The invention relates to a device and a process for determining the position of an internal combustion engine comprising a rotary element.
It is useful to know with precision the position of an internal combustion engine, in particular so as to improve its start-up and more specifically to reduce the start-up time, and even to allow the direct start-up of the engine without a starter. Actually, a better knowledge of the position of the engine makes it possible to select cylinders that are to be supplied with fuel, to determine the optimum amount of fuel to be injected, as well as the optimum ignition time.
Already known is a device that comprises:
If this device proves satisfactory, however, when the engine always rotates in the same direction, by contrast it no longer makes it possible to know precisely the position of the engine if the latter is reversed. For example, when the internal combustion engine is in stop phase, it oscillates around a mechanical equilibrium position. During this stop phase when the rotation direction varies continuously, the device of the prior art makes errors in enumerating events, and it therefore is no longer possible to know the position of the engine.
Actually, the number of reference points consists in particular of the succession of hollows and teeth of a gear and the characteristic event that appears on the first signal generally consists of the shifting of a reference value either upward or downward. The reference value conventionally corresponds to the mean value of this first signal. For various technical reasons and in particular the compatibility between the devices of different generations, a single type of shifting is detected by the reference value. Thus, the choice may be made to relate the determination of a tooth (respectively of the hollow according to the protocol selected) to the first signal passing the reference value on the upswing. The choice may also be made to relate the determination of a tooth (respectively a hollow according to the protocol selected) to the first signal passing the reference value on the downswing.
It appeared, however, that such a device delivers erroneous information when the internal combustion engine is reversed. Actually, even though the shifting of the reference value upward (for example) of the first signal corresponds physically to the shifting of a tooth in a direction of rotation, the shifting of the reference value in the upward direction in the other direction of rotation no longer corresponds physically to the shifting of a tooth (but rather a hollow). The sensor therefore signals teeth in a given direction and hollows in the other direction. Consequently, the means of analysis are induced erroroneously by this confusion.
The purpose of the invention is to eliminate this drawback for a moderate cost and by preserving the compatibility with the preceding generations of sensors, in other words by detecting only the shifting of teeth (respectively, hollows), in addition to the direction of rotation, regardless of the latter.
To do this, according to the invention, the means of analysis comprise, in addition;
Thus, regardless of the direction of rotation of the engine, the same mechanical events (for example the shifting of a tooth) are always physically detected. Consequently, the means of analysis are no longer induced erroneously. The position of the engine is therefore correctly known even if the engine is reversed;
However, as mentioned above, the internal combustion engine has a tendency to oscillate before stopping. According to another advantageous characteristic in accordance with the invention, the device exhibits the following characteristics:
Thus, the means of analysis detect the direction of rotation of the engine. Actually, the variation of the value of the counter will be positive when the engine rotates in one direction and negative when it rotates in the other.
The interval between the two successive alternations of the third signal is easily detected by the fifth means.
The value of the counter is therefore always in agreement with the physical position of the rotary element regardless of the direction of rotation and the oscillations of the rotary element.
According to another advantageous characteristic according to the invention, the device exhibits the following characteristics:
Thus, owing to variations in the air gap, temperature, etc., the derivatives that can undergo over time the fourth signal and the fifth signal are attenuated. The device thus has great precision and great strength.
In addition, the device advantageously has the following characteristics:
Thus, the first signal and the second signal are both essentially sinusoidal and in phase quadrature. Consequently, when the first signal takes on the zero value, the second signal is approximately at an end value (maximum or minimum). Under these conditions, it is determined with precision which of the shifts of the first signal by the zero value should generate a modification of the counter and which should not modify the counter.
The invention also relates to a process. A process in which a sensor that comprises a fixed part and a rotary part is used is already known, whereby the rotary part comprises a number of essentially identical reference points that are offset angularly by one increment, whereby said sensor generates a first signal and a second signal that are similar but phase-shifted, and a binary signal that takes on a first value or a second value is transmitted from the sensor to the engine control means. Said process comprises the following stages:
This process exhibits the above-mentioned drawbacks in relation to the reversal of the direction of rotation. To remedy this, according to the invention, during stage a), in addition, the value of the second signal is compared to a reference value, and stage b) is performed only if the result of the comparison between the value of the second signal and the reference value during stage a) is positive.
According to an advantageous characteristic in accordance with the invention, the following stages are carried out:
The precision of the detection of the position of the rotary element is thus improved.
The invention will appear even more clearly in the following description, given in reference to the attached drawings, in which:
Sensor 2 comprises a rotary part 8 that is integral with the crankshaft of the engine and a fixed part 6 that is intended to detect the movements of rotary part 8. Fixed part 6 is shown in more detail in
Rotary part 8 comprises a ferromagnetic disk 8 that consists of a succession of sixty teeth 26 and sixty hollows 28 that are distributed uniformly, such that teeth 26 (respectively hollows 28) are placed at the periphery of disk 8 every six degrees, which defines a rotation increment of the crankshaft. In fact, two teeth were removed in disk 8 so as to reference a reference position 24 of the crankshaft. Another number of teeth and hollows is also possible without thereby exceeding the scope of this invention.
Fixed part 6 comprises a magnet, three Hall effect probes or identical magnetoresistive probes of type 18, 20, 22, a subtractor assembly 30 and an analysis unit 10. Magnet 16 generates a magnetic field that is modified by the presence of teeth 26 of disk 8, such that voltage 38, 34, 40 that is detected by probes 18, 20,22 is essentially sinusoidal and based on the position of teeth 26 relative to the probes. As illustrated in
Probe 20 is located in the center of probe 18 and probe 22 short of one tooth width relative to probe 18 and probe 22.
Subtractor assembly 30 generates a signal 32 corresponding to the difference between voltage 38 obtained from probe 18 and voltage 40 obtained from probe 22. As shown in
It should be noted that if the mean value of signal 32 is not close to zero, a continuous elimination of the component can be carried out to bring said mean value to zero.
Signals 32, 34 are entered into analysis unit 10, which detects movements of the crankshaft by one increment of rotation and transmits the information to engine control unit 4. Analysis unit 10 comprises a control unit 44, a detection unit 46, a generator 48 of binary signals 36 and two comparators 54, 42 that receive signals 32, 34 and generate signals 58, 60 that enter into control unit 44.
Detection unit 46 detects passages 12, 14 by signal 32 through the zero value. Control unit 44 then determines whether signal 34 is at its maximum value 34MAX or at its minimum value 34min based on signal 58 that is received from comparator 42. In practice, signal 58 is binary and based on the value of signal 34 relative to the mean between its maximum value 34MAX and its minimum value 34min.
When signal 34 is at its minimum value 34min, probe 20 is opposite a tooth 26. Disk 38 is shifted by one increment, if it has not changed direction of rotation, between two consecutive passages through minimum value 34min by signal 34. Control unit 44 then controls generator 48 to alternate signal 36 from value 36MAX to the value 36min.
To know the direction of rotation, it is determined with comparator 54 and signal 60 that it transmits to control unit 44 whether signal 32 is increasing or decreasing when it passes through the zero value by measuring the value of signal 32 a moment after passing through the zero value.
If signal 32 is negative after passing through the zero value, then the engine rotates in the normal direction, and control unit 44 controls generator 48 to alternate signal 36 from the value 36min to the value 36MAX after remaining at the value 36min for a period T1.
If signal 32 is increasing, in other words positive after passing through the zero value, then the engine is reversed, and control unit 44 controls generator 48 to alternate signal 36 from value 36min to value 36MAX after remaining at value 36min for a period T2.
Period T2 is separate from period T1. Advantageously, period T2 is twice as long as period T1. In
Engine control unit 4 comprises a detection unit 50, a counter 56, and a control unit 52 that is connected to operational elements of an internal combustion engine and in particular spark plugs 68 and fuel injectors 70.
Detection unit 50 detects alternations 64 of signal 36 from value 36MAX to value 36min, alternations 66 of signal 36 from value 36min to value 36MAX, and period Tmes that separates these alternations. If this period is equal to T1, it increments counter 56 after each alternation 64; if it is equal to T2, it decrements counter 56 after each alternation 64. In practice, detected period Tmes is compared to the mean of values T1 and T2 to increment or decrement the counter.
When reference position 24 of disk 8 is opposite fixed part 6 of sensor 2, signal 32 does not take on the zero value; signal 36 therefore remains at value 36MAX for a long period that is detected by detection unit 50 and one out of two rotations, counter 56 is brought to zero, so as to know the position of the engine in two crankshaft turns.
This invention is not limited to the embodiment described above, and any modification within the scope of one skilled in the art can be considered.
It is possible, for example, to select a reference value other than the passing of first signal 32 through zero.
It is also feasible to select two or more reference values. Actually, the selection of the passing of signal 32 through the zero value as a reference value comes to use two values: a first value that is the passage through zero in increasing mode 12 and a second value that is the passage through zero in decreasing mode 14. In the example presented above, it is entirely possible to take on two non-zero reference values by selecting them such that one is above the mean value of signal 32 and the other below, so as to allow (based on the phase quadrature between two signals 32 and 34) an immediate identification of the event by comparison of signals 32 and 34.
Likewise, it is entirely feasible to work with first and second signals 32, 34 that are not in phase quadrature but have any phase shift between them, because the fact of comparing signals 32 and 34 makes it possible to reach the desired objective, where devices of the prior art provide erroneous information.
Number | Date | Country | Kind |
---|---|---|---|
04 06625 | Jun 2004 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
4145608 | Shirasaki et al. | Mar 1979 | A |
4329645 | Takase | May 1982 | A |
4854284 | Hara et al. | Aug 1989 | A |
4966116 | Sakurai Hidetoshi | Oct 1990 | A |
5568048 | Schroeder et al. | Oct 1996 | A |
20020057084 | Preymann | May 2002 | A1 |
Number | Date | Country |
---|---|---|
1 186 894 | Mar 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20050283300 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
60666800 | Mar 2005 | US |