 |
20080255550 | Bell | Oct 2008 | A1 |
20080255642 | Zarins et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20080275484 | Gertner | Nov 2008 | A1 |
20080281312 | Werneth et al. | Nov 2008 | A1 |
20080281347 | Gertner | Nov 2008 | A1 |
20080287918 | Rosenman et al. | Nov 2008 | A1 |
20080294037 | Richter | Nov 2008 | A1 |
20080300618 | Gertner | Dec 2008 | A1 |
20080312644 | Fourkas et al. | Dec 2008 | A1 |
20080312673 | Viswanathan et al. | Dec 2008 | A1 |
20080317818 | Griffith et al. | Dec 2008 | A1 |
20090018486 | Goren et al. | Jan 2009 | A1 |
20090018609 | DiLorenzo | Jan 2009 | A1 |
20090024194 | Arcot-Krishnamurthy et al. | Jan 2009 | A1 |
20090030312 | Hadjicostis | Jan 2009 | A1 |
20090036948 | Levin et al. | Feb 2009 | A1 |
20090043372 | Northrop et al. | Feb 2009 | A1 |
20090054082 | Kim et al. | Feb 2009 | A1 |
20090062873 | Wu et al. | Mar 2009 | A1 |
20090069671 | Anderson | Mar 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090088735 | Abboud et al. | Apr 2009 | A1 |
20090105631 | Kieval | Apr 2009 | A1 |
20090112202 | Young | Apr 2009 | A1 |
20090118620 | Tgavalekos et al. | May 2009 | A1 |
20090118726 | Auth et al. | May 2009 | A1 |
20090125099 | Weber et al. | May 2009 | A1 |
20090131798 | Minar et al. | May 2009 | A1 |
20090143640 | Saadat et al. | Jun 2009 | A1 |
20090156988 | Ferren et al. | Jun 2009 | A1 |
20090157057 | Ferren et al. | Jun 2009 | A1 |
20090157161 | Desai et al. | Jun 2009 | A1 |
20090171333 | Hon | Jul 2009 | A1 |
20090192558 | Whitehurst et al. | Jul 2009 | A1 |
20090198223 | Thilwind et al. | Aug 2009 | A1 |
20090203962 | Miller et al. | Aug 2009 | A1 |
20090203993 | Mangat et al. | Aug 2009 | A1 |
20090204170 | Hastings et al. | Aug 2009 | A1 |
20090210953 | Moyer et al. | Aug 2009 | A1 |
20090216317 | Cromack et al. | Aug 2009 | A1 |
20090221955 | Babaev | Sep 2009 | A1 |
20090226429 | Salcedo et al. | Sep 2009 | A1 |
20090240249 | Chan et al. | Sep 2009 | A1 |
20090247933 | Maor et al. | Oct 2009 | A1 |
20090247966 | Gunn et al. | Oct 2009 | A1 |
20090248012 | Maor et al. | Oct 2009 | A1 |
20090253974 | Rahme | Oct 2009 | A1 |
20090264755 | Chen et al. | Oct 2009 | A1 |
20090270850 | Zhou et al. | Oct 2009 | A1 |
20090281533 | Ingle et al. | Nov 2009 | A1 |
20090287137 | Crowley | Nov 2009 | A1 |
20090318749 | Stolen et al. | Dec 2009 | A1 |
20100009267 | Chase et al. | Jan 2010 | A1 |
20100030061 | Canfield et al. | Feb 2010 | A1 |
20100048983 | Ball et al. | Feb 2010 | A1 |
20100049099 | Thapliyal et al. | Feb 2010 | A1 |
20100049186 | Ingle et al. | Feb 2010 | A1 |
20100049188 | Nelson et al. | Feb 2010 | A1 |
20100049191 | Habib et al. | Feb 2010 | A1 |
20100049283 | Johnson | Feb 2010 | A1 |
20100069837 | Rassat et al. | Mar 2010 | A1 |
20100076299 | Gustus et al. | Mar 2010 | A1 |
20100076425 | Carroux | Mar 2010 | A1 |
20100087782 | Ghaffari et al. | Apr 2010 | A1 |
20100106005 | Karczmar et al. | Apr 2010 | A1 |
20100114244 | Manda et al. | May 2010 | A1 |
20100130836 | Malchano et al. | May 2010 | A1 |
20100137860 | Demarais et al. | Jun 2010 | A1 |
20100137952 | Demarais et al. | Jun 2010 | A1 |
20100160903 | Krespi | Jun 2010 | A1 |
20100160906 | Jarrard | Jun 2010 | A1 |
20100168624 | Sliwa | Jul 2010 | A1 |
20100168731 | Wu et al. | Jul 2010 | A1 |
20100168739 | Wu et al. | Jul 2010 | A1 |
20100174282 | Demarais et al. | Jul 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100191232 | Boveda | Jul 2010 | A1 |
20100217162 | Hissong et al. | Aug 2010 | A1 |
20100222786 | Kassab | Sep 2010 | A1 |
20100222851 | Deem et al. | Sep 2010 | A1 |
20100222854 | Demarais et al. | Sep 2010 | A1 |
20100228122 | Keenan et al. | Sep 2010 | A1 |
20100249604 | Hastings et al. | Sep 2010 | A1 |
20100249773 | Clark et al. | Sep 2010 | A1 |
20100256616 | Katoh et al. | Oct 2010 | A1 |
20100268217 | Habib | Oct 2010 | A1 |
20100268307 | Demarais et al. | Oct 2010 | A1 |
20100284927 | Lu et al. | Nov 2010 | A1 |
20100286684 | Hata et al. | Nov 2010 | A1 |
20100298821 | Garbagnati | Nov 2010 | A1 |
20100305036 | Barnes et al. | Dec 2010 | A1 |
20100312141 | Keast et al. | Dec 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20110009750 | Taylor et al. | Jan 2011 | A1 |
20110021976 | Li et al. | Jan 2011 | A1 |
20110034832 | Cioanta et al. | Feb 2011 | A1 |
20110040324 | McCarthy et al. | Feb 2011 | A1 |
20110044942 | Puri et al. | Feb 2011 | A1 |
20110060324 | Wu et al. | Mar 2011 | A1 |
20110071400 | Hastings et al. | Mar 2011 | A1 |
20110071401 | Hastings et al. | Mar 2011 | A1 |
20110077498 | McDaniel | Mar 2011 | A1 |
20110092781 | Gertner | Apr 2011 | A1 |
20110092880 | Gertner | Apr 2011 | A1 |
20110104061 | Seward | May 2011 | A1 |
20110112400 | Emery et al. | May 2011 | A1 |
20110118600 | Gertner | May 2011 | A1 |
20110118726 | De La Rama et al. | May 2011 | A1 |
20110130708 | Perry et al. | Jun 2011 | A1 |
20110137155 | Weber et al. | Jun 2011 | A1 |
20110144479 | Hastings et al. | Jun 2011 | A1 |
20110146673 | Keast et al. | Jun 2011 | A1 |
20110166499 | Demarais et al. | Jul 2011 | A1 |
20110178570 | Demarais | Jul 2011 | A1 |
20110200171 | Beetel et al. | Aug 2011 | A1 |
20110202098 | Demarais et al. | Aug 2011 | A1 |
20110207758 | Sobotka et al. | Aug 2011 | A1 |
20110208096 | Demarais et al. | Aug 2011 | A1 |
20110257523 | Hastings et al. | Oct 2011 | A1 |
20110257564 | Demarais et al. | Oct 2011 | A1 |
20110257622 | Salahieh et al. | Oct 2011 | A1 |
20110257641 | Hastings et al. | Oct 2011 | A1 |
20110257642 | Griggs, III | Oct 2011 | A1 |
20110263921 | Vrba et al. | Oct 2011 | A1 |
20110264011 | Wu et al. | Oct 2011 | A1 |
20110264075 | Leung et al. | Oct 2011 | A1 |
20110264086 | Ingle | Oct 2011 | A1 |
20110264116 | Kocur et al. | Oct 2011 | A1 |
20110270238 | Rizq et al. | Nov 2011 | A1 |
20110306851 | Wang | Dec 2011 | A1 |
20110319809 | Smith | Dec 2011 | A1 |
20120029496 | Smith | Feb 2012 | A1 |
20120029500 | Jenson | Feb 2012 | A1 |
20120029505 | Jenson | Feb 2012 | A1 |
20120029509 | Smith | Feb 2012 | A1 |
20120029510 | Haverkost | Feb 2012 | A1 |
20120029511 | Smith | Feb 2012 | A1 |
20120029512 | Willard et al. | Feb 2012 | A1 |
20120029513 | Smith et al. | Feb 2012 | A1 |
20120059241 | Hastings et al. | Mar 2012 | A1 |
20120059286 | Hastings et al. | Mar 2012 | A1 |
20120065506 | Smith | Mar 2012 | A1 |
20120065554 | Pikus | Mar 2012 | A1 |
20120095461 | Herscher et al. | Apr 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120101490 | Smith | Apr 2012 | A1 |
20120101538 | Ballakur et al. | Apr 2012 | A1 |
20120109021 | Hastings et al. | May 2012 | A1 |
20120116382 | Ku et al. | May 2012 | A1 |
20120116383 | Mauch et al. | May 2012 | A1 |
20120116392 | Willard | May 2012 | A1 |
20120116438 | Salahieh et al. | May 2012 | A1 |
20120116486 | Naga et al. | May 2012 | A1 |
20120123243 | Hastings | May 2012 | A1 |
20120123258 | Willard | May 2012 | A1 |
20120123261 | Jenson et al. | May 2012 | A1 |
20120123303 | Sogard et al. | May 2012 | A1 |
20120123406 | Edmunds et al. | May 2012 | A1 |
20120130289 | Demarais et al. | May 2012 | A1 |
20120130345 | Levin et al. | May 2012 | A1 |
20120130359 | Turovskiy | May 2012 | A1 |
20120130360 | Buckley et al. | May 2012 | A1 |
20120130362 | Hastings et al. | May 2012 | A1 |
20120130368 | Jenson | May 2012 | A1 |
20120130458 | Ryba et al. | May 2012 | A1 |
20120136344 | Buckley et al. | May 2012 | A1 |
20120136349 | Hastings | May 2012 | A1 |
20120136350 | Goshgarian et al. | May 2012 | A1 |
20120136417 | Buckley et al. | May 2012 | A1 |
20120136418 | Buckley et al. | May 2012 | A1 |
20120143181 | Demarais et al. | Jun 2012 | A1 |
20120143293 | Mauch et al. | Jun 2012 | A1 |
20120143294 | Clark et al. | Jun 2012 | A1 |
20120150267 | Buckley et al. | Jun 2012 | A1 |
20120157986 | Stone et al. | Jun 2012 | A1 |
20120157987 | Steinke et al. | Jun 2012 | A1 |
20120157988 | Stone et al. | Jun 2012 | A1 |
20120157989 | Stone et al. | Jun 2012 | A1 |
20120157992 | Smith et al. | Jun 2012 | A1 |
20120157993 | Jenson et al. | Jun 2012 | A1 |
20120158101 | Stone et al. | Jun 2012 | A1 |
20120158104 | Huynh et al. | Jun 2012 | A1 |
20120172837 | Demarais et al. | Jul 2012 | A1 |
20120172870 | Jenson et al. | Jul 2012 | A1 |
20120184952 | Jenson et al. | Jul 2012 | A1 |
20120197198 | Demarais et al. | Aug 2012 | A1 |
20120197252 | Deem et al. | Aug 2012 | A1 |
20120232409 | Stahmann et al. | Sep 2012 | A1 |
20120265066 | Crow et al. | Oct 2012 | A1 |
20120265198 | Crow et al. | Oct 2012 | A1 |
20130012844 | Demarais et al. | Jan 2013 | A1 |
20130012866 | Deem et al. | Jan 2013 | A1 |
20130012867 | Demarais et al. | Jan 2013 | A1 |
20130013024 | Levin et al. | Jan 2013 | A1 |
20130023865 | Steinke et al. | Jan 2013 | A1 |
20130035681 | Subramaniam et al. | Feb 2013 | A1 |
20130066316 | Steinke et al. | Mar 2013 | A1 |
20130085489 | Fain et al. | Apr 2013 | A1 |
20130090563 | Weber | Apr 2013 | A1 |
20130090578 | Smith et al. | Apr 2013 | A1 |
20130090647 | Smith | Apr 2013 | A1 |
20130090649 | Smith et al. | Apr 2013 | A1 |
20130090650 | Jenson et al. | Apr 2013 | A1 |
20130090651 | Smith | Apr 2013 | A1 |
20130090652 | Jenson | Apr 2013 | A1 |
20130096550 | Hill | Apr 2013 | A1 |
20130096553 | Hill et al. | Apr 2013 | A1 |
20130096554 | Groff et al. | Apr 2013 | A1 |
20130096604 | Hanson et al. | Apr 2013 | A1 |
20130110106 | Richardson | May 2013 | A1 |
20130116687 | Willard | May 2013 | A1 |
20130165764 | Scheuermann et al. | Jun 2013 | A1 |
20130165844 | Shuros et al. | Jun 2013 | A1 |
20130165916 | Mathur et al. | Jun 2013 | A1 |
20130165917 | Mathur et al. | Jun 2013 | A1 |
20130165920 | Weber et al. | Jun 2013 | A1 |
20130165923 | Mathur et al. | Jun 2013 | A1 |
20130165924 | Mathur et al. | Jun 2013 | A1 |
20130165925 | Mathur et al. | Jun 2013 | A1 |
20130165926 | Mathur et al. | Jun 2013 | A1 |
20130165990 | Mathur et al. | Jun 2013 | A1 |
20130172815 | Perry et al. | Jul 2013 | A1 |
20130172872 | Subramaniam et al. | Jul 2013 | A1 |
20130172877 | Subramaniam et al. | Jul 2013 | A1 |
20130172878 | Smith | Jul 2013 | A1 |
20130172879 | Sutermeister | Jul 2013 | A1 |
20130172880 | Willard | Jul 2013 | A1 |
20130172881 | Hill et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
10038737 | Feb 2002 | DE |
1053720 | Nov 2000 | EP |
1180004 | Feb 2002 | EP |
1335677 | Aug 2003 | EP |
1874211 | Jan 2008 | EP |
1906853 | Apr 2008 | EP |
1961394 | Aug 2008 | EP |
1620156 | Jul 2009 | EP |
2076193 | Jul 2009 | EP |
2091455 | Aug 2009 | EP |
2197533 | Jun 2010 | EP |
2208506 | Jul 2010 | EP |
1579889 | Aug 2010 | EP |
2092957 | Jan 2011 | EP |
2349044 | Aug 2011 | EP |
2027882 | Oct 2011 | EP |
2378956 | Oct 2011 | EP |
2037840 | Dec 2011 | EP |
2204134 | Apr 2012 | EP |
2320821 | Oct 2012 | EP |
2456301 | Jul 2009 | GB |
9858588 | Dec 1998 | WO |
9900060 | Jan 1999 | WO |
0042934 | Jul 2000 | WO |
0047118 | Aug 2000 | WO |
03026525 | Apr 2003 | WO |
2004100813 | Nov 2004 | WO |
2004110258 | Dec 2004 | WO |
2006105121 | Oct 2006 | WO |
2008014465 | Jan 2008 | WO |
2009121017 | Oct 2009 | WO |
2010067360 | Jun 2010 | WO |
2010102310 | Sep 2010 | WO |
2011005901 | Jan 2011 | WO |
2011053757 | May 2011 | WO |
2011053772 | May 2011 | WO |
2011082279 | Jul 2011 | WO |
2011091069 | Jul 2011 | WO |
2011130534 | Oct 2011 | WO |
2012019156 | Feb 2012 | WO |
2013049601 | Apr 2013 | WO |
Entry |
---|
US 8,398,630, 03/2013, Demarais et al. (withdrawn). |
Van Den Berg, “Light echoes image the human body,” OLE, Oct. 2001, p. 35-37. |
“IntraLuminal: Products,” IntraLuminal Therapeutics, Inc., 2003, p. 1-9. |
“Laser Catheter to Aid Coronary Surgery,” TechTalk: MIT, Jan. 9, 1991, p. 1-4. |
“Optical Coherence Tomography: Advantages of OCT,” LightLab Imaging Technology. |
“Optical Coherence Tomography: Image Gallery Cardiovascular Procedures,” LightLab Imaging Technology. |
“Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Clinical Investigations,” LightLab Imaging Technology, 2002. |
“Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology,” LightLab Imaging Technology, 2001, vol. 27, No. 35. |
“Optical Coherence Tomography: What is OCT?,” LightLab Imaging Technology. |
“Optical Coherence Tomography: Why Use OCT?,” LightLab Imaging Technology. |
“Products—Functional Measurement,” VOLCANO Functional Measurement Products US, Mar. 24, 2003, p. 1-2. |
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Physics in Medicine and Biology, 1993, p. 1-12, vol. 38. |
Carrington, “Future of CVI: It's all about plaque: Identification of vulnerable lesions, not ‘rusty pipes,’ could become cornerstone of preventive cardiology,” Diagnostic Imaging, 2001, p. 1-8. |
Chen et al., “Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo,” EuroIntervention, 2013, p. 1-8. |
Cimino, “Preventing plaque attack,” Mass High Tech, 2001, p. 1-2. |
Dahm et al., “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate,” The American Journal of Cardiology, 2002, p. 68-70, vol. 90. |
De Korte et al., “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, Aug. 8, 2000, p. 617-623. |
Durney et al., “Radiofrequency Radiation Dosimetry Handbook,” Oct. 1986, p. 1-2, Fourth Edition. |
Durney et al., “Radiofrequency Radiation Dosimetry Handbook: Contents,” Oct. 1986, p. 1-5, Fourth Edition. |
Fournier-Desseux et al., “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography,” Physiological Measurement, 2005, p. 337-349. Vo. 26, Institute of Physics Publishing. |
Fram et al., “Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts Via the Coronary Sinus: In Vivo Canine Studies,” PACE, Aug. 1995, p. 1518-1530, vol. 18. |
Fram et al., “Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries,” JACC, 1993, p. 1512-1521, vol. 21, No. 6, American College of Cardiology. |
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction,” American Heart Association, 2002. |
Fujita et al., “Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting,” American Heart Association, 2002. |
Gabriel, “Appendix A: Experimental Data,” 1999, p. 1-21. |
Gabriel, “Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum,” p. 1-6. |
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty,” The Journal of Quantum Electronics, Dec. 1990, p. 2289-2296, vol. 26, No. 12. |
Kaplan et al., “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems,” Journal of Investigative Surgery, 1993, p. 33-52, vol. 6. |
Kolata, “New Studies Question Value of Opening Arteries,” The New York Times, Mar. 21, 2004, p. 1-5. |
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, Aug. 1997, p. 439-446, vol. 16, No. 4. |
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes,” Journal of Refractive Surgery, Sep./Oct. 1998, p. 541-548. |
Lee et al., “Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty,” JACC, 1989, p. 1167-1175, vol. 13, No. 5, American College of Cardiology. |
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results,” American Heart Association, 2002, p. 2929. |
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients,” American Heart Association, 2002, p. 2928. |
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, Jun. 6, 2012, p. 1773-1780, vol. 346, No. 23. |
Muller-Leisse et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation,” CardioVascular and Interventional Radiology, 1993, p. 303-307, vol. 16. |
Nair et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, Apr. 2004, p. 420-431, vol. 51, No. 4. |
Popma et al., “Percutaneous Coronary and Valvular Intervention,” p. 1364-1405. |
Resar et al., “Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty,” Catheterization and Cardiovascular Diagnosis, 1993, p. 161-167, vol. 29. |
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy,” Circulation, 1998, p. 878-885, vol. 97. |
Schauerte et al., “Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation,” Circulation, 2000, p. 2774-2780, vol. 102. |
Scheller et al., “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries,” American Heart Association, 2002, p. 2227. |
Scheller et al., “Potential solutions to the current problem: coated balloon,” EuroIntervention, 2008, p. C63-C66, vol. 4 (Supplement C). |
Shaffer, “Scientific basis of laser energy,” Clinics in Sports Medicine, 2002, p. 585-598, vol. 21. |
Shmatukha et al., “MRI temperature mapping during thermal balloon angioplasty,” Physics in Medicine and Biology, 2006, p. N163-N171, vol. 51. |
Slager et al., “Vaporization of Atherosclerotic Plaques by Spark Erosion,” J Am Coll Cardiol, 1985, p. 21-25. |
Stiles et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, Jul. 2003, p. 916-921, vol. 50, No. 7. |
Suselbeck et al., “In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol, 2005, p. 28-34, vol. 100. |
Suselbeck et al., “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system,” Basic Res Cardiol, 2005, p. 446-452, vol. 100. |
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg,” The New England Journal of Medicine, 2008, p. 689-699, vol. 358. |
CardioVascular Technologies Inc., “Heated Balloon Device Technology,” 11 pages, 2008. |
Strategic Business Development, Inc., “Thermal and Disruptive Angioplasty: A Physician's Guide,” 8 pages, 1990. |
Zhang et al., “Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions,” IEEE Transaction on Biomedical Engineering, vol. 50, No. 2, 6 pages, Feb. 2003. |
Lazebnik et al., “Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification,” Siemens Whitepaper, Oct. 2008, 7 pages. |
Han et al., “Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner,” BJU International, vol. 93, pp. 14-18. |
Zhou et al., “Mechanism Research of Cryoanalgesia,” Forefront Publishing Group, 1995. |
Florete, “Cryoblative Procedure for Back Pain,” Jacksonville Medicine, Oct. 1998, 10 pages. |
Stevenson, “Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy,” 2005, 4 pages. |
Giliatt et al., “The Cause of Nerve Damage in Acute Compression,” Trans Am Neurol Assoc, 1974: 99; 71-4. |
Omura et al., “A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve,” The International Journal of Neuroscience, vol. 114 (12), pp. 1561-1572. |
Baun, “Interaction with Soft Tissue,” Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012. |
Blue Cross Blue Shield Medicaly Policy, “Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors,” 2005, 5 pages. |
Gentry et al., “Combines 3D Intracardiac Echo and Ultrasound Ablation,” Medical Imaging 2003: Ultrasonic and Signal Processing, vol. 5035, 2003, pp. 166-173. |
Lafon et al., “Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations,” MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only). |
G. Ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Med. & Biol., 1995, vol. 21, No. 9, pp. 1089-1100. |
Seip et al., “Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results,” IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages. |
Toytman et al., “Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci,” SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, vol. 7562, 2010, 10 pages. |
Zhoue et al., “Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics,” World Journal of Gastroenterology, vol. 14(43), Nov. 21, 2008, pp. 6743-6747. |
Number | Date | Country | |
---|---|---|---|
20130172872 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61580972 | Dec 2011 | US | |
61605615 | Mar 2012 | US | |
61605624 | Mar 2012 | US |