The devices, systems, and methods described here are in the field of local drug delivery to treat paranasal sinus conditions. More specifically, the treatment of paranasal sinus inflammation and rhinosinusitis is described.
Rhinosinusitis is a common paranasal sinus condition that is generally understood as encompassing sinusitis and/or rhinitis. Typically, rhinosinusitis is characterized by such major symptoms such as nasal discharge, nasal obstruction, facial congestion, facial pain/pressure, loss of smell, and fever, and such minor symptoms as headache, ear pain/pressure, halitosis, dental pain, cough, and fatigue.
The paranasal sinuses are air-filled cavities within the facial skeleton. Each paranasal sinus is contiguous with a nasal cavity and opens into the nasal cavity through a sinus ostium. The key to normal sinus function is its mucociliary transport system which is comprised of epithelial goblet cells and submucosal seromucous glands that produce nearly a quart of mucus in the sinus a day, and a ciliated, pseudostratified, columnar epithelium that lines the sinuses and which moves the mucous toward the natural sinus ostia. Any alteration in sinus ostia patency, ciliary function, or the quality of mucous may disrupt the system and lead to rhinosinusitis.
One important factor in the pathogenesis of rhinosinusitis is the patency of the sinus ostia. Partial obstruction of the sinus ostia often results in stagnation of mucous secretions, and a decrease in pH and oxygen tension within the sinus. These physiologic changes are thought to create a favorable environment for microbial infection. The microbial infection subsequently causes or enhances mucosal inflammation that may further reduce ostial patency or completely obstruct the ostia.
The medical treatment for rhinosinusitis typically includes a combination of oral antibiotics, topical or oral decongestants, steroid nasal sprays, or oral steroids such as prednisone. When medical therapy fails, which is often the case with rhinosinusitis, sinus surgery is an alternative. The most common surgery performed today is functional endoscopic sinus surgery (FESS). The goal of FESS is to improve the drainage of the sinuses by enlarging the ostia of the maxillary and frontal sinuses, and opening the ethmoid sinus area by removing the ethmoid air cells under direct visualization. However, FESS itself creates inflammation, which can lead to post-operative fibrosis, stenosis, and/or polyposis that frequently obstructs the newly opened sinuses, requiring the surgeon to reoperate to revise the ostia and insert stenting devices to keep sinus ostia patent.
U.S. Pat. No. 5,246,455 (Shikani) and U.S. Pat. No. 5,693,065 (Rains) describe stents for insertion into sinus ostia and/or sinus antrostomies or fenestrations to improve sinus drainage, reduce the degree of adhesion formation, and prevent ostial stenosis. Furthermore, stents such as the Parrell Frontal Sinus T-Stent (Medtronic Xomed, Inc., Jacksonville, Fla.), the Jasin Frontal Sinus Ostent™ Stent (Medtronic Xomed, Inc., Jacksonville, Fla.), and the Salman FES Stent (Boston Medical Products, Westborough, Mass.) are currently used after endoscopic sinus surgery for the same purpose. However, these stents are nonbiodegradable and thus require a follow-up procedure for removal. Furthermore, because these stents do not deliver a therapeutically active agent to the sinuses, they often only delay stenosis due to postoperative inflammation and the normal wound healing process. Thus, they are typically used in combination with systemic oral corticosteroids, which may result in undesirable side-effects the longer they are administered.
Sinus stents that elute drug have been proposed by others. For example, a nonbiodegradable or biodegradable polymeric “spacer” device for placement into surgically created frontal sinus fenestrations is described in U.S. Published Application No. U.S. 2004/0116958 to Goferich et al. The spacer is tubular or shaped like an hour-glass, and capable of releasing medicinal substances such as glucocorticosteroids, tyrosine kinase inhibitors, and mitosis inhibitors around newly created fenestrations. An hour-glass or tubular shape is described as preferred because it allows secretions to drain from the sinus. The spacer is placed solely at the sinus ostium and does not undergo a structural change, for example, to transition between a collapsed and expanded configuration, upon delivery to the sinus ostium. Furthermore, the spacer primarily lies within the natural ostium or surgically created fenestration. It does not have a portion that extends into the sinus cavity to contact the sinus cavity wall.
Another implantable device for treating sinusitis is described in U.S. Publication No. 2005/0245906 to Makower et al. This application describes a biodegradable polymeric device having a spacer for positioning within a sinus ostium, and a body comprised of a plurality of substance-eluting struts. The struts are configured to lie substantially parallel to the flow of mucus along the sinus cavity walls without substantially touching the walls so that mucociliary transport is not interrupted. It is uncertain how a device of this design would be constructed or deployed. Furthermore, given that the sinus mucosa is a source of water needed for device degradation and drug release, it is questionable whether this device is capable of providing a dosing regimen effective for treating rhinosinusitis because it does not substantially contact the walls of the sinus cavity.
Other compositions for the treatment of rhinosinusitis, such as aqueous solutions, creams, or gels, for topical application in the nose have also been formulated, but usually never travel far enough into the nose to reach the sinuses, are blocked from entering the sinuses due to obstructed ostia, or have such short contact with the sinus mucosa that absorption of the agent is low. For similar reasons, nasally inhaled steroid and anti-infective aerosols that have been developed to treat sinusitis are equally ineffective.
Another method that has been described for locally treating sinusitis is to place a biodegradable implant into the sinus. For example, the delivery of ampicillin from a rolled-up 1.5 cm×1.5 cm poly(lactic-co-glycolic)acid (PLGA) film to increase residence time of the antibiotic in rabbit sinuses has been investigated for the treatment of sinusitis (Min et al. Mucociliary Activity and Histopathology of Sinus Mucosa in Experimental Maxillary Sinusitis: A Comparison of Systemic Administration of Antibiotic and Antibiotic Delivery by Polylactic Acid Polymer. Laryngoscope 105:835-342 (1995) and Min et al. Application of Polylactic Acid Polymer in the Treatment of Acute Maxillary Sinusitis in Rabbits. Acta Otolaryngol 115:548-552 (1995)). Although clinical signs of sinusitis improved over 28 days, the procedure for placing the film was quite invasive, requiring that a hole be drilled through the anterior wall of the maxillary sinus.
A less invasive method of placing a biodegradable implant into a sinus for the local treatment of sinusitis is described in commonly owned U.S. Publication No. 2005/0043706. In this application, the implant is generally delivered into the sinus through a sinus ostium, and has at least one characteristic that substantially prevents its clearance by the mucociliary transport system. For example, the implant is typically formed to possess a mucoadhesiveness that substantially prevents implant clearance from the sinus. A mucoadhesive polymer is incorporated into the implant to make it mucoadhesive. Mucoadhesive polymers are usually hydrophilic, and upon moistening, absorb water to swell and become adhesive. This implant lacks a structural component that physically maintains patency of the sinus ostium.
Consequently, new devices for locally administering active agents to the paranasal sinuses for treating paranasal sinus conditions, e.g., sinus inflammation (including, but not limited to, rhinosinusitis and sinus procedures, e.g., FESS), and for maintaining patency of sinus ostia, as well as methods for delivering the devices to the sinus cavity are desirable.
The devices, systems, and methods of this invention are generally used to treat patients having a paranasal sinus condition. The paranasal sinus condition to be treated is typically postoperative paranasal sinus inflammation due to functional endoscopic sinus surgery (FESS) for sinusitis, but also includes conditions such as, but not limited to, acute sinusitis, chronic sinusitis, allergic rhinitis, rhinosinusitis, sinusitis that recurs after FESS, upper respiratory tract infections, otitis media, bronchitis, bronchiolitis, asthma, tonsillitis and other chronic diseases of the tonsils and adenoids, laryngitis, tracheitis, nasal and sinus polyposis, neoplasms of the large and small airways, and nasal, sinus, or nasopharynx tumors such as nasopharyngeal carcinoma, plasmacytomas, inverted papillomas, rhabdomyosarcomas, squamous cell carcinomas, and lymphomas, when they involve the sinuses or nasal passage. As used herein, the terms “paranasal sinus inflammation” or “sinus inflammation” refer to any reaction of sinus tissue, sinus ostial tissue, or tissue in the nasal passage proximate the sinus ostia that involves the inflammatory response. The inflammation may be caused by processes such as allergy (hypersensitivity), injury to sinus mucosa due to, e.g., trauma; surgery; infection by bacteria, viruses, fungi, chemicals, or drugs; and benign or malignant tumors.
The devices are formed in such a way to locally deliver one or more active agents into the sinus cavity, sinus ostium, and/or nasal passage for at least about one week to treat the paranasal sinus condition. The described devices are useful in surgical, non-surgical, and other therapeutic interventions related to the paranasal sinuses and nasal passages to restore anatomical function and treat any of the aforementioned conditions. Accordingly, the devices may be used to support sinus and nasal surgery, reduce the need for surgical revision, and/or prevent, delay, or reduce recurrence of rhinosinusitis.
The devices for treating paranasal sinus conditions may include a cavity member that has a first collapsed configuration that permits the device to pass through a sinus ostium and a second expanded configuration after placement into the sinus cavity. As used herein, the terms “expand”, “expansion”, or “expanding”, refer to a device that undergoes physical expansion, e.g., from a compressed to an expanded state, not expansion due to the absorption of water.
In their expanded configuration, the devices in some variations have a surface area to volume ratio that is substantially unchanged from that of the devices in their collapsed configuration. In other variations, upon expansion, the cavity member also at least partially conforms to the shape of the sinus cavity and substantially contacts the mucosa of the sinus cavity. The devices may be made from any biocompatible material. For example, they may be formed from various metals and their alloys, biodegradable or nonbiodegradable polymers, and combinations thereof.
In addition to a cavity member, the devices may include a nasal portion and an ostial member that is configured to reside within the sinus ostium. The cavity member is attached to the distal end of the ostial member. The nasal portion is attached to the proximal end of the ostial member and lies within the nasal passage. The active agent may be incorporated into all portions of the device or only included in the expandable cavity member, the ostial member, or nasal portion. In one aspect, the active agent is released from the cavity member and the ostial member. In another aspect, the active agent is released from the cavity member and nasal portion. In yet a further aspect, the active agent is released from the nasal portion and the ostial member. The cavity member, ostial member, and nasal portion may contain and deliver the same or different active agents.
The paranasal sinus devices may deliver an active agent(s) over at least about one week, over at least about two weeks, over at least about three weeks, over at least about one month, over at least about two months, over at least about three months, over at least about four months, over at least about five months, or over at least about six months or more. Typically, the active agent is delivered over about four weeks.
The devices may be formed from one or more polymeric pliable filaments. For example, the filaments may be configured to form cavity members that resemble a fringed structure, a flexible mesh, a whisk-like structure, and the like. The cavity members may be formed to be expandable. In one variation, the cavity members self-expand. In another variation, the devices expand after application of an expansive or mechanical force. For example, the devices may expand after balloon inflation. In some instances, the cavity members expand to substantially contact the sinus cavity wall after deployment within the sinus. Contact with the sinus cavity wall may be verified by incorporation of radiopaque markers on or within the cavity members, or visualization using endoscopy or other imaging modalities.
In another variation, the pliable filament(s) may contain a plasticizer or a solvent which softens the biodegradable or nonbiodegradable polymer. Balloon inflation or other mechanical types of expansion may be used to expand variations of the plasticized cavity member that are not configured to self-expand. Upon contact of the plasticized cavity member to the mucosal tissue, the plasticizer diffuses out of the cavity member. The plasticizer diffusion hardens the cavity member in such a way that the cavity member substantially conforms to the shape of the sinus cavity. As an example, a filament made from lactide/glycolide polymer may be plasticized with materials such as triethyl citrate, acetone and other ketones, ethanol and other alcohols, N-methyl pyrrolidone, ethyl acetate and mixtures thereof. Upon placement of the filament into the sinus, the plasticizer, triethyl citrate, for example, diffuses out of the filament polymer to result in a hardened filament that substantially conforms to the shape of the sinus cavity.
The devices described here for treating a paranasal sinus condition may include an active agent dispersed within a biodegradable polymer matrix, in which the device comprises a cavity member, an ostial member, and optionally a nasal portion, and exhibits an in vivo cumulative release profile in which a therapeutically effective amount of said active agent is maintained in a sinus tissue for at least about 4 days, at least about 14 days, at least about 25 days, or at least about 35 days after implantation of the device.
The paranasal sinus devices may be delivered into a sinus using inserters of various designs. Typical inserters include a conduit, e.g., a catheter, needle, or angiocatheter, having a lumen. For example, the conduit may be made such that it has variable stiffness along its length. In addition, the distal portion of the conduit may be pre-angulated to facilitate access of the sinus ostium, or made such that the distal portion is malleable such that the physician may angulate the conduit prior to accessing the sinus ostium.
The paranasal sinus devices and inserters for their deployment may be used in a system for treating a paranasal sinus condition. In general, the system works by first placing the inserter having one or more devices in a collapsed, folded, or constrained configuration within or carried on its distal end through the sinus ostium. Once within the sinus, the cavity member of the device transitions from the first collapsed, folded, or constrained configuration to a second expanded configuration. For example, a sheath may be retracted to slidably deploy a self-expanding cavity member that contacts a substantial portion of the sinus cavity wall. Balloon inflation or other mechanical types of expansion may be used to expand variations of the cavity member that are not configured to self-expand.
The paranasal sinus devices of this invention may take various forms. For example, some are designed to include a cavity member, an ostial member, and a nasal portion, and deliver active agents for the treatment of paranasal sinus conditions, e.g., sinus inflammation. The cavity member may have a first collapsed configuration that permits it to be inserted through a sinus ostium or surgically created fenestration, and a second expanded configuration upon placement into the sinus cavity. In this variation, once expanded, the structure of the cavity member generally has a surface area to volume ratio that is not substantially different from the surface area to volume ratio of the cavity member in its collapsed configuration. This may be important because the sinus mucosa is a source of water needed for the release of the active agent from the paranasal sinus device. Thus, if the surface area of a device available for contacting the sinus mucosa is decreased, e.g., in relation to its volume, dissolution (and subsequent absorption) of the active agent should also be decreased. Furthermore, once expanded, the cavity member may also substantially contact the sinus cavity wall.
The nasal portion generally functions to position and/or anchor the device at the sinus ostium, preventing lateralization of the middle turbinate, occlusion of the middle meatus, and formation of tissue adhesions. The ostial member located at the proximal end of the cavity member typically functions to maintain patency of the sinus ostium. However, as further described below, each component of the device may have various functions, depending on factors such as the particular structure of the cavity member, ostial member, or nasal portion and whether the component is capable of releasing an active agent.
As used herein, the terms “paranasal sinus” and “sinus” are used interchangeably, and refer to all sinuses, i.e., the maxillary, frontal, ethmoid, and sphenoidal sinuses. Each sinus cavity opens into the nasal cavity through a sinus ostium. As shown in
Once expanded, the cavity member may be configured to conform at least partly to the shape of the sinus cavity and substantially contact the sinus cavity wall. By “substantially contact” it is meant the percentage of surface area of the cavity member generally required to contact a sinus cavity wall (sinus mucosa) that provides the appropriate release kinetics for the active agents throughout a treatment period, for example, for at least one week, for at least two weeks, for at least three weeks, or for at least four weeks or more. Accordingly, depending on the amount of surface area needed for contact, “substantial contact” may refer to contact of about 10% to about 100%, about 20% to about 100%, about 30% to about 100%, about 40% to about 100%, about 50% to about 100%, about 60% to about 100%, about 70% to about 100%, about 80% to about 100%, or about 90% to about 100% of the surface area of the device to the sinus cavity wall. Importantly, the pressure of the cavity member on the sinus mucosa is sufficient for maintaining contact of the cavity member against the sinus mucosa but does not cause significant damage or necrosis to the mucosa.
As used herein, the terms “active agent”, “therapeutic agent”, and “drug” are used interchangeably and refer to any substance used to treat a paranasal sinus condition. Furthermore, as used herein, the term “therapeutic amount” refers to a concentration of active agent that has been locally delivered to a sinus or nasal passage that is appropriate to safely treat a paranasal sinus condition.
General Elements.
The paranasal sinus devices described here may be configured in a variety of ways. For example, they may be formed from one or more filaments, which include any linear structure such as strands, capillaries and tubular and non-tubular structures, but may also be formed from a film or sheet-like starting material. The filaments may be of variable stiffness and take a variety of suitable forms, such as threads, ribbons, strips, beaded structures, tubes, and the like, so long as they are flexible enough to substantially contact a portion of a sinus cavity wall after deployment, exhibit the desired release kinetics, and deliver an amount of drug therapeutic for a paranasal sinus condition. The filaments may be of different shapes generally, and have a variety of cross-sectional shapes, as desired or as useful to maintain mucosal contact and consistent deployment. For example, as shown in
In some variations the pliable filaments may be configured to include one or more anchoring elements to help affix the filaments to the sinus mucosa or otherwise enhance contact of the filaments to the sinus mucosa. For example, as shown in
Cavity Member.
The cavity members are generally biodegradable, but they may also be made to be nonbiodegradable. Additionally, whether formed as biodegradable or nonbiodegradable, the cavity members may be attached to a component, for example, a wire or suture, that extends from the cavity member and out through the ostium, which could be grasped by an instrument to remove it from the sinus.
In one variation, the pliable filaments are configured to form a fringed structure. As shown in
In another variation, shown in
Turning to the variation shown in
The cavity member may be of various other designs. In one variation, the cavity member 70 is configured as a single pliable filament 72 (
In other variations, the cavity member is formed from a plurality of one or more arced or looped filaments. For example, in
In yet other variations, the cavity members may be formed from ribbon or strip-like filaments. For example, as shown in
In
The cavity members of the invention may be adapted to self-expand, e.g., if they are made from a shape memory polymer or if they are constrained by a sheath prior to sinus insertion and deployed in the sinus after retraction of the sheath. They may also be expanded via methods involving mechanical expansion. For example, they may be expanded by inflating a balloon or pulling a cord or wire attached to the distal end of the device, or by the application of expansive force at the proximal end of the device, or by deflecting or deforming the cavity member along the sinus walls. However, in addition to the methods previously described, the invention also contemplates mechanical expansion of cavity members made from less pliable filaments that are equipped with one or more joints or hinges and which expand by movement of the pliable filaments at the joints or hinges. The joint or hinge may be an area of greater flexibility along the filament due to use of a polymer in that area having a lower durometer, decreasing the width of the filament, or by adjusting other surface features or mass density of the filament in that area.
The active agent may be included in any portion of the device, e.g., the cavity member, ostial member, and/or nasal portion. When filaments are used, the active agent may be incorporated in the filaments as drug dispersed or dissolved within a polymeric matrix, or coated on the pliable filaments, or first encapsulated, such as microencapsulated, and then incorporated within or coated onto the pliable filaments. In some instances, the pliable filaments may be constructed to have one or more pouches or pockets for holding pellets of drug. The dosage of active agent delivered by the cavity member may be adjusted by, e.g., increasing or decreasing the number of drug-containing filaments in the cavity member, increasing or decreasing the amount of drug contained within or coated on the filaments, or by forming the pliable filaments such that they can be broken or cut into smaller filaments either before or after insertion into a sinus cavity. For example, the pliable filaments may include predetermined fracture lines or markings that a physician can use as a guide to adjust filament length prior to insertion, or after insertion into the sinus, the filaments may be adapted to preferentially degrade at the fracture lines into smaller filaments. In some instances, it may be desirable to include filaments having different active agents in the cavity member.
Cavity members may also be made from a combination of pliable filament configurations or from combinations of filaments and other described cavity member configurations. For example, the structures of
Contact and/or anchoring of the cavity member to the sinus cavity wall may be enhanced by the addition of mucoadhesive materials, that may or may not be polymeric, to the pliable filaments, as further described below, by adjusting filament dimensions (e.g., decreasing filament diameter or otherwise decreasing aspect ratio), or by forming the filaments, as shown in
Ostial Member.
The ostial member may be used to keep the ostia patent and/or anchor the nasal portion or cavity member of the device. In some variations, its inclusion may be to simply connect the cavity member to a nasal portion or other extra-sinus portion of the device. The ostial member is mounted to the proximal end of the cavity member, and is positioned at or relatively near the sinus ostium. Again, the pressure generated by the ostial member on the sinus mucosa is sufficient to keep the ostium open, but not so great that it compromises blood flow to the sinus mucosa.
The ostial member may be of various designs. In some variations, the ostial member is formed form a one or more pliable filaments. For example, in
In other variations, the ostial member is formed from a film or sheet-like material. For example, in
In another variation, the ostial member 164 is formed from a plurality of sheets or strip-like filaments 166 configured as a star or asterisk-like structure. Spaces 168 between each strip allow mucus to flow past the ostial member 164 and optionally through a central lumen 165.
The ostial member may be formed to be rigid or flexible, and may also be formed to be coated with drug, coated with microencapsulated drug, or made as a polymer matrix with dispersed or dissolved drug. The drug included with the ostial member may be the same or different from that delivered by the expandable cavity member. The ostial member may be made from a biodegradable or nonbiodegradable polymer, a metal, or combinations thereof.
The dimensions of the ostial member will generally vary with the intended sinus of deployment. For example, for the maxillary sinus, the length of the ostial member may be less than 2 mm, but is usually between about 2 mm to about 6 mm, more usually between about 2 mm to about 5 mm, and more usually still between about 2 mm to about 4 mm. The outer diameter of the maxillary ostial member is usually between about 5 mm to about 10 mm, more usually between about 5 mm to about 9 mm, and more usually still between about 8 mm to about 10 mm. The internal diameter of the maxillary ostial member is usually between about 3 mm to about 9 mm, more usually between about 3 mm to about 8 mm, and more usually still between about 3 mm to about 7 mm.
For the frontal sinus, the length of the ostial member may be between about 0.5 mm to about 5 cm, between about 0.5 cm to about 4 cm, between about 0.5 cm to about 3 cm, between about 0.5 cm to about 2 cm, or between about 0.5 cm to about 1 cm. The outer diameter of the ostial member is usually about 5 mm, and the internal diameter about 3 mm. However, the inner and outer diameters may be smaller, especially in the instance where anchoring of the device is accomplished by the cavity member or nasal portion.
Nasal Portion.
The paranasal sinus devices of the invention may include a nasal portion, e.g., a nasal plate 210 (
In other variations, the nasal portion is configured from one or more pliable filaments. Referring to
The nasal portion may be formed to be rigid, flexible, or self-expanding, and may also be formed to be coated with drug, coated with microencapsulated drug, or made as a polymer matrix with dispersed or dissolved drug within the polymer matrix. The drug included with the nasal portion may be the same or different from that delivered by the cavity member. The nasal portion may be made from a biodegradable or nonbiodegradable polymer, a metal, or combinations thereof.
The shape of the nasal portion may also vary depending on such factors as the sinus of deployment and whether additional sinuses, e.g., the ethmoid sinus, are to be treated. For example, in an individual needing treatment for both maxillary and ethmoid sinus inflammation, a maxillary paranasal sinus device having a nasal portion shaped to contact a portion of the ethmoid air cells is particularly desirable.
The paranasal sinus devices may include any combination of the aforementioned cavity members, ostial members, and nasal portions. For example, as shown in
In another variation, paranasal sinus device 236 includes a whisk-like cavity member 238 (previously described for
In a further variation, shown in
Active Agents.
Any active agent may be included in the devices described herein so long as they are suitable to treat a paranasal sinus condition and are capable of achieving the desired release kinetics. The active agents that may be used in a paranasal sinus device to treat a paranasal sinus condition include, but are not limited to, anticholinergic agents, antihistamines, anti-infective agents, anti-inflammatory agents, antiscarring or antiproliferative agents, chemotherapeutic/antineoplastic agents, cytokines such as interfereon and interleukins, decongestants, healing promotion agents and vitamins (e.g., retinoic acid, vitamin A, and their derivatives), hyperosmolar agents, immunomodulator/immunosuppressive agents, leukotriene modifiers, mucolytics, narcotic analgesics, small molecules, tyrosine kinase inhibitors, peptides, proteins, nucleic acids, vasoconstrictors, or combinations thereof. Anti-sense nucleic acid oligomers or other direct transactivation and/or transrepression modifiers of mRNA expression, transcription, and protein production may also be used. Anti-infective agents generally include antibacterial agents, antifungal agents, antiparasitic agents, antiviral agents, and antiseptics. Anti-inflammatory agents generally include steroidal and nonsteroidal anti-inflammatory agents.
Examples of antibacterial agents that may be suitable for use with the described methods and devices include, but are not limited to, aminoglycosides, amphenicols, ansamycins, β-lactams, lincosamides, macrolides, nitrofurans, quinolones, sulfonamides, sulfones, tetracyclines, vancomycin, and any of their derivatives, or combinations thereof. In one variation, β-lactams are the preferred antibacterial agents.
β-lactams that may be suitable for use with the described methods and devices include, but are not limited to, carbacephems, carbapenems, cephalosporins, cephamycins, monobactams, oxacephems, penicillins, and any of their derivatives. In one variation, penicillins (and their corresponding salts) are the preferred β-lactams.
The penicillins that may be suitable for use with the described methods and devices include, but are not limited to, amdinocillin, amdinocillin pivoxil, amoxicillin, ampicillin, apalcillin, aspoxicillin, azidocillin, azlocillin, bacampicillin, benzylpenicillinic acid, benzylpenicillin sodium, carbenicillin, carindacillin, clometocillin, cloxacillin, cyclacillin, dicloxacillin, epicillin, fenbenicillin, floxacillin, hetacillin, lenampicillin, metampicillin, methicillin sodium, mezlocillin, nafcillin sodium, oxacillin, penamecillin, penethamate hydriodide, penicillin G benethamine, penicillin G benzathine, penicillin G benzhydrylamine, penicillin G calcium, penicillin G hydrabamine, penicillin G potassium, penicillin G procaine, penicillin N, penicillin O, penicillin V, penicillin V benzathine, penicillin V hydrabamine, penimepicycline, phenethicillin potassium, piperacillin, pivampicillin, propicillin, quinacillin, sulbenicillin, sultamicillin, talampicillin, temocillin, and ticarcillin. In one variation, amoxicillin may be included in the paranasal sinus device. In another variation, the device includes ampicillin. Penicillins combined with clavulanic acid such as Augmentin® (amoxicillin and clavulanic acid) may also be used.
Examples of antifungal agents suitable for use with the described methods and devices include, but are not limited to, allylamines, imidazoles, polyenes, thiocarbamates, triazoles, and any of their derivatives. In one variation, imidazoles are the preferred antifungal agents. Antiparasitic agents that may be employed include such agents as atovaquone, clindamycin, dapsone, iodoquinol, metronidazole, pentamidine, primaquine, pyrimethamine, sulfadiazine, trimethoprim/sulfamethoxazole, trimetrexate, and combinations thereof.
Examples of antiviral agents suitable for use with the described methods and devices include, but are not limited to, acyclovir, famciclovir, valacyclovir, edoxudine, ganciclovir, foscamet, cidovir (vistide), vitrasert, formivirsen, HPMPA (9-(3-hydroxy-2-phosphonomethoxypropyl)adenine), PMEA (9-(2-phosphonomethoxyethyl)adenine), HPMPG (9-(3-Hydroxy-2-(Phosphonomet--hoxy)propyl)guanine), PMEG (9-[2-(phosphonomethoxy)ethyl]guanine), HPMPC (1-(2-phosphonomethoxy-3-hydroxypropyl)-cytosine), ribavirin, EICAR (5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamine), pyrazofurin (3-[beta-D-ribofuranosyl]-4-hydroxypyrazole-5-carboxamine), 3-Deazaguanine, GR-92938X (1-beta-D-ribofuranosylpyrazole-3,4-dicarboxami--de), LY253963 (1,3,4-thiadiazol-2-yl-cyanamide), RD3-0028 (1,4-dihydro-2,3-Benzodithiin), CL387626 (4,4′-bis[4,6-d][3-aminophenyl-N--,N-bis(2-carbamoylethyl)-sulfonilimino]-1,3,5-triazin-2-ylamino-biphenyl--2-,2′-disulfonic acid disodium salt), BABIM (Bis[5-Amidino-2-benzimidazoly-1]-methane), NIH351, and combinations thereof.
Typically, if inclusion of an anti-inflammatory agent is desired, a steroidal anti-inflammatory agent, e.g., a corticosteroid, is employed. Examples of steroidal anti-inflammatory agents that may be used in the devices include 21-acetoxypregnenolone, alclometasone, algestone, amcinonide, beclomethasone, betamethasone, budesonide, chloroprednisone, clobetasol, clobetasone, clocortolone, cloprednol, corticosterone, cortisone, cortivazol, deflazacort, desonide, desoximetasone, dexamethasone, diflorasone, diflucortolone, difluprednate, enoxolone, fluazacort, flucloronide, flumethasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl, fluocortolone, fluorometholone, fluperolone acetate, fluprednidene acetate, fluprednisolone, flurandrenolide, fluticasone propionate, formocortal, halcinonide, halobetasol propionate, halometasone, halopredone acetate, hydrocortamate, hydrocortisone, loteprednol etabonate, mazipredone, medrysone, meprednisone, methylprednisolone, mometasone furoate, paramethasone, prednicarbate, prednisolone, prednisolone 25-diethylamino-acetate, prednisolone sodium phosphate, prednisone, prednival, prednylidene, rimexolone, tixocortol, triamcinolone, triamcinolone acetonide, triamcinolone benetonide, triamcinolone hexacetonide, any of their derivatives, and combinations thereof. In one variation, budesonide is included in the device as the steroidal anti-inflammatory agent. In another variation, the steroidal anti-inflammatory agent may be mometasone furoate. In yet another variation, the steroidal anti-inflammatory agent may be beclomethasone. In yet a further variation, the steroidal anti-inflammatory agent may be fluticasone propionate.
If a nonsteroidal anti-inflammatory agent is used, suitable agents include, but are not limited to, COX inhibitors (COX-1 or COX nonspecific inhibitors) (e.g., salicylic acid derivatives, aspirin, sodium salicylate, choline magnesium trisalicylate, salsalate, diflunisal, sulfasalazine and olsalazine; para-aminophenol derivatives such as acetaminophen; indole and indene acetic acids such as indomethacin and sulindac; heteroaryl acetic acids such as tolmetin, dicofenac and ketorolac; arylpropionic acids such as ibuprofen, naproxen, flurbiprofen, ketoprofen, fenoprofen and oxaprozin; anthranilic acids (fenamates) such as mefenamic acid and meloxicam; enolic acids such as the oxicams (piroxicam, meloxicam) and alkanones such as nabumetone) and selective COX-2 inhibitors (e.g., diaryl-substituted furanones such as rofecoxib; diaryl-substituted pyrazoles such as celecoxib; indole acetic acids such as etodolac and sulfonanilides such as nimesulide).
The chemotherapeutic/antineoplastic agents that may be used in the paranasal sinus devices include, but are not limited to antitumor agents (e.g., cancer chemotherapeutic agents, biological response modifiers, vascularization inhibitors, hormone receptor blockers, cryotherapeutic agents or other agents that destroy or inhibit neoplasia or tumorigenesis) such as alkylating agents or other agents which directly kill cancer cells by attacking their DNA (e.g., cyclophosphamide, isophosphamide), nitrosoureas or other agents which kill cancer cells by inhibiting changes necessary for cellular DNA repair (e.g., carmustine (BCNU) and lomustine (CCNU)), antimetabolites and other agents that block cancer cell growth by interfering with certain cell functions, usually DNA synthesis (e.g., 6 mercaptopurine and 5-fluorouracil (5FU), antitumor antibiotics and other compounds that act by binding or intercalating DNA and preventing RNA synthesis (e.g., doxorubicin, daunorubicin, epirubicin, idarubicin, mitomycin-C and bleomycin) plant (vinca) alkaloids and other anti-tumor agents derived from plants (e.g., vincristine and vinblastine), steroid hormones, hormone inhibitors, hormone receptor antagonists and other agents which affect the growth of hormone-responsive cancers (e.g., tamoxifen, herceptin, aromatase ingibitors such as aminoglutethamide and formestane, trriazole inhibitors such as letrozole and anastrazole, steroidal inhibitors such as exemestane), antiangiogenic proteins, small molecules, gene therapies and/or other agents that inhibit angiogenesis or vascularization of tumors (e.g., meth-1, meth-2, thalidomide), bevacizumab (Avastin), squalamine, endostatin, angiostatin, Angiozyme, AE-941 (Neovastat), CC-5013 (Revimid), medi-522 (Vitaxin), 2-methoxyestradiol (2ME2, Panzem), carboxyamidotriazole (CAI), combretastatin A4 prodrug (CA4P), SU6668, SU11248, BMS-275291, COL-3, EMD 121974, IMC-1C11, IM862, TNP-470, celecoxib (Celebrex), rofecoxib (Vioxx), interferon alpha, interleukin-12 (IL-12) or any of the compounds identified in Science Vol. 289, Pages 1197-1201 (Aug. 17, 2000), which is expressly incorporated herein by reference, biological response modifiers (e.g., interferon, bacillus calmette-guerin (BCG), monoclonal antibodies, interluken 2, granulocyte colony stimulating factor (GCSF), etc.), PGDF receptor antagonists, herceptin, asparaginase, busulphan, carboplatin, cisplatin, carmustine, cchlorambucil, cytarabine, dacarbazine, etoposide, flucarbazine, flurouracil, gemcitabine, hydroxyurea, ifosphamide, irinotecan, lomustine, melphalan, mercaptopurine, methotrexate, thioguanine, thiotepa, tomudex, topotecan, treosulfan, vinblastine, vincristine, mitoazitrone, oxaliplatin, procarbazine, streptocin, taxol or paclitaxel, taxotere, analogs/congeners, derivatives of such compounds, and combinations thereof.
Exemplary decongestants that may be incorporated in the paranasal sinus devices, include, but are not limited to, epinephrine, pseudoephedrine, oxymetazoline, phenylephrine, tetrahydrozolidine, and xylometazoline. Mucolytics that may be used include, but are not limted to, acetylcysteine, dornase alpha, and guaifenesin. Anti-histamines such as azelastine, diphenhydramine, and loratidine may also be used.
In those instances where it is desirable to remove water from tissue, e.g, to remove fluid from polyps or edematous tissue, a hyperosmolar agent may be employed. Suitable hyperosmolar agents include, but are not limited to, furosemide, sodium chloride gel, or other salt preparations that draw water from tissue or substances that directly or indirectly change the osmolar content of the mucous layer.
The active agent may constitute from about 0.01% to about 95%, 0.01% to about 95%, from about 0.01% to about 90%, from about 0.01% to about 80%, from about 0.01% to about 70%, from about 0.01% to about 60%, from about 0.01% to about 50%, from about 0.01% to about 40%, from about 0.01% to about 30%, from about 0.01% to about 20%, from about 0.01% to about 10%, from about 0.01% to about 5%, from about 0.01% to about 1%, or from about 0.01% to about 0.25% by weight of the releasing portion (e.g., the cavity member, ostial member, and/or nasal portion) or releasing material (e.g., layer or layers having the active agent) of the device. The amount of active agent used will usually depend on factors such as the particular agent incorporated, the paranasal sinus condition being treated, and the severity of clinical symptoms, but in all instances will usually be an amount that is effective for treating the paranasal sinus condition upon delivery into a sinus. For example, when treating paranasal sinus inflammation, the device may be formed to deliver per day, from about 1 μg to about 100 μg, from about 10 μg to about 50 μg, from about 10 μg to about 40 μg, from about 10 μg to about 30 μg, from about 10 μg to about 25 μg, or from about 10 μg to about 20 μg of mometasone furoate into the sinus. In another variation, the device may be formed to deliver per day, from about 10 μg to about 700 μg, from about 25 μg to about 400 μg, from about 75 μg to about 300 μg, or about 100 to about 200 μg of fluticasone propionate into the sinus. In some instances, crystal forms, e.g., hydrous and anhydrous crystal forms, of drugs may be used in the methods and devices described here. For example, mometasone furoate monohydrate may be used.
The active agent may be incorporated and released from the cavity member, ostial member, and/or the nasal portion. In another variation, the active agent may be coated onto the surface of the cavity member, ostial member, and/or the nasal portion. An exemplary way the coating may be achieved is by dissolving or suspending the active agent in a solution or melt of a biodegradable or nonbiodegradable polymer. In another exemplary way, the active agent may be powder coated onto the surface of the filament that has been made adhesive by, e.g., heating or softening with a solvent or plasticizer. In yet another variation, microencapsulated drug may be attached to the surface of the cavity member, ostial member, and/or the nasal portion. As previously mentioned, the active agent may be incorporated throughout all portions of the device or in particular portions of the device (e.g., the cavity member and ostial member, nasal portion and cavity member, etc.).
The active agent may be included in the device such that differential release results. The differential release may be of the same active agent or for different active agents. For example, variable release of a single active agent may be achieved using methods such as bulk loading, surface coating (e.g., by having a higher load layer), surface loading (e.g., by embedding, spraying, or absorbing drug onto the device surface, etc.), and other techniques well known in the art. Variable release of different active agents may be achieved, e.g., by segmenting the drugs into different layers, reservoirs and/or microspheres, which themselves may have differing permeability or biodegradation profiles, as well as by other techniques well known in the art.
Polymers.
When the devices are made with polymers, selection of the biodegradable or nonbiodegradable polymer to be employed will vary depending on the residence time and release kinetics desired, method of device delivery, particular therapeutic agent used, and the like. In all instances, the biodegradable polymer when degraded results in physiologically acceptable degradation products. The biodegradable or nonbiodegradable polymer may constitute at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, or at least about 100% by weight of the device or component that it makes (e.g., sinus cavity member, ostial member, or nasal portion).
Suitable biodegradable and biocompatible polymers for use in making the paranasal sinus devices include, but are not limited to, polymers such as a poly(lactide); a poly(glycolide); a poly(lactide-co-glycolide); a poly(lactic acid); a poly(glycolic acid); a poly(lactic acid-co-glycolic acid); poly(lactide)/poly(ethylene glycol) copolymers; a poly(glycolide)/poly(ethylene glycol) copolymers; a poly(lactide-co-glycolide)/poly(ethylene glycol) copolymers; a poly(lactic acid)/poly(ethylene glycol) copolymers; a poly(glycolic acid)/poly(ethylene glycol) copolymers; a poly(lactic acid-co-glycolic acid)/poly(ethylene glycol) copolymers; a poly(caprolactone); poly(caprolactone)/poly(ethylene glycol) copolymers a poly(orthoester); a poly(phosphazene); a poly(hydroxybutyrate) or a copolymer including a poly(hydroxybutyrate); a poly(lactide-co-caprolactone); a polycarbonate; a polyesteramide; a polyanhydride; a poly(dioxanone); a poly(alkylene alkylate); a copolymer of polyethylene glycol and a polyorthoester; a biodegradable polyurethane; a poly(amino acid); a polyetherester; a polyacetal; a polycyanoacrylate; a poly(oxyethylene)/poly(oxypropylene) copolymer, or a blend or copolymer thereof. Biodegradable shape memory polymers, such as those commercialized by nmemoScience in Aachen, Germany, or those described in U.S. Pat. Nos. 5,189,110 or 5,139,832, may also be employed.
As used herein, a poly(lactide); a poly(glycolide); a poly(lactide-co-glycolide); a poly(lactic acid); a poly(glycolic acid); a poly(lactic acid-co-glycolic acid) will all be referred to as PLG, PLG polymers, or lactide/glycolide polymers. Lactide/glycolide polymers for the drug delivery devices and compositions of this invention are typically made by melt polymerization through the ring opening of lactide and glycolide monomers. Some polymers are available with or without carboxylic acid end groups. When the end group of the poly(lactide-co-glycolide), poly(lactide), or poly(glycolide) is not a carboxylic acid, for example, an ester, then the resultant polymer is referred to herein as blocked or capped. The unblocked polymer, conversely, has a terminal carboxylic group. In one variation, linear lactide/glycolide polymers are used; however, star polymers may be used as well. In other variations, high molecular weight polymers may be used to form the devices of this invention, for example, to meet strength requirements and extend bioabsorption time. In other instances, low molecular weight polymers may be used when resorption time and not material strength is important. The lactide portion of the polymer has an asymmetric carbon. Racemic DL-, L-, and D-polymers are commercially available to include in the devices of this invention. The L-polymers are more crystalline and resorb slower than DL-polymers. In addition to copolymers comprising glycolide and DL-lactide or L-lactide, copolymers of L-lactide and DL-lactide are also commercially available. Additionally, homopolymers of lactide or glycolide are commercially available. Star polymers of lactide or glycolide or lactide/glycolide copolymers are also commercially available.
In the case when the biodegradable polymer is poly(lactide-co-glycolide), poly(lactide), or poly(glycolide), the amount of lactide and/or glycolide in the polymer may vary. In one variation, the biodegradable polymer contains from about 0 to about 100 mole %, from about 40 to about 100 mole %, from about 50 to about 100 mole %, from about 60 to about 100 mole %, from about 70 to about 100 mole %, or from about 80 to about 100 mole % lactide, and from about 0 to about 100 mole %, from about 0 to about 60 mole %, from about 10 to about 40 mole %, from about 20 to about 40 mole %, or from about 30 to about 40 mole % glycolide, wherein the amount of lactide and glycolide is 100 mole %. In other variations, the biodegradable polymer may be poly(lactide), about 85:15 poly(lactide-co-glycolide), about 75:25 poly(lactide-co-glycolide), about 65:35 poly(lactide-co-glycolide), or about 50:50 poly(lactide-co-glycolide), where the ratios are mole ratios.
In another variation, when the biodegradable polymer is poly(lactide-co-glycolide), poly(lactide), or poly(glycolide), the polymer has an intrinsic viscosity of from about 0.15 to about 1.5 dL/g, from about 0.25 to about 1.5 dL/g, from about 0.25 to about 1.0 dL/g, from about 0.25 to about 0.8 dL/g, from about 0.25 to about 0.6 dL/g, or from about 0.25 to about 0.4 dL/g as measured in chloroform at a concentration of 0.5 g/dL at 30° C.
If a nonbiodegradable polymer is used to make or incorporate into the device or composition, suitable nonbiodegradable polymers include, but are not limited to, poly(ethylene vinyl acetate), poly(vinyl acetate), silicone polymers, polyurethanes, polysaccharides such as a cellulosic polymers and cellulose derivatives, acyl substituted cellulose acetates and derivatives thereof, copolymers of poly(ethylene glycol) and poly(butylene terephthalate), polystyrenes, polyvinyl chloride, polyvinyl fluoride, poly(vinyl imidazole), chorosulphonated polyolefins, polyethylene oxide, and copolymers and blends thereof.
Furthermore, the devices may be made from any biocompatible, biodegradable or nonbiodegradable polymer that is mucoadhesive. In some instances, the cavity member, ostial member, and/or nasal plate may be coated with a mucoadhesive, which may or may not be a polymer. The devices may also be made from a polymer that carries a charge.
In another variation, natural polymers may be used. Representative natural polymers that may be included in the devices include, but are not limited to, proteins, such as zein, modified zein, casein, chitin, gelatin, gluten, serum albumin, or collagen, and polysaccharides, such as cellulose, dextrans, and polyhyaluronic acid. Hydrogel or sol-gel mixtures of polysaccharides are may also be employed.
Other Materials.
In some variations, the devices may be made from a metal. Examples of suitable metals include, but are not limited to, cobalt, chromium, nickel, platinum, stainless steel, titanium, tantalum, and any of their alloys, e.g., nickel-titanium alloys, and combinations thereof.
Additional Agents.
The devices and compositions of this invention may further include components such as preservatives, buffers, binders, disintegrants, lubricants, and any other excipients necessary to maintain the structure and/or function of the devices. For example, the pliable filaments may be formed to contain a plasticizer or solvent such as acetone, methyl ethyl ketone, ethyl lactate, ethyl acetate, dichloromethane, or ethyl acetate/alcohol blends that would soften the biodegradable or nonbiodegradable polymer of the device. The plasticizer or solvent would diffuse or otherwise be released from the device into the sinus mucosa after deployment and expansion of the cavity member to harden the polymeric filaments (of the device) such that the device substantially conforms to the shape of the sinus cavity, and to the extent that a better friction fit of the cavity member against the sinus cavity wall is provided.
Furthermore, as previously described, the pliable filaments may also include a mucoadhesive polymer to enhance contact of the cavity member to the sinus mucosa. Examples of mucoadhesive polymers that may be employed include homopolymers of acrylic acid monomers such as polyacrylic acid and any of its pharmaceutically acceptable salts; copolymers of acrylic acid and methacrylic acid, styrene, or vinyl ethers; vinyl polymers such as polyhydroxyethyl acrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol, and polyvinyl pyrrolidone; cellulosic derivatives such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, and carboxymethyl cellulose; polysaccharides such as alginic acid, sodium alginate, and tragacanth gum; collagen; gelatin; and any combination thereof.
Release Kinetics.
The devices described here may be formulated with particles of an active agent dispersed or dissolved within a biodegradable polymer matrix, and formulated to provide sustained release of the active agent. If made from a non-swellable polymer, e.g., lactide/glycolide polymers, release of the active agent from the matrix is most likely achieved by erosion of the biodegradable polymer matrix and/or by diffusion of the active agent into the mucous layer of the sinus. Factors that may influence the release kinetics include such characteristics as the size of the active agent particles, the solubility of the active agent, the ratio of active agent to polymer(s), the porosity of the polymer, the method of device manufacture, the exposed surface area of the device, the surface area to volume ratio of the device, and the erosion rate of the matrix polymer(s).
The active agent may be released from the device over a prolonged time period including, but not limited to, at least about one week, at least about two weeks, at least about three weeks, or at least about four weeks, at least about two months, at least about three months, at least about four months, at least about five months, or at least about six months or more. In one variation, the therapeutic agent is released over about two weeks to about four weeks.
The drug release profile of the paranasal sinus devices may be adjusted by various techniques, such as through use of different drug, polymer, and excipient formulations or adjustment of their amounts in the formulations, use of release and drug barrier layers, differential bead, microsphere, or microcapsule constructions (with shells of varying molecular weights or thicknesses), and the like, as is well known in the art. The duration of release can also be adjusted through polymer blending ratios, monomer average molecular weights, and coatings.
As previously mentioned, differential release of the drug(s) may also be effected. The differential release may be of the same active agent or for different active agents. For example, variable release of a single active agent may be achieved using methods such as bulk loading, surface coating (e.g., by having a higher load layer), surface loading (e.g., by embedding, spraying, or absorbing drug onto the device surface, etc.), and other techniques well known in the art. Variable release of different active agents may be achieved, e.g., by segmenting the drugs into different layers, reservoirs and/or microspheres, as well as by other techniques well known in the art.
Delayed drug release, as shown in
Substantially zero order drug release, as shown in
Upfront bolus drug release, as shown in
Delayed bolus drug release, as shown in
Degradation dependent release, as shown in
Combinations are possible of any of the above drug release curves by integrating various drug release methods (for one or more drugs) in a single device. For example, as illustrated in
Applications.
Therapeutic Action of Device.
The structure of the paranasal sinus device itself may also have a therapeutic function. For example, the device may provide such functions as fixation or splinting tissue via space filling, fastening, deflection, in order to provide support and to keep a body structure open, as in stenting or packing to prevent the lateralization of the middle turbinate and occlusion of the middle meatus, or by providing a physical barrier to adhesions which may form between various post-surgical and/or inflamed tissue surfaces. For example, any device incorporating a solid, semi-solid (gel) or woven or nonwoven mesh structure could be used to practice this method. In another variation, the device may non-occlusively maintain patency through the implant feature area providing the device action by direct provision and maintenance of a channel, fenestration or port from the sinuses to the infundibulum, osteomeatal complex, meatus or nasal passage by which mucociliary flow may travel. Such a channel may be within and support the structure of natural ostia or within and support a surgically created or modified antrostomy to the sinus, but may not totally occlude such openings. For example, any device with a lumen or pore such as a tube or cannula, or stent with a lumen, could be used to practice this method, as could a highly porous packing material, three dimensional mesh, or surface or interior structured device through which mucus can flow and which does not become occlusive of the provided channel through absorbancy, expansion, or degradation.
Reduction of Complications Upon Implantation.
In yet another variation, the device may possess a structural feature or active agent that helps to reduce the complications of device implantation. For example, the device may: 1) prevent trauma due to device removal by use of bioabsorbable materials; 2) prevent biofilm formation by use of coatings, physical surface treatments, and/or incorporation or elution of an anti-infective or antiseptic substance; 3) prevent foreign body reactions by incorporating low-dose anti-inflammatory substances including steroidal and non-steroidal anti-inflammatories (for example, including the anti-inflammatory effects of low dose macrolide antibiotics); and 4) prevent device migration by specific active or passive fixation and anchoring features incorporated in the device. Substances that may be used to prevent biofilm formation include, but are not limited to, alcohol, chlorhexidine, iodine, triclosan, hexachlorophene, and silver-based agents (e.g., silver chloride, silver oxide, silver nanoparticles). In other variations, the surface of the device may treated by a process (e.g. ion embedding, plasma etching, etc.) altering the physical properties of the surface of the device in order to prevent biofilm formation.
Exploitation of Mucociliary Clearance.
Normal mucociliary clearance may be used to extend drug diffusion and effect beyond the physical location of the device. This is useful in both normal and particularly diseased mucociliary flow patterns. In the later case, the device is useful in effecting the build up of therapeutically desirable concentrations of released drug at blockages when the normal mucociliary flow is interrupted or impeded by disease, and increasing drug concentration gradients where mucociliary function is most impacted by disease. Anatomical blockages and areas of mucociliary dysfunction or ciliary dysmotility may be particularly desirable areas of such drug treatments (e.g., anti-inflammatories and anti-infectives, but also including chemotherapeutic agents), so as to “chemically open” the blockage and to increase treatment of the damaged mucosa. Thus, the natural sinus and upstream locations along the mucociliary clearance pathway may serve as drug depots, with drug traveling to desired sites downstream in the pathway. This contrasts with previous and current teachings in the field which seek to impede or reduce mucociliary clearance of active agents in order to maximize dose duration.
In addition to treating any one of the aforementioned paranasal sinus conditions, the devices described herein may be placed during, or as an adjunct to, a surgical, non-surgical, or other therapeutic intervention of the sinuses or nasal passages. For example, the device may be used during or as an adjunt to such procedures including, but not limited to, septoplasty (surgical removal or adjustment of the nasal septum); turbinoplasty (surgical removal or adjustment of the turbinate bones); rhinoplasty generally; sinus surgery (including the exploration, revision, repair, tissue dissection or removal of some or part of any of the sinuses, including the ethmoid sinuses (as in ethmoidectomy), maxillary sinuses, frontal sinuses, or sphenoid sinuses); polyp removal in any part of the paranasal sinuses and nasal passages; cannulation, irrigation, and therapy instillation or injection of any of the above sinuses or the nasal passages, including through nasal, trans-ostial, and external puncture approaches (such as through antral puncture, trephination or “Caldwell-Luc” procedures); surgical revision, dissection, reconstruction or repair of the anatomy of the paranasal sinuses and nasal passages, including any removal or adjustment of neoplasms, foreign bodies, lesions, adhesions, defects, stenosis, and fistula of the natural or post-surgical anatomy; ligation, cauterization, and ablation procedures to control nasal bleeding and repair vasculature in the anatomy of the paranasal sinuses and nasal passages, or as an adjunct or technique to perform any such surgical or non-surgical procedure.
Thus, the devices described here may have a variety of functions. For example, they may deliver an active agent to treat rhinosinusitis, have a structure that prevents lateralization of the middle turbinate and formation of adhesions, have a structure which directly or indirectly preserves ostial patency, as well as have a coating that prevents biofilm formation. The devices may be formed to include any number and combination of functions listed above.
Delivery Devices and Methods of Use.
The paranasal sinus devices may be placed into the sinus using various types of sinus inserters. The inserter may include a conduit, e.g., a catheter with a lumen. The conduit may be flexible or rigid, or may be designed to have varying degrees of stiffness along its length, e.g., the distal portion of the conduit may be stiffer than the proximal portion. In addition, the distal portion of the conduit may be variously angulated to facilitate positioning and advancement of the conduit through the sinus ostium. For example, the distal portion may be angulated from about 0° to about 175°, from about 0° to about 135°, or from about 0° to about 90°. If desired, the distal portion of the conduit may also be formed to be malleable.
The conduit may be made from any biocompatible material including, but not limited to, stainless steel and any of its alloys; titanium alloys, e.g., nickel-titanium alloys; polymers, e.g., polyethylene and copolymers thereof, polyethylene terephthalate or copolymers thereof, nylon, silicone, polyurethanes, fluoropolymers, poly(vinylchloride), and combinations thereof, depending on the amount of flexibility or stiffness desired.
The inserter may be preloaded with a single paranasal sinus device on or within the distal end of the conduit, but more than one device may be preloaded if desired. It may be preloaded on or within the inserter by the physician prior to insertion or preloaded on or within the inserter during the manufacturing process. Once access through a sinus ostium or surgically created fenestration has been obtained with the conduit, the sheath may be retracted to slidably deploy the nasal portion of the device. If the cavity member is self-expanding, then retraction of a sheath also causes the cavity member to be deployed. If expansion using a balloon is required, any balloon catheter (including double balloon catheters) known in the art may be advanced through the lumen in the conduit until the balloon lies within the cavity member. Inflation of the balloon thereby causes the cavity member to change from a first collapsed configuration to a second expanded configuration and contact the sinus cavity wall. An endoscope may also be used while positioning the inserter to aid with visualization of the ostium. Irrigation tools and electrocautery may also be employed if needed.
The following description provides an exemplary way of a how a single device might be deployed into a sinus using a sinus inserter. The sinus inserter typically includes a distal portion, a sinus device in its collapsed configuration on the distal portion, a handle, a conduit having a lumen, and a sheath connected to a retractable knob. Upon pulling the retractable knob, the knob moves proximally to abut the handle and slidably deploy the self-expanding nasal plate of the device. A balloon catheter may then be advanced through the lumen of the conduit into the distal portion of the inserter and inflated to expand the sinus device, such as the flexible mesh 40 of
Method of Manufacture.
The method of preparing the devices of this invention will generally depend on the particular active agent or polymer used, form of the cavity member, and the release kinetics desired, but may be made by any one of the numerous methods known in the art. For example, the devices may be made by such processes as extrusion; injection or form molding; blow, film, or melt casting; welding; and other manufacturing techniques well known in the art (e.g., cutting and annealing). The filaments may be wet or melt spun, formed by laser or other cutting, formed by slitting, formed by extrusion, injection or other molding, or casting.
The following examples serve to more fully describe the manner of making and using the above-described devices. It is understood that these examples in no way serve to limit the scope of this invention, but rather are presented for illustrative purposes.
Furthermore, the following examples will employ, unless otherwise indicated, conventional techniques of pharmaceutical formulation, medicinal chemistry, and the like, which are within the skill of the art. Such techniques are explained fully in the literature. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.), but some experimental error and deviation should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in degrees Celsius (° C.) and pressure is at or near atmospheric pressure at sea level. All components are obtainable commercially unless otherwise indicated.
Extruded ribbon fiber was made with mometasone furoate and poly(DL-lactide-co-glycolide). The desired mometasone furoate content in the device was 5 wt % mometasone furoate. The poly(DL-lactide-co-glycolide) was ester capped with a molar ratio of 70/30 DL-lactide/glycolide and had an inherent viscosity of 0.81 dL/g. The inherent viscosity was measured at 30° C. with 0.5 gm/dL polymer concentration in chloroform.
First mometasone furoate (0.5 gm) and the poly(DL-lactide-co-glycolide) (9.5 gm) were dissolved in methylene chloride (40 gm). A thin film was cast from the resulting solution. The cast film was dried in a vacuum oven for 48-96 hours to remove residual methylene chloride. The cast film was cut into thin strips approximately 10-20 mm wide and 100-150 mm long. Next a Tinius Olsen Model UE-4-78 melt plastometer was used to extrude the cast film strips. The Tinius Olsen is a solid block of steel about 80 mm in diameter and about 160 mm high/long with a hollow core about 13 mm in diameter. The discharge of the core has a shoulder that allows different size “dies” to be used based on the desired diameter of extruded rod. For this run, a custom machined die was used with internal core dimensions of 0.3556 mm×2.0015 mm. The main block of the Tinius Olsen has heater bands encased by insulation and a shroud that allow the Tinius Olsen to be heated to a desired temperature. A thermocouple was used to measure the temperature of the block. The control system then uses the thermocouple values to either turn the heater bands on or off. Throughout the extrusion process, the heater bands will switch off and on to maintain the desired temperature. The cast film strips, approximately 4 gm, were loaded into the Tinius Olsen which had been equilibrated to 120° C. A charging rod was placed in the core of the Tinius Olsen to compress the blend and a weight of 10 kg was placed on the end of the charging rod to aid in the compaction of the blend. The equilibration time for the blend to melt lasted for about 20 minutes. After an extrusion load of 10,000 gm was placed on the charging rod, the plug was removed from the discharge area to begin the extrusion run. As the ribbon fiber was extruded from the discharge, it was pulled using a conveyor belt to the desired dimensions (0.3-0.4 mm×1.0-1.2 mm). The 4-gm charge afforded 7-10 segments of extruded fiber each having a length of about 100 cm.
Extruded ribbon fiber was made with mometasone furoate, triethyl citrate (plasticizer) and poly(DL-lactide-co-glycolide). The desired mometasone furoate content in the device was 5 wt % mometasone furoate. The poly(DL-lactide-co-glycolide) was ester capped with a molar ratio of 70/30 DL-lactide/glycolide and had an inherent viscosity of 0.81 dL/g. The inherent viscosity was measured at 30° C. with 0.5 gm/dL polymer concentration in chloroform.
First mometasone furoate (0.5 gm), triethyl citrate (0.2 gm) and the poly(DL-lactide-co-glycolide) (9.3 gm) were dissolved in ethyl acetate (40 gm). A thin film was cast from the resulting solution. The cast film was dried in a vacuum oven for 48-96 hours to remove residual methylene chloride. The cast film was cut into thin strips approximately 10-20 mm wide and 100-150 mm long. Next a Tinius Olsen Model UE-4-78 melt plastometer was used to extrude the cast film strips. The Tinius Olsen is a solid block of steel about 80 mm in diameter and about 160 mm high/long with a hollow core about 13 mm in diameter. The discharge of the core has a shoulder that allows different size “dies” to be used based on the desired diameter of extruded rod. For this run, a custom machined die was used with internal core dimensions of 0.3556 mm×2.0015 mm. The main block of the Tinius Olsen has heater bands encased by insulation and a shroud that allow the Tinius Olsen to be heated to a desired temperature. A thermocouple was used to measure the temperature of the block. The control system then used the thermocouple values to either turn the heater bands on or off. Throughout the extrusion process, the heater bands switched off and on to maintain the desired temperature. The cast film strips, approximately 4 gm, were loaded into the Tinius Olsen which had been equilibrated to 120° C. A charging rod was placed in the core of the Tinius Olsen to compress the blend and a weight of 10 kg was placed on the end of the charging rod to aid in the compaction of the blend. The equilibration time for the blend to melt lasted for about 20 minutes. After an extrusion load of 10,000 gm was placed on the charging rod, the plug was removed from the discharge area to begin the extrusion run. As the ribbon fiber was extruded from the discharge, it was pulled using a conveyor belt to the desired dimensions (0.3-0.4 mm×1.0-1.2 mm). The 4-gm charge afforded 7-10 segments of extruded fiber each having a length of about 100 cm.
Various compositions of ribbon fiber were made following fabrication techniques similar to those described in Examples 1 and 2. Table 1 below lists these formulation compositions having varying amounts of mometasone furoate, plasticizers, and porosigens and showing the use of different processing solvents (ethyl acetate and methylene chloride) to prepare material to place into an extruder.
A fiber formulation can be made with fluticasone proprionate with poly(DL-lactide) or poly(lactide-co-glycolide). The poly(lactide) or poly(lactide-co-glycolide) can be capped or have acid end groups. The desired fluticasone proprionate content in the fiber can range from 0.1 wt % to 20 wt %. To prepare a long-acting formulation of fluticasone proprionate, particles of fluticasone proprionate and poly(DL-lactide-co-glycolide) or poly(lactide-co-glycolide) can be dry blended in a variety of ways including the use of a mortar/pestle or by mixing preformed polymer and peptide particles in a V-blender to form a blended powder. Next this blend or admixture can be added to a twin-screw extruder having a machined die with a 2-mm diameter. The temperature of the extruder should be about 120° C. As the fiber is extruded from the extruder, it will be collected on a conveyor belt.
Ribbon fiber as prepared by Example 1, was fabricated into a paranasal sinus device in the following manner. Four strands of ribbon fiber were cut to approximately 35 mm and then looped to form whisk-like structures as previously described.
Paranasal sinus devices prepared as described in Example 4 were sterilized with 2.5 Mrad of gamma radiation and placed in the maxillary sinuses (right and left sides) of 5-kg rabbits through dorsal nasal maxillary sinusotomies. Three formulations were tested. These were as follows:
The same formulation was used for both right and left sinuses of a given rabbit. Fifteen rabbits were implanted. Five rabbits were implanted with each device formulation. The devices were explanted at approximately weekly intervals post implantation over a 5-week period. The mucosa of both right and left maxillary sinuses was removed completely at the time of explanation. The tissue was rapidly frozen and the amount of mometasone in the tissue was quantitated by liquid chromatography/mass spectroscopy (LC/MS). The amount of mometasone maintained in the tissue over a 35-day period is reported in the table below, and is equivalent to 10−5 M to 10−7M concentration at the desired site of action, at all time points demonstrating a sustained release and bioavailability of drug at levels of tissue concentration which are known to have therapeutic efficacy (see below).
The in vitro release of mometasone furoate from candidate formulations was determined, and is shown in
In a first in vitro cumulative release study, as shown in
Published in vitro cellular models using cultured human airway epithelial cells indicate drug concentration dose response curves for the most potent glucocorticoids, mometasone furoate and fluticasone propionate, beginning as low as 10−12M (picomolar) and EC50 levels of transcriptional response at 10−10 M (100 picomolar; maximal transcriptional response was seen in most cases by 10−9 M (nanomolar) drug concentrations). These in vitro models have been accepted as equivalent to and highly correlated with in vivo models of efficacy (Romestan C. et al Fluticasone Propionate and Mometasone Furoate Have Equivalent Transcriptional Potencies, Clin Exp Allergy 2003; 33: 895-901).
All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent, or patent application were specifically and individually indicated to be so incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit and scope of the appended claims.
This application is a continuation of U.S. application Ser. No. 12/883,087, filed on Sep. 15, 2010, now issued as U.S. Pat. No. 9,585,681, which is a continuation of U.S. application Ser. No. 11/398,342, filed on Apr. 4, 2006, now issued as U.S. Pat. No. 8,025,635, which claims priority to U.S. Provisional Application Ser. No. 60/668,569, filed on Apr. 4, 2005. Each of the foregoing disclosures is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
374026 | Williams | Nov 1887 | A |
1381829 | Hartman | Jun 1921 | A |
1485126 | Schumacher | Feb 1924 | A |
1520908 | Meyer | Dec 1924 | A |
1658801 | Condren | Feb 1928 | A |
2009393 | Failla | Jul 1935 | A |
2096162 | Daley | Oct 1937 | A |
2691985 | Newsom | Oct 1954 | A |
3049125 | Kriwkowitsch | Aug 1962 | A |
3473165 | Gran et al. | Oct 1969 | A |
3502078 | Hill et al. | Mar 1970 | A |
3570494 | Gottschalk | Mar 1971 | A |
3583391 | Cox et al. | Jun 1971 | A |
3766924 | Pidgeon | Oct 1973 | A |
3800788 | White | Apr 1974 | A |
3894539 | Tallent | Jul 1975 | A |
3903893 | Scheer | Sep 1975 | A |
3913584 | Walchle et al. | Oct 1975 | A |
4094303 | Johnston | Jun 1978 | A |
4245652 | Kelly et al. | Jan 1981 | A |
4389208 | LeVeen et al. | Jun 1983 | A |
4419095 | Nebergall et al. | Dec 1983 | A |
D276937 | Griggs | Dec 1984 | S |
4534761 | Raible | Aug 1985 | A |
4580568 | Gianturco | Apr 1986 | A |
4604920 | Dupke | Aug 1986 | A |
4627971 | Ayer | Dec 1986 | A |
4650488 | Bays et al. | Mar 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4704126 | Baswell et al. | Nov 1987 | A |
4737141 | Spits | Apr 1988 | A |
4744792 | Sander et al. | May 1988 | A |
4753636 | Free | Jun 1988 | A |
4793351 | Landman et al. | Dec 1988 | A |
4886493 | Yee | Dec 1989 | A |
4941881 | Masters et al. | Jul 1990 | A |
4964850 | Bouton et al. | Oct 1990 | A |
5000957 | Eckenhoff et al. | Mar 1991 | A |
5011474 | Brennan | Apr 1991 | A |
5035706 | Giantureo et al. | Jul 1991 | A |
5062829 | Pryor et al. | Nov 1991 | A |
5116311 | Löfstedt | May 1992 | A |
5139502 | Berg et al. | Aug 1992 | A |
5139510 | Goldsmith, III et al. | Aug 1992 | A |
5139832 | Hayashi et al. | Aug 1992 | A |
5167614 | Tessmann et al. | Dec 1992 | A |
5189110 | Ikematu et al. | Feb 1993 | A |
5217484 | Marks | Jun 1993 | A |
5246455 | Shikani | Sep 1993 | A |
5256146 | Ensminger et al. | Oct 1993 | A |
5300119 | Blom | Apr 1994 | A |
5312813 | Costerton et al. | May 1994 | A |
5336163 | DeMane et al. | Aug 1994 | A |
5342296 | Persson et al. | Aug 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5348553 | Whitney | Sep 1994 | A |
5350580 | Muchow et al. | Sep 1994 | A |
5360406 | Boykin et al. | Nov 1994 | A |
5391179 | Mezzoli | Feb 1995 | A |
5443498 | Fontaine | Aug 1995 | A |
5501700 | Hirata | Mar 1996 | A |
5507210 | Paramest | Apr 1996 | A |
5507807 | Shippert | Apr 1996 | A |
5512055 | Domb et al. | Apr 1996 | A |
5538738 | Ritter et al. | Jul 1996 | A |
5540712 | Kleshinski et al. | Jul 1996 | A |
5556413 | Lam | Sep 1996 | A |
5632762 | Myler | May 1997 | A |
5645584 | Suyama | Jul 1997 | A |
5664567 | Linder | Sep 1997 | A |
5672179 | Garth et al. | Sep 1997 | A |
5693065 | Rains, III | Dec 1997 | A |
5713855 | Shippert | Feb 1998 | A |
5720719 | Edwards et al. | Feb 1998 | A |
5746224 | Edwards | May 1998 | A |
5749921 | Lenker et al. | May 1998 | A |
5792100 | Shantha | Aug 1998 | A |
5800379 | Edwards | Sep 1998 | A |
5800429 | Edwards | Sep 1998 | A |
5827224 | Shippert | Oct 1998 | A |
5895408 | Pagan | Apr 1999 | A |
5899878 | Glassman | May 1999 | A |
5928190 | Davis | Jul 1999 | A |
5992000 | Humphrey et al. | Nov 1999 | A |
6033436 | Steinke et al. | Mar 2000 | A |
6054122 | MacPhee et al. | Apr 2000 | A |
6063102 | Morales | May 2000 | A |
6074381 | Dinh et al. | Jun 2000 | A |
6082990 | Jackson et al. | Jul 2000 | A |
6092273 | Villareal | Jul 2000 | A |
6092528 | Edwards | Jul 2000 | A |
6108886 | Kimes et al. | Aug 2000 | A |
6113641 | Leroy et al. | Sep 2000 | A |
6123697 | Shippert | Sep 2000 | A |
6149681 | Houser et al. | Nov 2000 | A |
6149944 | Jeong et al. | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6180848 | Flament et al. | Jan 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6195225 | Komatsu et al. | Feb 2001 | B1 |
6200335 | Igaki | Mar 2001 | B1 |
6214036 | Letendre et al. | Apr 2001 | B1 |
6224626 | Steinke | May 2001 | B1 |
6228111 | Törmälä et al. | May 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6290728 | Phelps et al. | Sep 2001 | B1 |
6297227 | Johnson | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6306084 | Pinczower | Oct 2001 | B1 |
6342068 | Thompson | Jan 2002 | B1 |
6347241 | Burbank et al. | Feb 2002 | B2 |
6350465 | Jonnalagadda et al. | Feb 2002 | B1 |
6352547 | Brown et al. | Mar 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6386197 | Miller | May 2002 | B1 |
6398758 | Jacobsen et al. | Jun 2002 | B1 |
6409750 | Hyodoh | Jun 2002 | B1 |
6436112 | Wensel | Aug 2002 | B2 |
6447539 | Nelson et al. | Sep 2002 | B1 |
6491940 | Levin | Dec 2002 | B1 |
6524608 | Ottoboni et al. | Feb 2003 | B2 |
6537294 | Boyle et al. | Mar 2003 | B1 |
6543452 | Lavigne | Apr 2003 | B1 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6555566 | Ponikau | Apr 2003 | B2 |
6562058 | Seguin et al. | May 2003 | B2 |
6565597 | Fearnot et al. | May 2003 | B1 |
6589286 | Litner | Jul 2003 | B1 |
6605111 | Bose | Aug 2003 | B2 |
6605294 | Sawhney | Aug 2003 | B2 |
6606995 | Sadek et al. | Aug 2003 | B1 |
6618921 | Thornton | Sep 2003 | B1 |
6648849 | Tenhuisen et al. | Nov 2003 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6692455 | Goode et al. | Feb 2004 | B2 |
6695856 | Kieturakis et al. | Feb 2004 | B2 |
6709465 | Mitchell et al. | Mar 2004 | B2 |
6712859 | Rousseau et al. | Mar 2004 | B2 |
6715485 | Djupesland | Apr 2004 | B1 |
6719934 | Stinson | Apr 2004 | B2 |
6746426 | Flaherty et al. | Jun 2004 | B1 |
6749617 | Palasis et al. | Jun 2004 | B1 |
6884260 | Kugler et al. | Apr 2005 | B2 |
6942690 | Pollock et al. | Sep 2005 | B1 |
6945992 | Goodson, IV et al. | Sep 2005 | B2 |
6951053 | Padilla et al. | Oct 2005 | B2 |
6966923 | Gittings | Nov 2005 | B2 |
7018401 | Hyodoh et al. | Mar 2006 | B1 |
7072720 | Puskas | Jul 2006 | B2 |
7074426 | Kochinke | Jul 2006 | B2 |
7108706 | Hogle | Sep 2006 | B2 |
RE39321 | MacPhee et al. | Oct 2006 | E |
7195016 | Loyd et al. | Mar 2007 | B2 |
7225518 | Eidenschink et al. | Jun 2007 | B2 |
7235099 | Duncavage et al. | Jun 2007 | B1 |
7249390 | Yale et al. | Jul 2007 | B2 |
RE39923 | Blom | Nov 2007 | E |
7314484 | Deem et al. | Jan 2008 | B2 |
7316147 | Perreault et al. | Jan 2008 | B2 |
7361168 | Makower et al. | Apr 2008 | B2 |
7410480 | Muni et al. | Aug 2008 | B2 |
7419497 | Muni et al. | Sep 2008 | B2 |
7451765 | Adler | Nov 2008 | B2 |
7462175 | Chang et al. | Dec 2008 | B2 |
7500971 | Chang et al. | Mar 2009 | B2 |
7520876 | Ressemann et al. | Apr 2009 | B2 |
7544192 | Eaton et al. | Jun 2009 | B2 |
7559925 | Goldfarb et al. | Jul 2009 | B2 |
7594928 | Headley, Jr. et al. | Sep 2009 | B2 |
7641644 | Chang et al. | Jan 2010 | B2 |
7641688 | Lesh | Jan 2010 | B2 |
7645272 | Chang et al. | Jan 2010 | B2 |
7651696 | Bates | Jan 2010 | B2 |
7654997 | Makower et al. | Feb 2010 | B2 |
7658758 | Diaz et al. | Feb 2010 | B2 |
7658764 | Reitan et al. | Feb 2010 | B2 |
7662141 | Eaton et al. | Feb 2010 | B2 |
7662142 | Eaton et al. | Feb 2010 | B2 |
7686798 | Eaton et al. | Mar 2010 | B2 |
7691094 | Eaton et al. | Apr 2010 | B2 |
7713255 | Eaton et al. | May 2010 | B2 |
7717933 | Becker | May 2010 | B2 |
7740642 | Becker | Jun 2010 | B2 |
7753929 | Becker | Jul 2010 | B2 |
7771482 | Karmon | Aug 2010 | B1 |
7951130 | Eaton et al. | May 2011 | B2 |
7951131 | Eaton et al. | May 2011 | B2 |
7951132 | Eaton et al. | May 2011 | B2 |
7951133 | Eaton et al. | May 2011 | B2 |
7951134 | Eaton et al. | May 2011 | B2 |
7951135 | Eaton et al. | May 2011 | B2 |
8025635 | Eaton et al. | Sep 2011 | B2 |
8088120 | Worsoff | Jan 2012 | B2 |
8109918 | Eaton et al. | Feb 2012 | B2 |
8192450 | Gonzales et al. | Jun 2012 | B2 |
8197433 | Cohen | Jun 2012 | B2 |
8303640 | Hepworth et al. | Nov 2012 | B2 |
8337454 | Eaton et al. | Dec 2012 | B2 |
8500776 | Ebner | Aug 2013 | B2 |
8535707 | Arensdorf et al. | Sep 2013 | B2 |
8585730 | Eaton et al. | Nov 2013 | B2 |
8585731 | Abbate et al. | Nov 2013 | B2 |
8585753 | Scanlon et al. | Nov 2013 | B2 |
8721591 | Chang et al. | May 2014 | B2 |
8740029 | Barnoski et al. | Jun 2014 | B2 |
8740839 | Eaton et al. | Jun 2014 | B2 |
8740929 | Gopferich et al. | Jun 2014 | B2 |
8763222 | Abbate et al. | Jul 2014 | B2 |
8802131 | Arensdorf et al. | Aug 2014 | B2 |
8858974 | Eaton et al. | Oct 2014 | B2 |
8986341 | Abbate et al. | Mar 2015 | B2 |
9101689 | Hossainy et al. | Aug 2015 | B2 |
9585681 | Eaton et al. | Mar 2017 | B2 |
9782283 | Abbate et al. | Oct 2017 | B2 |
10010651 | Eaton et al. | Jul 2018 | B2 |
10471185 | Eaton et al. | Nov 2019 | B2 |
20020022048 | Bromberg et al. | Feb 2002 | A1 |
20020037919 | Hunter | Mar 2002 | A1 |
20020051793 | Drabick | May 2002 | A1 |
20020051845 | Mehta et al. | May 2002 | A1 |
20020055746 | Burke et al. | May 2002 | A1 |
20020077693 | Barclay et al. | Jun 2002 | A1 |
20020111603 | Cheikh | Aug 2002 | A1 |
20020143387 | Soetikno et al. | Oct 2002 | A1 |
20020188344 | Bolea et al. | Dec 2002 | A1 |
20020198586 | Inoue | Dec 2002 | A1 |
20030033001 | Igaki | Feb 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030040790 | Furst | Feb 2003 | A1 |
20030055488 | Igaki | Mar 2003 | A1 |
20030065346 | Evens et al. | Apr 2003 | A1 |
20030070682 | Wilson et al. | Apr 2003 | A1 |
20030105469 | Karmon | Jun 2003 | A1 |
20030109837 | Mcbride-Sakal | Jun 2003 | A1 |
20030125774 | Salo | Jul 2003 | A1 |
20030133877 | Levin | Jul 2003 | A1 |
20030135266 | Chew et al. | Jul 2003 | A1 |
20030135268 | Desai | Jul 2003 | A1 |
20030135970 | Thornton | Jul 2003 | A1 |
20030147954 | Yang et al. | Aug 2003 | A1 |
20030158598 | Ashton | Aug 2003 | A1 |
20030195459 | Shippert | Oct 2003 | A1 |
20030203030 | Ashton et al. | Oct 2003 | A1 |
20030206864 | Mangin | Nov 2003 | A1 |
20030209835 | Chun et al. | Nov 2003 | A1 |
20030236570 | Cook et al. | Dec 2003 | A1 |
20040043052 | Hunter et al. | Mar 2004 | A1 |
20040064083 | Becker | Apr 2004 | A1 |
20040064150 | Becker | Apr 2004 | A1 |
20040091543 | Bell | May 2004 | A1 |
20040093062 | Glastra | May 2004 | A1 |
20040116958 | Gopferich et al. | Jun 2004 | A1 |
20040117004 | Osborne et al. | Jun 2004 | A1 |
20040133270 | Grandt | Jul 2004 | A1 |
20040176827 | Jacobson et al. | Sep 2004 | A1 |
20040236415 | Thomas | Nov 2004 | A1 |
20050038497 | Neuendorf et al. | Feb 2005 | A1 |
20050043783 | Amis et al. | Feb 2005 | A1 |
20050119725 | Wang et al. | Jun 2005 | A1 |
20050124560 | Sung et al. | Jun 2005 | A1 |
20050131460 | Gilford | Jun 2005 | A1 |
20050131514 | Hijlkema et al. | Jun 2005 | A1 |
20050131524 | Majercak et al. | Jun 2005 | A1 |
20050131525 | Hartley | Jun 2005 | A1 |
20050143817 | Hunter et al. | Jun 2005 | A1 |
20050163821 | Sung et al. | Jul 2005 | A1 |
20050165347 | Bardy | Jul 2005 | A1 |
20050203605 | Dolan | Sep 2005 | A1 |
20050229670 | Perreault | Oct 2005 | A1 |
20050240147 | Makower et al. | Oct 2005 | A1 |
20050245906 | Makower et al. | Nov 2005 | A1 |
20060004286 | Chang et al. | Jan 2006 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060025849 | Kaplan et al. | Feb 2006 | A1 |
20060063973 | Makower et al. | Mar 2006 | A1 |
20060095066 | Chang et al. | May 2006 | A1 |
20060106361 | Muni et al. | May 2006 | A1 |
20060135981 | Lenker et al. | Jun 2006 | A1 |
20060142736 | Hissink et al. | Jun 2006 | A1 |
20060162722 | Boehm et al. | Jul 2006 | A1 |
20060167540 | Masters et al. | Jul 2006 | A1 |
20060210605 | Chang et al. | Sep 2006 | A1 |
20060247499 | Butler et al. | Nov 2006 | A1 |
20060265042 | Catanese, III et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20070055348 | Pryor | Mar 2007 | A1 |
20070079494 | Serrano | Apr 2007 | A1 |
20070100435 | Case et al. | May 2007 | A1 |
20070106366 | Delaloye et al. | May 2007 | A1 |
20070129751 | Muni et al. | Jun 2007 | A1 |
20070135789 | Chang et al. | Jun 2007 | A1 |
20070156211 | Ferren et al. | Jul 2007 | A1 |
20070156229 | Park | Jul 2007 | A1 |
20070162100 | Gabbay | Jul 2007 | A1 |
20070167682 | Goldfarb et al. | Jul 2007 | A1 |
20070179599 | Brodbeck et al. | Aug 2007 | A1 |
20070191922 | Hartley | Aug 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208252 | Makower | Sep 2007 | A1 |
20070208301 | Evard et al. | Sep 2007 | A1 |
20070227544 | Betsy et al. | Oct 2007 | A1 |
20070233225 | Rapacki et al. | Oct 2007 | A1 |
20070249896 | Goldfarb et al. | Oct 2007 | A1 |
20070250105 | Ressemann et al. | Oct 2007 | A1 |
20070269385 | Yuri et al. | Nov 2007 | A1 |
20070270941 | Headley et al. | Nov 2007 | A1 |
20070282305 | Goldfarb et al. | Dec 2007 | A1 |
20070289677 | Ma et al. | Dec 2007 | A1 |
20070293726 | Goldfarb et al. | Dec 2007 | A1 |
20070293727 | Goldfarb et al. | Dec 2007 | A1 |
20070293946 | Gonzales et al. | Dec 2007 | A1 |
20070297186 | Hoover et al. | Dec 2007 | A1 |
20070299043 | Hunter et al. | Dec 2007 | A1 |
20080015540 | Muni et al. | Jan 2008 | A1 |
20080058295 | Chaudry | Mar 2008 | A1 |
20080058296 | Chaudry | Mar 2008 | A1 |
20080069858 | Weber | Mar 2008 | A1 |
20080077226 | Ouellette et al. | Mar 2008 | A1 |
20080077230 | Heaney et al. | Mar 2008 | A1 |
20080082162 | Boismier et al. | Apr 2008 | A1 |
20080085293 | Yang | Apr 2008 | A1 |
20080089952 | Hunter et al. | Apr 2008 | A1 |
20080097154 | Makower et al. | Apr 2008 | A1 |
20080097239 | Chang et al. | Apr 2008 | A1 |
20080097295 | Makower et al. | Apr 2008 | A1 |
20080097400 | Chang et al. | Apr 2008 | A1 |
20080097514 | Chang et al. | Apr 2008 | A1 |
20080097515 | Chang et al. | Apr 2008 | A1 |
20080097516 | Chang et al. | Apr 2008 | A1 |
20080097568 | Savage et al. | Apr 2008 | A1 |
20080097575 | Cottone | Apr 2008 | A1 |
20080097576 | Cottone et al. | Apr 2008 | A1 |
20080097580 | Dave | Apr 2008 | A1 |
20080097581 | Shanley | Apr 2008 | A1 |
20080097591 | Savage et al. | Apr 2008 | A1 |
20080103361 | Makower et al. | May 2008 | A1 |
20080103521 | Makower et al. | May 2008 | A1 |
20080103584 | Su et al. | May 2008 | A1 |
20080113000 | Hunter et al. | May 2008 | A1 |
20080119693 | Makower et al. | May 2008 | A1 |
20080125626 | Chang et al. | May 2008 | A1 |
20080125720 | Kim et al. | May 2008 | A1 |
20080132938 | Chang et al. | Jun 2008 | A1 |
20080145514 | Hunter et al. | Jun 2008 | A1 |
20080154237 | Chang et al. | Jun 2008 | A1 |
20080154250 | Makower et al. | Jun 2008 | A1 |
20080183128 | Morriss et al. | Jul 2008 | A1 |
20080195041 | Goldfarb et al. | Aug 2008 | A1 |
20080228085 | Jenkins et al. | Sep 2008 | A1 |
20080234720 | Chang et al. | Sep 2008 | A1 |
20080243140 | Gopferich et al. | Oct 2008 | A1 |
20080262468 | Clifford et al. | Oct 2008 | A1 |
20080262505 | Shahoian | Oct 2008 | A1 |
20080262508 | Clifford et al. | Oct 2008 | A1 |
20080262509 | Clifford et al. | Oct 2008 | A1 |
20080262510 | Clifford | Oct 2008 | A1 |
20080262593 | Ryan et al. | Oct 2008 | A1 |
20080275483 | Makower et al. | Nov 2008 | A1 |
20080281156 | Makower et al. | Nov 2008 | A1 |
20080287908 | Muni et al. | Nov 2008 | A1 |
20080306579 | Dolan et al. | Dec 2008 | A1 |
20080319424 | Muni et al. | Dec 2008 | A1 |
20090004272 | Gibson et al. | Jan 2009 | A1 |
20090004273 | Gibson et al. | Jan 2009 | A1 |
20090005763 | Makower et al. | Jan 2009 | A1 |
20090028923 | Muni et al. | Jan 2009 | A1 |
20090030274 | Goldfarb et al. | Jan 2009 | A1 |
20090035351 | Berglund et al. | Feb 2009 | A1 |
20090036968 | Hepworth et al. | Feb 2009 | A1 |
20090036974 | Penn et al. | Feb 2009 | A1 |
20090041824 | Zugates et al. | Feb 2009 | A1 |
20090056709 | Worsoff | Mar 2009 | A1 |
20090093823 | Chang et al. | Apr 2009 | A1 |
20090177272 | Abbate | Jul 2009 | A1 |
20090187098 | Makower et al. | Jul 2009 | A1 |
20090198179 | Abbate et al. | Aug 2009 | A1 |
20090198216 | Muni et al. | Aug 2009 | A1 |
20090240112 | Goldfarb et al. | Sep 2009 | A1 |
20090312745 | Goldfarb et al. | Dec 2009 | A1 |
20110004192 | Eaton et al. | Jan 2011 | A1 |
20110021986 | Zamboni | Jan 2011 | A1 |
20110167964 | Price | Jul 2011 | A1 |
20120101429 | Eaton et al. | Apr 2012 | A1 |
20130041463 | Ressemann | Feb 2013 | A1 |
20130066358 | Nalluri et al. | Mar 2013 | A1 |
20130231693 | Edgren et al. | Sep 2013 | A1 |
20130245608 | Muni et al. | Sep 2013 | A1 |
20130253567 | Edgren et al. | Sep 2013 | A1 |
20130281982 | Makower et al. | Oct 2013 | A1 |
20130304232 | Gries | Nov 2013 | A1 |
20140018839 | Renner et al. | Jan 2014 | A1 |
20140074065 | Muni et al. | Mar 2014 | A1 |
20140079755 | Eaton et al. | Mar 2014 | A1 |
20140107615 | Doshi et al. | Apr 2014 | A1 |
20140283349 | Abbate et al. | Sep 2014 | A1 |
20140324025 | Arensdorf et al. | Oct 2014 | A1 |
20150081017 | Abbate et al. | Mar 2015 | A1 |
20160287854 | Eaton et al. | Oct 2016 | A1 |
20190143087 | Eaton et al. | May 2019 | A1 |
20200108181 | Eaton et al. | Apr 2020 | A1 |
20200206391 | Eaton et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2008201495 | Oct 2008 | AU |
101 05 592 | Aug 2002 | DE |
0 423 916 | Apr 1991 | EP |
0 761 251 | Mar 1997 | EP |
0 938 880 | Sep 1999 | EP |
1 415 671 | May 2004 | EP |
1 870 057 | Dec 2007 | EP |
2-500521 | Feb 1990 | JP |
H04-25755 | Feb 1992 | JP |
H-6-5800 | Feb 1994 | JP |
6-506672 | Jul 1994 | JP |
6-329542 | Nov 1994 | JP |
8-117326 | May 1996 | JP |
2000-507630 | Jun 2000 | JP |
2001-506144 | May 2001 | JP |
2001-520188 | Oct 2001 | JP |
WO-8900839 | Feb 1989 | WO |
WO-9736949 | Oct 1997 | WO |
WO-9920261 | Apr 1999 | WO |
WO-9920261 | Apr 1999 | WO |
WO-0102024 | Jan 2001 | WO |
WO-0102024 | Jan 2001 | WO |
WO-0126658 | Apr 2001 | WO |
WO-0126658 | Apr 2001 | WO |
WO-0130411 | May 2001 | WO |
WO-0195834 | Dec 2001 | WO |
WO-03090818 | Nov 2003 | WO |
WO-03090818 | Nov 2003 | WO |
WO-03099359 | Dec 2003 | WO |
WO-2004016200 | Feb 2004 | WO |
WO-2004082525 | Sep 2004 | WO |
WO-2004082525 | Sep 2004 | WO |
WO-2006020180 | Feb 2006 | WO |
WO-2006020180 | Feb 2006 | WO |
WO-2006107957 | Oct 2006 | WO |
WO-2006107957 | Oct 2006 | WO |
WO-2007067451 | Jun 2007 | WO |
WO-2007067451 | Jun 2007 | WO |
WO-2007134215 | Nov 2007 | WO |
WO-2007134215 | Nov 2007 | WO |
WO-2007139668 | Dec 2007 | WO |
WO-2007139668 | Dec 2007 | WO |
WO-2008008389 | Jan 2008 | WO |
WO-2008008389 | Jan 2008 | WO |
WO-2008033533 | Mar 2008 | WO |
WO-2008033533 | Mar 2008 | WO |
WO-2008051453 | May 2008 | WO |
WO-2008051453 | May 2008 | WO |
WO-2008051881 | May 2008 | WO |
WO-2008051881 | May 2008 | WO |
WO-2008054655 | May 2008 | WO |
WO-2008054655 | May 2008 | WO |
WO-2008070996 | Jun 2008 | WO |
WO-2008154143 | Dec 2008 | WO |
WO-2008154143 | Dec 2008 | WO |
WO-2009079418 | Dec 2008 | WO |
WO-2009079418 | Jun 2009 | WO |
WO-2010014834 | Feb 2010 | WO |
WO-2012083594 | Jun 2012 | WO |
WO-2012107229 | Aug 2012 | WO |
WO-2013158337 | Oct 2013 | WO |
Entry |
---|
Becker, D.G. (2003). “The Minimally Invasive, Endoscopic Approach to Sinus Surgery,” Journal of Long-Term Effects of Medical Implants 13(3):207-221. |
Bolliger, C.T. et al. (1999). “Evaluation of a New Self-Expandable Silicone Stent in an Experimental Tracheal Stenosis,” Chest 115:496-501. |
Eberhart, R.C. et al. (2003). “Bioresorbable Polymeric Stents: Current Status and Future Promise,” J. Biomater. Sci. Polymer Edn. 14(4):299-312. |
European Search Report dated Feb. 21, 2011, for EP Patent Application No. 10 011 116.0 filed on Apr. 4, 2006, 8 pages. |
European Search Report dated Feb. 21, 2011, for EP Patent Application No. 10 011 117.8 filed on Apr. 4, 2006, 8 pages. |
European Search Report dated Feb. 21, 2011, for EP Patent Application No. 10 011 118.6 filed on Apr. 4, 2006, 8 pages. |
Extended European Search Report dated Jun. 18, 2015, for EP Patent Application No. 08 863 327.6, filed on Jul. 16, 2010, 8 pages. |
Extended European Search Report dated Jun. 26, 2015, for European Patent Application No. 09 803 604.9, filed on Jul. 30, 2009, 7 pages. |
Final Office Action dated Jan. 8, 2009, for U.S. Appl. No. 10/800,162, filed Mar. 12, 2004, 5 pages. |
Final Office Action dated Jul. 22, 2009, for U.S. Appl. No. 11/398,342, filed Apr. 4, 2006, 8 pages. |
Final Office Action dated Jul. 8, 2010, for U.S. Appl. No. 11/398,342, filed Apr. 4, 2006, 7 pages. |
Final Office Action dated Aug. 18, 2010, for U.S. Appl. No. 11/775,157, filed Jul. 9, 2007, 12 pages. |
Final Office Action dated Jan. 27, 2011, for U.S. Appl. No. 12/479,794, filed Jun. 6, 2009, 6 pages. |
Final Office Action dated Nov. 28, 2011, for U.S. Appl. No. 12/883,071, filed Sep. 15, 2010, 7 pages. |
Final Office Action dated Mar. 1, 2012, for U.S. Appl. No. 12/270,695, filed Nov. 13, 2008, 26 pages. |
Final Office Action dated Apr. 12, 2012, for U.S. Appl. No. 12/883,087, filed Sep. 15, 2010, 7 pages. |
Final Office Action dated Apr. 16, 2012, for U.S. Appl. No. 12/334,373, filed Dec. 12, 2008, 7 pages. |
Final Office Action dated May 29, 2012, for U.S. Appl. No. 12/334,382, filed Dec. 12, 2008, 7 pages. |
Final Office Action dated Mar. 6, 2013, for U.S. Appl. No. 13/341,732, filed Dec. 30, 2011, 7 pages. |
Final Office Action dated May 30, 2013, for U.S. Appl. No. 12/541,840, filed Aug. 14, 2009, 11 pages. |
Final Office Action dated Sep. 10, 2013, for U.S. Appl. No. 12/334,395, filed Dec. 12, 2008, 8 pages. |
Final Office Action dated May 5, 2014 for U.S. Appl. No. 12/883,087, filed Sep. 15, 2010, 10 pages. |
Final Office Action dated May 19, 2014, for U.S. Appl. No. 13/341,732, filed Dec. 30, 2011, 7 pages. |
Final Office Action dated Sep. 17, 2014, for U.S. Appl. No. 12/334,395, filed Dec. 12, 2008, 10 pages. |
Final Office Action dated Feb. 12, 2015, for U.S. Appl. No. 13/341,732, filed Dec. 30, 2011, 8 pages. |
Final Office Action dated Oct. 20, 2015, for U.S. Appl. No. 12/883,087, filed Sep. 15, 2010, 15 pages. |
Final Office Action dated Feb. 8, 2016, for U.S. Appl. No. 12/334,395, filed Dec. 12, 2008, 18 pages. |
Final Office Action dated Jun. 29, 2016, for U.S. Appl. No. 14/327,100, filed Jul. 9, 2014, 17 pages. |
Final Office Action dated Sep. 16, 2016, for U.S. Appl. No. 14/081,974, filed Nov. 15, 2013, 12 pages. |
Final Office Action dated Sep. 20, 2016, for U.S. Appl. No. 14/550,634, filed Nov. 21, 2014, 11 pages. |
Hietala, E-M. et al. (2001). “Biodegradation of the Copolymeric Polylactide Stent,” Journal of Vascular Research 38:361-369. |
Hosemann, W. et al. (Mar. 2003, e-pub. Oct. 10, 2002). “Innovative Frontal Sinus Stent Acting as a Local Drug-Releasing System,” Eur. Arch. Otorhinolarynol. 260:131-134. |
Hughes, J.P. et al. (Apr. 2004). “Use of a Ureteric Pigtail Stent as a Self-Retaining Frontal Sinus Stent,” The Journal of Laryngology & Otology 118:299-301. |
International Search Report dated Feb. 24, 2006 for PCT Application No. PCT/US04/07828 filed Mar. 12, 2004, 1 page. |
International Search Report dated Sep. 11, 2006, for PCT Patent Application No. PCT/US2006/012484 filed on Apr. 4, 2006, 6 pages. |
International Search Report dated Mar. 19, 2008, for PCT Patent Application No. PCT/US2007/015813, filed on Jul. 10, 2007, 3 pages. |
International Search Report dated Mar. 11, 2009, for PCT Application No. PCT/US2008/86178, filed on Dec. 12, 2008, 3 pages. |
International Search Report dated Sep. 28, 2009, for PCT Application No. PCT/US2009/052287, filed on Jul. 30, 2009, 2 pages. |
Laaksovirta, S. (Aug. 22, 2003). Biodegradable, Self-Reinforced, Self-Expandable Lactic and Glycolic Acid (SR-PLGA 80/20) Copolymer Spiral Prostatic Stent: Analysis of Mechanical and Biological Properties and Clinical Results, Academic Dissertation, Medical School of the University of Tampere, 79 pages. |
Lapchenko, A.S. et al. (Jun. 1996). “Polyphosphazene Prosthesis of the Frontonasal Bypass in Surgical Treatment of Acute and Chronic Inflammation of the Frontal Sinuses,” Vestnik Otorinolarinologii, 2 pages. |
Lavigne, F. et al. (May 2002). “Intrasinus Administration of Topical Budesonide to Allergic Patients With Chronic Rhinosinusitis Following Surgery,” The Laryngoscope 112, 7 pages. |
Min, Y-G. et al. (1995). “Application of Polylactic Acid Polymer in the Treatment of Acute Maxillary Sinusitis in Rabbits,” Acta Otolaryngol. 115:548-552. |
Min, Y-G. et al. (Aug. 1995). “Mucociliary Activity and Histopathology of Sinus Mucosa in Experimental Maxillary Sinusitis: A Comparison of Systemic Administration of Antibiotic and Antibiotic Delivery by Polylactic Acid Polymer,” The Laryngoscope 105:835-842. |
Mirza, S. et al. (Dec. 2000). “A Simple and Effective Frontal Sinus Stent,” The Journal of Laryngology & Otology 114:955-956. |
Mitty, H. et al. (1988). “Experience with a New Ureteral Stent Made of a Biocompatible Copolymer,” Radiology 168:557-559. |
Murphy, J.G. et al. (1992). “Percutaneous Polymeric Stents in Porcine Coronary Arteries: Initial Experience With Polyethylene Terephthalate Stents,” Circulation 86:1596-1604. |
Nguyen, K.T. et al. (2004). “Biomaterials and Stent Technology,” Chapter 5 in Tissue Engineering and Novel Delivery Systems, 24 pages. |
Non-Final Office Action dated Jun. 6, 2008, for U.S. Appl. No. 10/800,162, filed Mar. 12, 2004, 5 pages. |
Non-Final Office Action dated Nov. 25, 2008, for U.S. Appl. No. 11/398,342, filed Apr. 4, 2006, 10 pages. |
Non-Final Office Action dated Sep. 22, 2009, for U.S. Appl. No. 12/419,927, filed Apr. 7, 2009, 4 pages. |
Non-Final Office Action dated Sep. 22, 2009, for U.S. Appl. No. 12/419,943, filed Apr. 7, 2009, 5 pages. |
Non-Final Office Action dated Sep. 22, 2009, for U.S. Appl. No. 12/419,930, filed Apr. 7, 2007, 4 pages. |
Non-Final Office Action dated Sep. 22, 2009, for U.S. Appl. No. 12/419,937, filed Apr. 7, 2009, 4 pages. |
Non-Final Office Action dated Sep. 22, 2009, for U.S. Appl. No. 12/419,925, filed Apr. 7, 2009, 4 pages. |
Non-Final Office Action dated Nov. 13, 2009, for U.S. Appl. No. 11/398,342, filed Apr. 4, 2006, 9 pages. |
Non-Final Office Action dated Dec. 9, 2009, for U.S. Appl. No. 11/775,157, filed Jul. 9, 2007, 12 pages. |
Non-Final Office Action dated Jul. 1, 2010, for U.S. Appl. No. 12/479,794, filed Jun. 6, 2009, 5 pages. |
Non-Final Office Action dated Sep. 10, 2010, for U.S. Appl. No. 12/437,374, filed May 7, 2009, 8 pages. |
Non-Final Office Action dated Nov. 12, 2010, for U.S. Appl. No. 11/398,342, filed Apr. 4, 2006, 8 pages. |
Non-Final Office Action dated Nov. 23, 2010, for U.S. Appl. No. 12/258,277, filed Oct. 24, 2008, 9 pages. |
Non-Final Office Action dated Nov. 23, 2010, for U.S. Appl. No. 12/258,282, filed Oct. 24, 2008, 7 pages. |
Non-Final Office Action dated Nov. 24, 2010, for U.S. Appl. No. 12/883,090, filed Sep. 15, 2010, 7 pages. |
Non-Final Office Action dated Nov. 24, 2010, for U.S. Appl. No. 12/883,056, filed Sep. 15, 2010, 7 pages. |
Non-Final Office Action dated Nov. 24, 2010, for U.S. Appl. No. 12/883,079, filed Sep. 15, 2010, 8 pages. |
Non-Final Office Action dated Mar. 22, 2011, for U.S. Appl. No. 12/883,071, filed Sep. 15, 2010, 8 pages. |
Non-Final Office Action dated May 13, 2011, for U.S. Appl. No. 12/883,087, filed Sep. 15, 2010, 7 pages. |
Non-Final Office Action dated Jun. 14, 2011, for U.S. Appl. No. 12/437,374, filed May 7, 2009, 8 pages. |
Non-Final Office Action dated Jun. 21, 2011, for U.S. Appl. No. 12/270,695, filed Nov. 13, 2008, 24 pages. |
Non-Final Office Action dated Jul. 13, 2011, for U.S. Appl. No. 12/334,373, filed Dec. 12, 2008, 8 pages. |
Non-Final Office Action dated Sep. 26, 2011, for U.S. Appl. No. 12/334,382, filed Dec. 12, 2008, 7 pages. |
Non-Final Office Action dated May 11, 2012, for U.S. Appl. No. 12/883,071, filed Sep. 15, 2010, 7 pages. |
Non-Final Office Action dated Jun. 7, 2012, for U.S. Appl. No. 12/334,395, filed Dec. 12, 2008, 7 pages. |
Non-Final Office Action dated Oct. 18, 2012, for U.S. Appl. No. 12/541,840, filed Aug. 14, 2009, 10 pages. |
Non-Final Office Action dated Mar. 15, 2013, for U.S. Appl. No. 12/512,855, filed Jul. 30, 2009, 10 pages. |
Non-Final Office Action dated Sep. 12, 2013 for U.S. Appl. No. 13/341,732, filed Dec. 30, 2011, 5 pages. |
Non-Final Office Action dated Sep. 23, 2013, for U.S. Appl. No. 12/883,087, filed Sep. 15, 2010, 7 pages. |
Non-Final Office Action dated Feb. 27, 2014, for U.S. Appl. No. 12/270,695, filed Nov. 13, 2008, 7 pages. |
Non-Final Office Action dated Apr. 16, 2014, for U.S. Appl. No. 12/334,395, filed Dec. 12, 2008, 9 pages. |
Non-Final Office Action dated Jun. 12, 2014, for U.S. Appl. No. 14/082,010, filed Nov. 15, 2013, 6 pages. |
Non-Final Office Action dated Sep. 23, 2014, for U.S. Appl. No. 13/341,732, filed Dec. 30, 2011, 8 pages. |
Non-Final Office Action dated Mar. 20, 2015, for U.S. Appl. No. 12/883,087, filed Sep. 15, 2010, 11 pages. |
Non-Final Office Action dated May 8, 2015, for U.S. Appl. No. 12/334,395, filed Dec. 12, 2008, 11 pages. |
Non-Final Office Action dated Sep. 10, 2015, for U.S. Appl. No. 13/341,732, filed Dec. 30, 2011, 6 pages. |
Non-Final Office Action dated Nov. 12, 2015, for U.S. Appl. No. 14/327,100, filed Jul. 9, 2014, 12 pages. |
Non-Final Office Action dated Feb. 5, 2016, for U.S. Appl. No. 12/883,087, filed Sep. 15, 2010, 12 pages. |
Non-Final Office Action dated Feb. 5, 2016, for U.S. Appl. No. 14/081,974, filed Nov. 15, 2013, 12 pages. |
Non-Final Office Action dated Apr. 28, 2016, for U.S. Appl. No. 14/550,634, filed Nov. 21, 2014, 10 pages. |
Non-Final Office Action dated Aug. 11, 2016, for U.S. Appl. No. 12/334,395, filed Dec. 12, 2008, 12 pages. |
Non-Final Office Action dated Mar. 20, 2017, for U.S. Appl. No. 14/298,715, filed Jun. 6, 2014, 7 pages. |
Non-Final Office Action dated Jun. 29, 2017, for U.S. Appl. No. 14/081,974, filed Nov. 15, 2013, 15 pages. |
Notice of Allowance dated Dec. 23, 2009, for U.S. Appl. No. 12/419,925, filed Apr. 7, 2009, 2 pages. |
Notice of Allowance dated Dec. 23, 2009, for U.S. Appl. No. 12/419,943, filed Apr. 7, 2009, 2 pages. |
Notice of Allowance dated Dec. 24, 2009, for U.S. Appl. No. 12/419,927, filed Apr. 7, 2009, 2 pages. |
Notice of Allowance dated Jan. 19, 2010, for U.S. Appl. No. 12/419,930, filed Apr. 7, 2009, 2 pages. |
Notice of Allowance dated Feb. 2, 2010, for U.S. Appl. No. 12/419,937, filed Apr. 7, 2009, 2 pages. |
Notice of Allowance dated Mar. 18, 2011, for U.S. Appl. No. 12/258,277, filed Oct. 24, 2008, 7 pages. |
Notice of Allowance dated Mar. 21, 2011, for U.S. Appl. No. 12/258,282, filed Oct. 24, 2008, 8 pages. |
Notice of Allowance dated Mar. 21, 2011, for U.S. Appl. No. 12/883,059, filed Sep. 15, 2010, 10 pages. |
Notice of Allowance dated Mar. 23, 2011, for U.S. Appl. No. 12/883,079, filed Sep. 15, 2010, 9 pages. |
Notice of Allowance dated Mar. 25, 2011 for U.S. Appl. No. 12/883,090, filed Sep. 15, 2010, 8 pages. |
Notice of Allowance dated Mar. 25, 2011, for U.S. Appl. No. 12/883,056, filed Sep. 15, 2010, 8 pages. |
Notice of Allowance dated Jul. 13, 2011, for U.S. Appl. No. 11/398,342, filed Apr. 4, 2006, 7 pages. |
Notice of Allowance dated Nov. 9, 2011, for U.S. Appl. No. 12/479,794, filed Jun. 6, 2009, 7 pages. |
Notice of Allowance dated Aug. 20, 2012, for U.S. Appl. No. 12/437,374, filed May 7, 2009, 8 pages. |
Notice of Allowance dated Nov. 2, 2012, for U.S. Appl. No. 11/775,157, filed Jul. 9, 2007, 8 pages. |
Notice of Allowance dated May 22, 2013, for U.S. Appl. No. 11/775,157, filed Jul. 9, 2007, 10 pages. |
Notice of Allowance dated Jul. 15, 2013, for U.S. Appl. No. 12/334,382, filed Dec. 12, 2008, 9 pages. |
Notice of Allowance dated Jul. 30, 2013, for U.S. Appl. No. 12/334,373, filed Dec. 12, 2008, 10 pages. |
Notice of Allowance dated Sep. 19, 2013, for U.S. Appl. No. 12/883,071, filed Sep. 15, 2010, 6 pages. |
Notice of Allowance dated Nov. 27, 2013, for U.S. Appl. No. 12/512,855, filed Jul. 30, 2009, 9 pages. |
Notice of Allowance dated Jan. 21, 2014, for U.S. Appl. No. 12/883,071, filed Sep. 15, 2010, 6 pages. |
Notice of Allowance dated Feb. 19, 2014, for U.S. Appl. No. 12/512,855, filed Jul. 30, 2009, 7 pages. |
Notice of Allowance dated Apr. 8, 2014, for U.S. Appl. No. 12/541,840, filed Aug. 14, 2009, 8 pages. |
Notice of Allowance (Corrected) dated May 29, 2014, for U.S. Appl. No. 12/512,855, filed Jul. 30, 2009, 4 pages. |
Notice of Allowance dated Jun. 12, 2014, for U.S. Appl. No. 12/270,695, filed Nov. 13, 2008, 7 pages. |
Notice of Allowance dated Nov. 12, 2014, for U.S. Appl. No. 14/082,010, filed Nov. 15, 2013, 5 pages. |
Notice of Allowance dated Feb. 17, 2015, for U.S. Appl. No. 14/082,010, filed Nov. 15, 2013, 5 pages. |
Notice of Allowance dated Nov. 18, 2016, for U.S. Appl. No. 14/298,715, filed Jun. 6, 2014, 8 pages. |
Notice of Allowance dated Jun. 20, 2017, for U.S. Appl. No. 14/298,715, filed Jun. 6, 2014, 5 pages. |
Nuutinen, J-P. et al. (2002). “Mechanical Properties and in vitro Degradation of Bioresorbable Knitted Stents,” J. Biomater. Sci. Polymer Edn. 13(12):1313-1323. |
Nuutinen, J-P. et al. (2003). “Theoretical and Experimental Evaluation of the Radial Force of Self-Expanding Braided Bioabsorbable Stents,” J. Biomater. Sci. Polymer Edn. 14(7):677-687. |
Parviainen, M. et al. (2000). “A New Biodegradable Stent for the Pancreaticojejunal Anastomosis After Pancreaticoduodenal Resection: In Vitro Examination and Pilot Experiences in Humans,” Pancreas 21(1):14-21. |
Piskunov, S.Z. et al. (May-Jun. 1989). “Application of Drugs Based on Polymers in the Treatment of Acute and Chronic Maxillary Sinusitis,” Vestnik Otorinolaringologii (3)33-35. |
Piskunov, S. et al. (1993). “The Prolongation of Drug Action in the Treatment of Diseases of the Nose and Paranasal Sinuses,” Rhinology 31:33-36. |
Roumestan, C. et al. (2003). “Fluticasone Propionate and Mometasone Furoate Have Equivalent Transcriptional Potencies,” Clinical and Experimental Allergy 33: 895-901. |
Shikani, A.H. (Aug. 1996). “Use of Antibiotics for Expansion of the Merocel® Packing Following Endoscopic Sinus Surgery,” ENT Journal 75(8):524-528. |
Su, S-H. et al. (2003). “Expandable Bioresorbable Endovascular Stent. I. Fabrication and Properties,” Annals of Biomedical Engineering 31:667-677. |
Supplementary European Search Report dated Nov. 9, 2010, for European Patent Application No. 04 720 509.1, filed on Mar. 12, 2004, 3 pages. |
Tamai, H. et al. (1999). “A Biodegradable Ploy-/-lactic Acid Coronary Stent in the Porcine Coronary Artery,” Journal of Interventional Cardiology 12(6):443-450. |
Thierry, B. et al. (Nov./Dec. 2003, e-pub. Oct. 7, 2003). “Bioactive Coatings of Endovascular Stents Based on Polyelectrolyte Multilayers,” Biomacromolecules 4(6):1564-1571. |
Third Party Submission under 37 CFR 1.290 submitted Oct. 11, 2014, against U.S. Appl. No. 14/081,974, filed Nov. 15, 2013, 8 pages. |
Toffel, P.N. (Mar. 2001). “The Balanced Philosophy of Secure Multimodal Endoscopic Sinus Surgery with Adjunct Use of Middle Meatal Stenting and Middle Turbinate Modification,” Operative Techniques in Otolaryngology—Head and Neck Surgery 12(1):40-45. |
Vogt, F. et al. (2004, e-pub. Jul. 20, 2004). “Long-Term Assessment of a Novel Biodegradable Paclitaxel-Eluting Coronary Polylactide Stent,” European Heart Journal 25:1330-1340. |
Written Opinion of the International Searching Authority dated Sep. 11, 2006, for PCT Patent Application No. PCT/US2006/012484, filed on Apr. 4, 2006, 11 pages. |
Written Opinion of the International Searching Authority dated Sep. 28, 2009, for PCT Application No. PCT/US2009/052287, filed on Jul. 30, 2009, 9 pages. |
Written Opinion of the International Searching Authority dated Feb. 24, 2006 for PCT Application No. PCT/US04/07828, filed Mar. 12, 2004, 3 pages. |
Written Opinion of the International Searching Authority dated Mar. 19, 2008, for PCT Patent Application No. PCT/US2007/015813, filed on Jul. 10, 2007, 7 pages. |
Written Opinion of the International Searching Authority dated Apr. 16, 2009, for PCT Application No. PCT/US2008/86718, filed on Dec. 12, 2008, 13 pages. |
Corrected Notice of Allowability dated May 2, 2018, for U.S. Appl. No. 14/081,974, filed Nov. 15, 2013, 2 pages. |
Final Office Action dated Nov. 30, 2017, for U.S. Appl. No. 14/081,974, filed Nov. 15, 2013, 11 pages. |
Non-Final Office Action dated Dec. 13, 2017, for U.S. Appl. No. 15/062,616, filed Mar. 7, 2016, 13 pages. |
Notice of Allowance dated Apr. 6, 2018, for U.S. Appl. No. 14/081,974, filed Nov. 15, 2013, 9 pages. |
U.S. Appl. No. 16/007,327, filed Jun. 13, 2018, by Eaton et al. |
U.S. Appl. No. 16/021,659, filed Jun. 28, 2018, by Eaton et al. |
Non-Final Office Action dated Jul. 25, 2019, for U.S. Appl. No. 16/021,659, filed Jun. 28, 2018, 21 pages. |
Non-Final Office Action dated Feb. 10, 2020, for U.S. Appl. No. 16/007,327, filed Jun. 13, 2018, 10 pages. |
Notice of Allowance dated Sep. 12, 2019, for U.S. Appl. No. 16/021,659, filed Jun. 28, 2018, 10 pages. |
Final Office Action dated Aug. 19, 2020, for U.S. Appl. No. 16/007,327, filed Jun. 13, 2018, 12 pages. |
Extended European Search Report dated Feb. 8, 2021, for European Patent Application No. 20 203 807.1, filed on Jul. 30, 2009, 9 pages. |
Final Office Action dated Apr. 16, 2021, for U.S. Appl. No. 17/075,572, filed Oct. 20, 2020, 2021, 12 pages. |
Non-Final Office Action dated Dec. 10, 2020, for U.S. Appl. No. 16/007,327, filed Jun. 13, 2018, 13 pages. |
Non-Final Office Action dated Dec. 22, 2020, for U.S. Appl. No. 17/075,572, filed Oct. 20, 2020, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20170128093 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
60668569 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12883087 | Sep 2010 | US |
Child | 15415465 | US | |
Parent | 11398342 | Apr 2006 | US |
Child | 12883087 | US |